C/C++은 성능을 위해 컴파일러나 언어 런타임이 프로그래머의 편의를 위해 뭔가를 몰래 해 주는 것을 극도로 최소화한 언어이다. 꾸밈 없고 정제되지 않은 '날것 상태 raw state'에다가 고급 프로그래밍 언어의 패러다임과 문법만을 얹은 걸 추구하다 보니, '초기화되지 않은 쓰레기값'이라는 게 존재하는 거의 유일한 언어이기도 하다.

같은 프로그램이라도 이제 막 선언된 변수나 할당된 메모리 안에 무슨 값이 들어있을지는 컴퓨터 운영체제의 상태에 따라서 그때 그때 달라진다. 반드시 0일 거라는 보장은 전혀 없다. 오히려 0 초기화는 별도의 CPU 부담이 필요한 인위적인 작업이다. global/static에 속하는 메모리만이 무조건적인 0 초기화가 보장된다.

그렇다고 쓰레기값이라는 게 완벽하게 예측 불가이면서 통계적인 질서를 갖춘 난수인 것도 물론 아니다.
그리고 Visual C++에서 프로그램을 debug 세팅으로 빌드하면 쓰레기값이라는 게 크게 달라진다. C++ 개발자라면 이 사실을 이미 경험적으로 충분히 알고 있을 것이다.

1. 갓 할당된 메모리의 기본 쓰레기값: 0xCC(스택)와 0xCD(힙)

가장 먼저, 스택에 저장되는 지역변수들은 자신을 구성하는 바이트들이 0xCC로 초기화된다. 다시 말해 디버그 빌드에서는 int x,y라고만 쓴 변수는 int x=0xCCCCCCCC, y=0xCCCCCCCC와 얼추 같게 처리된다는 것이다. 디스어셈블리를 보면 의도적으로 0xCC를 대입하는 인스트럭션이 삽입돼 들어간다.

0은 너무 인위적이고 유의미하고 깔끔한(?) 값 그 자체이고, 그 근처에 있는 1, 2나 0xFF도 자주 쓰이는 편이다. 그에 비해 0xCC는 형태가 단순하면서도 현실에서 일부러 쓰일 확률이 매우 낮은 값이다. 그렇기 때문에 여기는 초기화되지 않은 쓰레기 영역이라는 것을 시각적으로 곧장 드러내 준다.

int a[10], x; a[x]=100; 같은 문장도 x가 0으로 깔끔하게 자동 초기화됐다면 그냥 넘어가지만, 기괴한 쓰레기값이라면 곧장 에러를 발생시킬 것이다.
또한, 복잡한 클래스의 생성자에서 값이 대입되어 초기화된 멤버와 그렇지 않은 멤버가 뒤섞여 있을 때, 0xCC 같은 magic number는 탁월한 변별력을 발휘한다.

타겟이 align을 꼼꼼하게 따지는 아키텍처라면, 쓰레기값을 0x99나 0xDD 같은 홀수로 지정하는 것만으로도 초기화되지 않은 포인터 실수를 잡아낼 수 있다. 32비트에서 포인터값의 최상위 비트가 커널/사용자 영역을 분간한다면, 최하위 비트는 align 단위를 분간할 테니 말이다. 뭐 0xCC는 짝수이다만..

0xCC라는 바이트는 x86 플랫폼에서는 int 3, 즉 breakpoint를 걸어서 디버기의 실행을 중단시키는 명령을 나타내기도 한다. 그래서 이 값은 실행 파일의 기계어 코드에서 align을 맞추기 위해 공간만 차지하는 잉여 padding 용도로 위해 듬성듬성 들어가기도 한다.
Visual C++ 6 시절엔 거기에 말 그대로 아무 일도 안 하는 nop를 나타내는 0x90이 쓰였지만 2000년대부터는 디버깅의 관점에서 좀 더 유의미한 작용을 하는 0xCC로 바뀐 듯하다. 정상적인 상황이라면 컴퓨터가 이 구역의 명령을 실행할 일이 없어야 할 테니까..

다만, 힙도 아니고 스택 지역변수의 내용이 데이터가 아닌 코드로 인식되어 실행될 일이란 현실에서 전혀에 가깝게 없을 테니, 0xCC는 딱히 x86 기계어 코드를 의식해서 정해진 값은 아닐 것으로 보인다.

Visual C++의 경우, 스택 말고 malloc이나 new로 할당하는 힙(동적) 메모리는 디버그 버전에서는 내용 전체를 0xCD로 채워서 준다. 0xCC보다 딱 1 더 크다. 아하~! 이 값도 평소에 디버그 하면서 많이 보신 적이 있을 것이다.
힙의 관리는 컴파일러 내장이 아니라 CRT 라이브러리의 관할로 넘어기도 하니, 0xCD라는 값은 라이브러리의 소스인 dbgheap.c에서도 _bCleanLandFill이라는 상수명으로 확인할 수 있다.

2. 초기화되지 않은 스택 메모리의 사용 감지

C/C++ 언어는 지역변수의 값 초기화를 필수가 아닌 선택으로 남겨 놓았다. 그러니 해당 언어의 컴파일러 및 개발툴에서는 프로그래머가 초기화되지 않은 변수값을 사용하는 것을 방지하기 위해, 디버그용 빌드 한정으로라도 여러 안전장치들을 마련해 놓았다.
그걸 방지하지 않고 '방치'하면 같은 프로그램의 실행 결과가 debug/release별로 달라지는 것을 포함해 온갖 골치아픈 문제들이 발생해서 프로그래머를 괴롭히게 되기 때문이다.

int x; printf("%d", x);

이런 무식한 짓을 대놓고 하면 30년 전의 도스용 Turbo C에서도 컴파일러가 경고를 띄워 줬다. Visual C++의 에러 코드는 C4700. 그랬는데 한 Visual C++ 2010쯤부터는 이게 경고가 아니라 에러로 바뀌었다.
그리고 그 뿐만이 아니다.

int x;
if( some_condition_met(...)) x=0;
printf("%d", x);

이렇게 문장을 약간만 꼬아 놓으면 초기화를 전혀 안 하는 건 아니기 때문에 컴파일 과정에서의 C4700을 회피할 수 있다. 하지만 보다시피 if문의 조건이 충족되지 않으면 x가 여전히 초기화되지 않은 채 쓰일 수 있다. 이건 정적 분석 정도는 돌려야 감지 가능하다.
(그런데, 글쎄.. 함수의 리턴이 저런 식으로 조건부로 불완전하게 돼 있으면 컴파일만으로도 C4715 not all control paths return value 경고가 뜰 텐데.. 비초기화 변수 접근 체크는 그 정도로 꼼꼼하지 않은가 보다.)

Visual C++은 /RTC라고 디버그용 빌드에다가 run-time check라는 간단한 검사 기능을 추가하는 옵션을 제공한다. 함수 실행이 끝날 때 스택 프레임 주변을 점검해서 버퍼 오버런을 감지하는 /RTCs, 그리고 지역변수를 초기화하지 않고 사용한 것을 감지하는 /RTCu.

사용자 삽입 이미지

저 코드를 Visual C++에서 디버그 모드로 빌드해서 실행해서 if문이 충족되지 않으면 run-time check failure가 발생해서 프로그램이 정지한다. 다만, 이 메모리는 초기화만 되지 않았을 뿐 접근에 법적으로 아무 문제가 없는 스택 메모리이다. 할당되지 않은 메모리에 접근해서 access violation이 난 게 아니다. 심각한 시스템/물리적인 오류가 아니라 그저 의미· 논리적인 오류이며, 쓰기를 먼저 하지 않은 메모리에다가 읽기를 시도한 게 문제일 뿐이다.

그러니 이 버그는 해당 메모리 자체에다가 시스템 차원의 특수한 표식을 해서 잡아낸 게 아니며, 논리적으로 매우 허술하다. (0xCC이기만 하면 무조건 스톱.. 이럴 수도 없는 노릇이고!)
문제의 코드에 대한 디스어셈블리를 보면 if문이 만족되지 않으면 printf으로 가지 않고 그냥 곧장 RTC failure 핸들러를 실행하게 돼 있다.

void do_nothing(int& x) {}

int x; do_nothing(x); printf("%d", x);

그렇기 때문에 요렇게만 해 줘도 RTC를 회피하고 x의 쓰레기값을 얻는 게 가능하다. 글쎄, 정교한 정적 분석은 이것도 지적해 줄 수 있겠지만, 포인터가 등장하는 순간부터 메모리 난이도와 복잡도는 그냥 하늘로 치솟는다고 봐야 할 것이다.

하물며 처음부터 포인터로만 접근하는 힙 메모리는 RTC고 뭐고 아무 안전 장치가 없다. int *p에다가 new건 malloc이건 값이 하나 들어간 것만으로도 초기화가 된 것이거늘, 그 주소가 가리키는 p[0], p[1] 따위에 쓰레기값(0xCD)이 있건 0이 있건 알 게 무엇이겠는가????

나도 지금까지 혼동하고 있었는데, 이런 run-time check failure는 run-time error와는 다른 개념이다. 순수 가상 함수 호출 같은 건 C/C++에 존재하는 얼마 안 되는 run-time error의 일종이고 release 빌드에도 포함돼 들어간다. 하지만 RTC는 debug 빌드 전용 검사이다.

그러니 버퍼 오버런을 감지하는 보안 옵션이 /RTC만으로는 충분하지 않고 /GS가 따로 있는 것이지 싶다. /GS는 release 빌드에도 포함돼 있으며, 마소에서는 보안을 위해 모든 프로그램들이 이 옵션을 사용하여 빌드할 것을 권하고 있다.

3. 해제된 힙 메모리: 0xDD(CRT)와 0xFEEE(???)

일반적인 프로그래머라면 동적으로 할당받은 힙 메모리를 free로 해제했을 때, 거기를 가리키는 메모리 영역이 실제로 어떻게 바뀌는지에 대해 생각을 별로 하지 않는다. 사실, 할 필요가 없는 게 정상이기도 하다.
우리 프로그램은 free를 해 준 주소는 신속하게 영원히 잊어버리고, 그 주소를 보관하던 포인터는 NULL로 바꿔 버리기만 하면 된다. free 해 버린 주소를 또 엿보다가는 곧바로 메모리 에러라는 천벌을 받게 될 것이다.

그런데 실제로는, 특히 디버그 모드로 빌드 후 프로그램을 디버깅 중일 때는 free를 한 뒤에도 해당 메모리 주소가 가리키는 값을 여전히 들여다볼 수 있다. 들여다볼 수 있다는 말은 *ptr을 했을 때 access violation이 발생하지 않고 값이 나온다는 것을 의미한다.
이 공간은 나중에 새로운 메모리 할당을 위해 재사용될 수야 있다. 하지만 사용자가 디버깅의 편의를 위해 원한다면 옵션을 바꿔서 재사용되지 않게 할 수도 있다. (_CrtSetDbgFlag(_CRTDBG_DELAY_FREE_MEM_DF) 호출)

뭐, 메모리를 당장 해제하지 않는다고 해서 free 하기 전의 메모리의 원래 값까지 그대로 남아 있지는 않는다. Visual C++의 디버그용 free/delete 함수는 그 메모리 블록의 값을 일부러 0xDD (_bDeadLandFill)로 몽땅 채워 넣는다. 여기는 할당되었다가 해제된 영역임을 이런 식으로 알린다는 것이다.

실제로, free된 메모리가 곧장 흔적도 없이 사라져서 애초에 존재하지도 않았던 것처럼 접근 불가 ?? 로 표시되는 것보다는 0xDD라고 디버거의 메모리 창에 뜨는 게 dangling pointer 디버깅에 약간이나마 더 도움이 될 것이다. 이 포인터가 처음부터 그냥 쓰레기값을 가리키고 있었는지, 아니면 원래는 valid하다가 지칭 대상이 해제되어 버린 것인지를 분간할 수 있으니 말이다.

그런데 본인은 여기서 개인적으로 의문이 들었다.
본인은 지난 20여 년에 달하는 Visual C++ 프로그래밍과 메모리 문제 디버깅 경험을 떠올려 봐도.. 갓 할당된 쓰레기값인 0xCC와 0xCD에 비해, 0xDD를 본 적은 전혀 없는 건 아니지만 매우 드물었다.

dangling pointer가 가리키는 메모리의 값은 0xD?보다는 0xF?였던 적이 훨씬 더 많았다. 더 구체적으로는 2바이트 간격으로 0xFEEE (0xEE, 0xFE)이다.

사용자 삽입 이미지

인터넷 검색을 해 보니.. 이건 놀랍게도 CRT 라이브러리가 채워 넣는 값이 아니었다. free/delete가 궁극적으로 호출하는 Windows API 함수인 HeapFree가 메모리를 정리하면서 영역을 저렇게 바꿔 놓았었다. 더구나 CRT에서 0xDD로 먼저 채워 넣었던 영역을 또 덮어쓴 것이다.
이 동작에 대해서 놀라운 점은 저게 전부가 아니다.

(1) 0xFEEE 채우기는 프로그램을 Visual C++ 디버거를 붙여서(F5) 실행했을 때만 발생한다. debug 빌드라도 디버거를 붙이지 않고 그냥 Ctrl+F5로 실행하면 0xFEEE가 생기지 않는다. 그리고 release 빌드라도 디버거를 붙여서 실행하면 0xFEEE를 볼 수 있다.

(2) 더 놀라운 점은.. 내가 집과 직장 컴퓨터를 통틀어서 확인한 바로는 저 현상을 볼 수 있는 건 Visual C++ 2013 정도까지이다. 2015부터는 debug 빌드를 디버거로 붙여서 돌리더라도 0xFEEE 채움이 발생하지 않고 곧이곧대로 0xDD만 나타난다~!

운영체제가 정확하게 어떤 조건 하에서 0xFEEE를 채워 주는지 모르겠다. 인터넷 검색을 해 봐도 정확한 정보가 나오는 게 의외로 없다.
하필 Visual C++ 2015부터 저런다는 것은 CRT 라이브러리가 Universal CRT니 VCRuntime이니 하면서 구조가 크게 개편된 것과 관계가 있지 않으려나 막연히 추측만 해 볼 뿐이다.

여담이지만 HeapAlloc, GlobalAlloc, LocalAlloc은 연달아 호출했을 때 돌아오는 주소의 영역이 그리 큰 차이가 나지 않으며, 내부 동작 방식이 모두 비슷해진 것 같다. 물론 뒤의 global/local은 fixed 메모리 할당 기준으로 말이다.

4. 힙 메모리 영역 경계 표시용: 0xFD와 0xBD

0xCD, 0xDD, (0xFEEE) 말고 heap 메모리 주변에서 볼 수 있는 디버그 빌드용 magic number 바이트로는 0xFD _bNoMansLandFill와 0xBD _bAlignLandFill가 더 있다.

얘들은 사용자가 요청한 메모리.. 즉, 0xCD로 채워지는 그 메모리의 앞과 뒤에 추가로 고정된 크기만큼 채워진다. Visual C++ CRT 소스를 보면 크기가 NoMansLandSize인데, 값은 4바이트이다. 사용자가 요청한 메모리 크기에 비례해서 채워지는 0xCD와 0xDD에 비하면 노출 빈도가 아주 작은 셈이다. 특히 0xBD는 0xFD보다도 더욱 듣보잡인 듯..

애초에 얘는 사용자가 건드릴 수 있거나 건드렸던 공간이 아니며 그 반대이다. 사용자는 0xCD로 채워진 공간에다가만 값을 집어넣어야지, 앞뒤  경계를 나타내는 0xFD를 건드려서는 안 된다.
CRT 라이브러리의 디버그용 free/delete 함수는.. 힙을 해제할 때 이 0xFD로 표시해 놨던 영역이 값이 바뀌어 있으면 곧장 에러를 출력하게 돼 있다.

그리고 예전에 메모리를 해제해서 몽땅 0xDD로 채워 놨던 영역도 변조된 게 감지되면 _CrtCheckMemory 같은 디버깅 함수에서 곧장 에러를 찍어 준다. 그러니 0xDD, 0xFD, 0xBD는 모두 오류 검출이라는 용도가 있는 셈이다. 0xCC와 0xCD 같은 쓰레기값 영역은 쓰지도 않고 곧장 읽어들이는 게 문제이지만, 나머지 magic number들은 건드리는 것 자체가 문제이다.

그리고 얘들은 heap 메모리를 대상으로 행해지는 점검 작업이다. 이런 것 말고 스택 프레임에다가 특정 magic number를 둬서 지역변수 배열의 overflow나 복귀 주소 변조를 감지하는 것은 별도의 컴파일러 옵션을 통해 지원되는 기능이다. 요것들은 힙 디버그 기능과는 별개이며, 보안 강화를 위해 release 빌드에도 포함되는 게 요즘 추세이다.

이상이다.
파일 포맷 식별자 말고 메모리에도 디버깅을 수월하게 하기 위해 쓰레기값을 가장한 이런 특수한 magic number들이 쓰인다는 게 흥미롭다. Windows의 Visual C++ 외의 다른 개발 환경에서는 디버깅을 위해 어떤 convention이 존재하는지 궁금해진다.

사실, 16진수 표기용인 A~F에도 모음이 2개나 포함돼 있고 생각보다 다양한 영단어를 표현할 수 있다. 거기에다 0을 편의상 O로 전용하면 모음이 3개나 되며, DEAD, FOOD, BAD, FADE, C0DE 정도는 거뜬히 만들어 낸다. 거기에다 FEE, FACE, FEED, BEEF 같은 단어도.. 유의미한 magic number나 signature를 고안하는 창의력을 발산하는 데 쓰일 수 있다.
그러고 보니 아까 0xFEEE도 원래 free를 의도했는데 16진수 digit에 R은 없다 보니 불가피하게 0xFEEE로 대충 때운 건지 모르겠다.

Posted by 사무엘

2021/02/11 08:36 2021/02/11 08:36
, , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1853

메모리 leak 사냥 후기

본인은 얼마 전엔 생계를 위해 덩치 좀 있고 스레드도 여럿 사용하는 C++ 프로젝트에서 골치 아픈 메모리 leak 버그만 잡으면서 꼬박 두 주를 보낸 적이 있었다.
요즘 세상에 raw 포인터를 직접 다루면서 동적 메모리를 몽땅 수동으로 직접 관리해야 한다니, C/C++은 자동차 운전으로 치면 수동 변속기와 잘 대응하는 언어 같다.

의외로... Visual C++이 2012 무렵부터 제공하기 시작한 정적 분석 도구는 memory leak을 잡아 주지는 않았다. 제일 최신인 2019 버전도 마찬가지이다.
얘가 잡아 주는 건 잠재적으로 NULL 포인터나 초기화되지 않은 변수값을 사용할 수 있는 것, 무한 루프에 빠질 수 있는 것 따위이다. 개중에는 너무 자질구레하거나 심지어 false alarm으로 여겨지는 것도 있다. 하지만..

char *p;
p = new char[256];
p = (char *)malloc(100);
p = NULL;
*p = 32;

이렇게 코드를 짜면 지적해 주는 건 맨 아래에 대놓고 NULL 포인터를 역참조해서 대입하는 부분뿐이다.
앞에서 new와 malloc 메모리 블록이 줄줄 새는 것은 의외로 out of 안중이더라. 개인적으로 놀랐다.

리눅스 진영에는 Valgrind라는 툴이 있긴 한데, 얘도 프로그램을 직접 실행해 주는 동적 분석이지 정적은 아니다.
다른 상업용 3rd party 정적 분석 툴 중에는 메모리 leak도 잡아내는 물건이 있을지 모른다. 하지만 그런 것 없이 Visual C++ 순정만 쓴다면 메모리 leak 디버깅은 전통적인 인간의 동적 분석에 의존해야 할 듯했다. 그래서 고고씽..

처음에는 무식하게 여기저기 들쑤시면서 삽질하면서 시간을 많이 보냈지만, 나중엔 차츰 요령이 생겼다.
먼저, 안정성이 검증돼 있는 맨 아랫단의 각종 오픈소스 라이브러리들을 의심하고 무식하게 들쑤실 필요는 없다. 물론 겉으로 드러난 결과는 거기서 할당한 메모리들이 줄줄 새는 것이다. 하지만 근본 원인은 거기보다 더 위에 있다.

그렇다고 맨 위의 애플리케이션이 오브젝트 해제를 안 했다거나 한 것도 아니었다. 그 정도로 초보적인 실수였다면 금세 감지되고 잡혔을 것이다. 더구나 App들은 아랫단과 달리 C++을 기반으로 스마트 포인터 같은 것도 그럭저럭 활용해서 작성되어 있었다. 그러니 거기도 딱히 문제는 없었다.

대부분의 문제는 오픈소스를 우리 쪽에서 살짝 수정한 부분, 오픈소스로부터 호출되는 우리 쪽 콜백 함수, 그리고 우리가 작성한 중간 계층의 공유 라이브러리에서 발견되었다.
이 코드를 처음으로 작성한 전임자가 누구인지는 모르겠지만.. C++ 코딩을 너무 Java 코딩하는 기분으로 했다는 생각이 강하게 들었다.

std::string s = _strdup("ABCD");

이런 식으로만 해 놓고 그냥 넘어간다거나.. (저기요, R-value는 어떡하고..??)
함수 뒷부분에서 나름 메모리를 해제한답시고 p = NULL을 쓴 것을 보니.. 전임자는 정말 Java의 정신으로 충만했다는 게 느껴졌다. (p는 물론 스마트가 아닌 일반 포인터)

메모리 leak 디버깅을 위해 C 컴파일러들은 디버깅용 메모리 관리 함수들을 제공하며, 다른 라이브러리들은 보통 자신들이 사용하는 메모리 할당 함수를 자신만의 명칭으로 바꿔서 쓴다. 그 명칭만으로 자신의 메모리 사용 내역을 추적할 수 있게 하기 위해서이다. (매크로 치환 및 해당 함수의 구현 부분 수정)

Visual C++ 기준으로, 프로그램이 처음 실행됐을 때 _CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF )를 호출하고 나면, 종료 시에 아직 해제되지 않은 heap 메모리들 목록이 쭈욱 나열된다. 메모리 할당 번호와 할당 크기, 그리고 메모리의 첫 부분 내용도 일부 같이 덤프된다.

여기서 ‘할당 번호’라는 걸 주목하시길..
만약 프로그램을 여러 번 실행하고 종료하더라도 (1) 메모리 할당 번호가 동일한 leak을 일관되게 재연 가능하다면, 그건 운이 아주 좋은 상황이다.
_CrtSetBreakAlloc을 호출해서 나중에 그 번호에 해당하는 메모리 할당 요청이 왔을 때 프로그램 실행을 중단시키면 되기 때문이다. 그러면 게임 끝이다.

하지만 복잡한 멀티스레드 프로그램에서 이렇게 매번 동일한 번호로 발생하는 착한 leak은 그리 많지 않다. 이것만으로 이 메모리의 출처를 추적하고 문제를 해결하는 건 아직 모래사장에서 바늘 찾는 짓이나 마찬가지이다. 단서가 좀 더 필요하다.

그래서 메모리를 할당할 때 이 요청은 (2) 소스 코드의 어느 지점에서 한 것이라는 정보를 같이 주게 한다.
어떻게? Visual C++ 기준 _***_dbg라는 함수를 만들어서 뒤에 소스 코드와 줄 번호 인자를 따로 받게 한다. ***에는 malloc뿐만 아니라 변종인 realloc과 calloc, 내부적으로 이런 함수를 호출하는 strdup 같은 함수도 모두 포함된다. 심지어 C++용으로는 operator new 함수도 말이다.

C의 __FILE__과 __LINE__은 그야말로 디버깅용으로 만들어진 가변 매크로 상수인 셈이다. 이렇게 말이다.

#ifdef _DEBUG
#define malloc(n)   _malloc_dbg(n, __FILE__, __LINE__)

#define new    __debug_new
#define __debug_new   new(__FILE__, __LINE__)
void *operator new(size_t n, const char *src, int lin);
void *operator new[](size_t n, const char *src, int lin);
#endif

new operator가 오버로딩 되는 건 placement new를 구현할 때와 디버깅용 메모리 할당을 할 때 정도인 것 같다.
이렇게 메모리 할당 방식을 바꿔 주면.. 나중에 leak report가 뜰 때 그 메모리 블록에 대해서 할당되었던 지점이 같이 뜬다. 무슨무슨 c/cpp의 몇째 줄이라고..

물론 그 함수가 호출된 배경을 알 수 없으니 저것도 불완전하게 느껴질 수 있다. 또한 이미 자체적으로 malloc을 다른 명칭으로 감싸고 있는 코드에 대해서는 이런 매크로 치환이 곧장 통하지 않는다는 한계도 있다.

그래도 그 정보마저 없던 것보다는 상황이 월등히 더 나아진다.
참고로, 프로그램이 실행 중일 때에도 동적 할당된 임의의 메모리에 대해서 _CrtIsMemoryBlock을 호출하면 이 메모리의 할당 번호와 출처 정보를 얻을 수 있다. 이를 토대로 leak은 얘보다 전인지 후인지, 언제 할당되었는지를 유추 가능하다(할당 번호의 대소 비교).

이것만으로도 아직 막막할 때 본인이 사용한 최후의 방법은 (3) _CrtSetAllocHook을 사용해서 메모리 할당이 발생할 때마다 콜백 함수가 호출되게 하는 것이었다.
내가 작성하지도 않은 방대한 코드에서 malloc/calloc을 전부 내 함수로 치환하는 것은 위험 부담이 매우 큰데.. 그럴 필요 없이 Visual C++ CRT의 malloc이 디버깅을 위해 사용자의 콜백 함수를 직접 호출해 준다니 고마운 일이 아닐 수 없다.

이를 위해서는 한 프로세스 내의 모든 static library 및 DLL 모듈들이 동일한 Visual C++ CRT 라이브러리를 DLL로 링크하게만 맞춰 놓으면 된다. 어느 것 하나라도 CRT의 static 링크가 있으면 일이 많이 골치 아파진다. DLL로 해야 모든 모듈들이 사용하는 메모리가 한 CRT에서 통합적으로 관리된다.

콜백 함수는 메모리 할당 번호뿐만 아니라 할당 크기, 그리고 이 메모리를 요청한 스레드가 어느 것인지도 확인 가능하다.
개인적으로는 leak 중에서 크고(수백~수천 바이트 이상) 유니크한 바이트 수를 동일하게 요청하는 것을 콜백 함수를 통해서 잡아내고, 이걸 토대로 다른 leak들도 잡아냈다.
겨우 4바이트, 8바이트 같은 너무 평범하고(?) 자주 호출되는 할당 요청은 leak만 추려내기가 곤란할 것이다.

이 콜백 함수에서 또 메모리를 동적 할당하지는 않도록 주의해야 한다. 그러면 콜백 함수에서 호출된 메모리 할당 함수가 또 콜백을 호출하고.. stack overflow 에러가 발생할 수 있다.
로그를 찍기 위해 흔히 사용하는 sprintf 부류의 함수조차도 내부적으로 메모리를 동적 할당한다.

이 문제를 회피하기 위해 우리 콜백 함수 내부에서 중복 호출 방지 guard를 둘 수도 있지만.. 간단하게 C 라이브러리 대신 Windows API가 제공하는 wsprintfA/W 함수를 사용하는 것도 괜찮은 방법이다. Windows API 중에는 C 라이브러리를 사용할 수 없는 환경에서도 C 라이브러리의 기능을 일부 사용하라면서 저런 부류의 함수를 제공하는 경우가 있다.

이상이다.
memory leak은 여느 메모리나 스레드 버그처럼 프로그램을 당장 뻗게 만들지는 않는다.
오히려 메모리 관리를 잘못해서 원래는 dangling pointer가 됐어야 할 포인터로도 메모리 접근을 가능하게 만들어 주기도 한다(해제되지 않았기 때문에).

하지만 leak은 결국 컴퓨터의 메모리 자원을 소진시키고, 한 프로그램이 반영구적으로 동일한 상태를 유지하면서 돌아가지 못하게 하는 심각한 문제이다. 더 넓게 보자면 굳이 heap 메모리 말고도, 각종 커널 핸들이나 GDI 객체처럼 나중에 반드시 닫아 줘야 하는 일체의 리소스들도 제때 해제해 주지 않을 경우 leak이 발생할 수 있는 물건들이다. 상업용 툴은 이런 것들까지 다 모니터링을 해 주지 싶다.

이 주제 관련 다른 여담들을 좀 늘어놓으며 글을 맺고자 한다.

(1) leak은 새어나가는 그 메모리의 할당이 벌어지는 상황을 추적하는 게 핵심이다. 그런데 새고 있는지의 여부는 한참 뒤에 프로그램이 종료될 때에나 알 수 있다는 것이 큰 모순이며, 관련 디버깅을 어렵게 하는 요인이다.
또한 시작과 끝이 있는 게 아니라 언제나 돌아가는 서버/서비스 같은 프로그램도 있다. 이런 건 leak을 어떻게 찾아내야 좋을까? 그렇게 오랫동안 상시 가동되는 프로그램이야말로 memory leak이 절대로 없어야 하는데, 역설적이게도 그런 유형의 프로그램이 leak을 잡기가 더욱 어렵다. 뭔가 새로운 방법론을 찾아서 적용해야 한다.

(2) 컴퓨터에서 메모리 영역이란 건 용도에 따라 코드와 데이터로 나뉘는데, 코드를 저장하는 메모리가 새는 일은.. 무슨 가상 머신 급의 고도의 시스템 소프트웨어를 개발하는 게 아닌 이상 없을 것이다.
다만, 데이터도 다 같은 데이터는 아니어서 진짜로 쌩 문자열 같은 POD인지, 아니면 내부에 포인터가 들어있는 실행 객체의 인스턴스인지에 따라 체감 난이도가 달라진다. 후자는 그 자체가 코드는 아니지만 코드에 준한다는 느낌이 든다.

(3) a( b(), c() ) 이런 구문의 실행을 디버거로 추적한다면, step into는 b()의 내부부터 먼저 들어간다. step over는 이들을 통째로 다 실행하고 다음 줄로 넘어간다.
그 둘의 중간으로.. b()와 c()처럼 인자 준비 과정에서 발생하는 함수 호출은 몽땅 생략하고 a()로만 step into 하는 명령도 좀 있으면 좋겠다.
특히 smart pointer는 함수로 넘겨줄 때마다 trivial한 생성자나 연산자 오버로딩 함수로 먼저 진입하는 것이 굉장히 번거롭다. 이런 것을 생략할 수 있으면 디버깅 능률과 생산성이 더 올라갈 수 있을 것이다.

Posted by 사무엘

2021/01/07 08:35 2021/01/07 08:35
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1840

오늘은 기초 전산학/컴공 상식을 좀 복습해 보고자 한다.

※ 지금과 같은 컴퓨터의 근간이 갖춰진 과정

1. 순 전자식

이로써 인간이 발명한 계산 기계는 엔진 달린 주판 수준을 넘어서 자신의 모든 내부 상태를 전자 신호만으로 광속으로 표현할 수 있게 됐다. 에니악이 순 전자식 컴퓨터로서는 거의 최초 원조라 여겨진다. 이거 이후로 컴퓨터는 진공관, 트랜지스터, IC, (V)LSI 회로 순으로 그야말로 엄청난 공간 워프를 거듭하면서 작아지고 빨라지기 시작했다.

전자식이 아니라면? 컴퓨터도 엔진이나 모터가 달린 채로 만들어졌을 것이다. 19세기에 영국의 수학자 찰스 배비지는 '프로그래밍 가능한 보편적인 계산 기계'인 '해석 기관'이라는 걸 제안하고 만들려 했다. 시대를 아득히 앞서 간 물건이었는데, 그걸 가동하기 위해서 무려 증기 기관을 접목할 생각까지 했었다. 지금 같은 눈부신 전자 공학 기술이 없던 시절이니 당연히 기계식밖에 선택의 여지가 없었던 것이다.

그리고 1940년대 초에 에니악 이전에 등장했던 '하버드 마크 1'이라는 기계는 '전자식 계산기'라기보다는 '전동식 계산기'에 더 가까웠다. 복잡한 배선과 릴레이뿐만 아니라 4마력짜리 모터가 달려 있었다. 이건 냉각팬 모터가 아니며 하드디스크 같은 기계식 보조 기억장치용 모터도 아니고, CPU의 실제 계산 동작을 위한 모터였다..;;

2. 2진법 기반

사람이나 열 손가락이 달려 있으니 10진법이 편하지, 기계는 단순한 2진법이 더 편하다. 컴퓨터가 전자식으로 바뀐 뒤부터는 그 차이가 더욱 두드러졌다.
하지만 극초창기에는 숫자 진법을 변환하는 것조차 쉬운 작업이 아니었고, 정수가 아닌 부동소수점으로 가면 숫자를 표현하는 난이도가 더 올라갔다. 더구나 컴퓨터는 처음부터 포탄 탄도 예측, 풍동 실험, 일기예보 시뮬, 모의 핵실험처럼 천상 실수 연산이 잔뜩 필요한 과학 영역에서 쓰였다.

그러니 에니악 같은 컴퓨터는 10진법 기반으로 만들어졌다. 4비트를 한 자리로 묶어서 0~9를 표현하는 BCD 코드 기반이었지 싶다. 하지만 10진법 숫자를 처리하기 위해서 어차피 2진법 기반의 각종 논리 연산 회로를 구현해야 했을 것이고, 후대의 컴퓨터들은 얼마 가지 않아 native 2진법 기반으로 다 바뀌었다.

3. 튜링 완전

프로그램이 하드코딩된 고정된 변수가 아니라 메모리에 기록된 값을 토대로 또 임의의 위치의 메모리를 읽고 쓸 수 있고(= 배열, 포인터 등을 이용한 복합 자료형. 공간 확장),
런타임 때 결정되는 값의 조건에 따라 반복과 분기가 가능하다면 (= 시간 확장)
그런 계산 모델은 Turing-complete하다고 여겨진다. 즉, 단순 계산기를 넘어 뭔가 본격적으로 프로그래밍이 가능해진다는 것이다.
그 열악한 에니악조차도 설계 구조는 튜링 완전한 형태였다고 한다.

4. 프로그램 내장형

컴퓨터에게 시킬 작업을 변경하기 위해 매번 회로 배선을 뜯어고치고 바꾸는 게 아니라, 한 메모리에서 코드와 데이터를 일체로 내장시킨다. 이 개념까지 정립됨으로써 비로소 컴퓨터는 정말 유연하고 무한한 확장성을 지닌 물건으로 변모했으며, 컴퓨터에서 하드웨어와 별개로 '소프트웨어'라는 것이 존재할 수 있게 됐다.
또한, 메모리가 컴퓨터의 성능에서 차지하는 비중이 아주 커졌다. 프로그램을 메모리에다 처음으로 입력시킬 때는 과거엔 천공 카드 같은 불편한 매체가 쓰였지만, 나중에는 더 간편한 키보드로 대체됐다.

저 아이템들 하나하나가 그야말로 병아리가 알을 깨고 세상으로 나오는 급의 대격변이고 혁신이었다.
인류 역사상 이런 네 조건을 모두 만족하는 컴퓨터가 발명되고 등장한 지 아직 100년이 채 지나지 않았다. 자동차와 비행기의 역사는 100년을 넘었지만 컴퓨터는 아직 그렇지 않고 오히려 2차 세계 대전 이후 냉전 때부터 발전해 왔다.
그 짧은 기간 동안 컴퓨터가 인류 역사상 유례가 없이 세상을 바꿔 놓은 걸 보면.. 정말 전율이 느껴지지 않을 수 없다.

※ 메모리 계층

컴퓨터는 모름지기 정보를 다루는 기계이다. 그리고 앞서 언급했던 프로그램 내장 방식의 특성상, (1) 실행할 코드와 (2) 그 코드가 처리할 데이터가 모두 메모리에 담겨 있어야 한다. 쉽게 말해 정보를 담을 그릇이 필요하다.
그런데 컴퓨터가 취급하는 메모리라는 게 여러 종류가 있고, 이들은 속도와 용량, 단위 용량당 가격이 극단적으로 반비례하는 관계이다. 그렇기 때문에 종류별로 일종의 '메모리 계층'이 존재한다.

1. 레지스터(수십~수백 byte)

CPU 구성요소의 일부이다. 당연히 CPU 차원에서 최고속으로 직통으로 값을 읽고 쓸 수 있다.
현재 프로그램이 실행되고 있는 지점(메모리 위치), 수만 번씩 실행되는 for 문 loop 변수, C++ 함수의 경우 this 포인터, 산술 연산 명령에 쓰이는 피연산자와 연산 결과 같은 정~말 원초적인 값들이 이곳에 저장된다.
실행되는 스레드의 context가 바뀌면 레지스터의 값도 자기 상태의 것으로 바뀐다.

2. 캐시 메모리(수백 KB~수 MB)

CPU 자체는 아니지만 여전히 CPU의 연장선 격이며 접근 속도가 매우 빠르다. CPU가 사람 두뇌이고 레지스터가 손의 손가락이라면 캐시는 의수 정도는 된다.
얘는 CPU 속도와 메모리 속도의 격차가 커지면서 메모리로 인한 병목을 줄이기 위한 버퍼 차원에서 도입되었다.

캐시도 레벨 1, 레벨 2로 나뉘긴 하는데, 인텔 x86 CPU에서 제일 원초적인 L1 캐시는 80486 때 8K짜리가 도입된 것이 최초이다. 반대로 펜티엄 2이 나왔던 시절에 셀러론 프로세서는 L2 캐시를 제거하거나 용량을 팍 줄인 저가형 모델이었다.

3. 일반 메모리(수십 GB)

CPU의 외부에 있기 때문에 위의 것들보다는 느리지만, 그래도 보조 기억장치보다는 여전히 훨씬 빠르다. 이들 메모리는 전원이 끊어지면 내용이 다 지워지는 휘발성 메모리이다. 이제 신체 접근성으로 치면 의수를 넘어서 핸들과 버튼으로 따로 조작하는 로봇 팔과 비슷하다고 볼 수 있겠다.

4. 하드디스크(수 TB)

디스크부터는 보조 기억장치이기 때문에 이건 CPU의 명령만으로는 직접 접근조차 할 수 없다. 운영체제라는 소프트웨어가 구현해 놓은 파일 시스템에다 해당 운영체제 API를 통해 요청해야만 데이터를 읽고 쓸 수 있다. 파일 시스템은 열고 닫는 상태를 따로 보관하고 관리해야 하며, 프로그램의 입장에서는 여는 작업이 실패하는 상황에 대한 대비가 필요하다.
사람으로 비유하면 내 손으로 뭔가를 직접 조작하는 게 아니라, 남에게 말로 부탁을 해서 간접적으로 뭔가를 요청하고 움직이는 형태가 된다.

그 대신 보조 기억장치는 전원이 끊어진 뒤에도 기록을 남기고 보존할 수 있다. persistency를 보장하려다 보니, 하드디스크는 컴퓨터에서 전자식이 아닌 기계식으로 동작하는 얼마 안 되는 부품 중 하나가 돼 있다. 플래시 메모리는 '일반 메모리'의 성격에 더 근접해 있는 기억장치이지만, 가격과 용량 문제 때문에 하드디스크를 완전히 대체하는 구도는 못 된다.

캐시 메모리에서 캐시 미스가 나서 더 느린 일반 메모리까지 내려가서 데이터를 가져오는 게, 아래의 운영체제의 가상 메모리 체계에서 페이지 폴트가 발생해서 디스크의 페이지 파일에서 데이터를 가져오는 것과 비슷한 구도이다. 메모리 공간 자체가 CPU의 일부는 아니지만, 보호 모드 가상 메모리 구현을 위한 주소 변환은 CPU 차원의 지원을 따로 받아서 이뤄진다.

메모리가 비싸고 귀하고 부족하던 옛날에는 가상 메모리라는 게 디스크를 메모리 보충분처럼 사용하는 메커니즘이기도 했다. 비록 속도는 안드로메다로 가 버리지만, 그래도 아예 안 돌아가는 것보다는 나으니 better late than never이다. 요즘 운영체제들은 memory mapped file이라고 디스크를 반쯤 메모리 다루듯이 포인터로 접근시켜 주는 API를 제공하는데, 가상 메모리를 구현하면서 내부적으로 구현된 기능을 사용자도 적절하게 활용하라고 떼어 준 것에 가깝다.

또한, 가상 메모리와는 별개 개념으로.. 레지스터와 메모리 사이에 '캐시 메모리'가 있듯이, 메모리와 디스크 사이에 '디스크 캐시'라는 계층이 존재한다. 이게 잡아먹는 메모리 양이 만만찮지만 도스 시절에 smartdrv 유틸로 수백 KB~2MB 남짓만 캐시를 잡았어도 체감 성능 향상 효과가 장난이 아니었다. 이거 없이 곧이곧대로 찔끔찔끔 디스크에 접근해서는 오늘날의 방대한 컴퓨터 시스템이 돌아가질 못한다. 그만치 메모리와 디스크 사이의 속도 격차 병목이 엄청나다는 뜻이다.

5. 자기 테이프(수백 TB~수 PB)

아주 극단적인 보조 기억장치이다. 느리고 랜덤(임의 위치) 접근이 안 된다는 엄청난 단점이 있지만, 용량이 가히 압도적이고 가격이 저렴하다. 그렇기 때문에 서버 전체 내지 매일 생성되는 방송국 동영상 같은 엄청난 양의 데이터를 오로지 백업· 보존만 할 목적으로 일부 연구소나 기업에서 테이프가 여전히 사용되고 있다. 마치 국제 화물 운송에서 선박이 차지하는 위상(느리지만 엄청난 수송량)과 비슷하고, 프린터계에서 도트 프린터의 먹끈 카트리지(원시적이지만 타의 추종을 불허하는 저렴함)와 비슷하다.

메모리야 컴퓨터 프로그램들이 맨날 하는 짓이 저걸 건드리는 것이고, 보조 기억장치는 파일을 읽고 쓰는 운영체제 API를 통해 사용 가능하다.
레지스터의 경우, C/C++ 언어에는 특정 정수 변수를 가능한 한 저기에 얹어 달라고 컴파일러에게 요청하는 register이라는 키워드가 있다. 함수에 inline이 있다면 변수는 저게 있는 셈이다. for문 loop 변수가 레지스터에 올라가면 좋다.
물론, inline 함수는 재귀호출을 해서는 안 되며, 레지스터 등재 변수는 주소 참조(단항 & 연산자)를 해서는 안 된다.

이렇게 타 메모리나 디스크나 레지스터와는 달리, 캐시 메모리만은 적중률을 올리기 위해 소프트웨어가 직접 접근하고 개입하는 방법이 딱히 존재하지 않는다. 멀티코어 병렬화를 위해서는 CPU 직통 명령인 인트린식 같은 것도 있는데 캐시는 활용 방식이 소프트웨어가 아닌 오로지 CPU의 재량인가 보다.
이렇게 존재감이 없음에도 불구하고 캐시 메모리의 양과 성능은 클럭 속도 다음으로 컴의 속도에 직접적인 영향을 끼치는 요인이다.

※ 인텔 x86

인텔 x86은 전세계의 PC 시장을 완전히 석권한 기계어 아키텍처이다. 애플 맥 진영이 x86으로 갈아탄 지 이미 10년이 넘었고, 슈퍼컴퓨터조차도 Cray 같은 슈퍼컴 전용 아키텍처가 진작에 다 망하고 x86이 코어 수를 늘려서 야금야금 파고들고 있다.

하지만 x86은 CPU를 만들던 기술과 방법론이 지금과 같지 않던 초창기, 특히 메모리 가격이 왕창 비싸던 시절을 기준으로 기반이 설계되었으며 16, 32, 64비트로 올라가는 과정에서도 하위 호환성을 잘 유지하고 있다. 그래서 넘사벽급의 범용성과 시장 경쟁력은 확보했지만, 내부 구조가 갈수록 왕창 지저분해지고 스마트폰용 ARM 같은 후대의 최신 CPU들의 유행과는 영 동떨어진 형태가 됐다.

  • 범용 레지스터 수가 유난히 매우 적음. R## 이렇게 수십 개씩 번호가 붙는 게 아니라 EAX EDX ESI EBP 등 꼴랑 8개로 끝인 건 x86이 예외적이고 특이하기 때문이다. 함수에다가 매개변수를 올리는 주 방식도 x86은 당연히 레지스터가 아닌 스택 기반이다. 이 때문에 컴파일러 백 엔드를 개발하는 방법론이 x86 타겟 계열과 타 아키텍처 계열은 서로 완전히 다르며, x86은 오늘날 컴공과에서 컴파일러 제작 교육용 교보재로 쓰이기에는 영 좋지 못한 타겟 아키텍처이다.
  • 메모리를 조밀하고 compact하게 쓰는 대신에, 디코딩이 복잡하고 더 어려운 CISC 가변 길이 방식으로 명령어를 기술한다. 한 인스트럭션으로 연산에다 메모리 조작까지 몽땅.. 이런 식으로 많은 지시를 함축하고 있는 편이다. 자동차 엔진으로 치면 회전수가 낮은 대신 실린더의 스트로크가 긴 디젤처럼..
  • machine word align이 맞지 않은 메모리 주소의 값을 fetch하는 것을 굉장한 비효율(여러 클럭수 소모)을 감수하고라도 CPU 차원에서 아무 문제 없이 잘 처리해 준다. 요즘 CPU 같았으면 그냥 예외 날리고 끝이었을 텐데.. 이 역시 메모리를 아끼기 위한 조치이다.

레지스터가 부족하면 나중에라도 더 보충하면 되지 않냐고?
레지스터는 추가로 더 꽂기만 하면 되는 메모리가 아니라 CPU 그 자체이다. 그걸 뒤늦게 확장한다는 건 CPU의 아키텍처, 세부 설계와 생산 라인이 다 바뀐다는 뜻이다. 컴파일러도 그에 맞춰 바뀌고 프로그램도 몽땅 다시 빌드되어야 추가된 레지스터 덕을 볼 수 있다. 사람으로 치면 가방 크기를 더 키우는 게 아니라 생물의 유전자 차원에서 손의 크기, 손가락 개수를 더 키우고 늘리는 것과 같은 엄청난 변화이다.

x86이 너무 지저분하다는 건 제조사인 인텔도 누구보다 잘 알고 있었기 때문에 과거 2000년대 초, 64비트 CPU를 내놓는 김에 애플처럼 하위 호환성을 싹 버리고 현대적인 디자인 트렌드를 따라 과감한 물갈이를 하려 했다.
마소 역시 새천년 Windows 2000에 맞춰 64비트 에디션을 당당히 내놓으려고 벼르고 있었다. Windows SDK 헤더 파일에서 INT_PTR, INT64 이런 typedef가 등장하고 GetWindowLong이 GetWindowLongPtr로 감싸진 게 이 시기의 준비 작업이었다.

하지만 모두의 예상을 깨고 IA64 Itanium라는 새 아키텍처는 CPU와 컴파일러 개발이 제대로 되지 않고 호환성도 안습했기 때문에 철저히 망하고 실패했다.
결국 지금은 기존 x86을 그대로 수용하면서 Itanium보다 훨씬 더 현실과 절충한 x86-64라는 다른 아키텍처를 기반으로 64비트 컴퓨터가 쓰이게 됐다. 이 아키텍처는 인텔이 아니라 경쟁사인 AMD가 최초로 개발했다.

Windows 2000은 과거 NT 3~4 시절에 지원했던 한물 간 구형 CPU들의 지원은 다 끊었고(Alpha, PowerPC, MIPS 등), IA64는 베이퍼웨어이고, 지금 같은 ARM이나 x64는 아직 안 나왔다 보니 NT로서는 이례적으로 사실상 x86 전용으로만 출시되어야 했다.

그런데.. 인텔 x86이 저렇게 메모리 아끼려고 CPU 본연의 효율까지 희생하면서 헝그리하게 설계된 건 과거 PC의 역사를 살펴보면 충분히 이해가 된다.
32비트 80386 CPU가 이미 1985년에 개발됐는데도 Windows NT, OS/2 같은 이상적인 32비트 운영체제의 도입과 보편화가 10년 가까이 너무 늦었고 Windows 9x 같은 요물이 몇 년간 쓰여야 했던 이유는 32비트 가상 메모리를 운용하고도 남을 정도로 컴의 메모리가 충분치(못해도 수~십수 MB) 못했기 때문이다. (CPU 말고 그래픽 카드는 1987년에 VGA가 개발되자 못해도 2~3년 안으로 프로그램들이 다 지원하기 시작함)

64비트로 넘어갈 때도 마찬가지다. IA64가 개발되던 1990년대 말엔 아직 가정용 컴의 메모리는 100~200MB대에 불과했다. 32비트를 벗어나야 할 이유가 전혀 없었다. 64비트 CPU는 대용량 데이터 처리 분야에서 속도가 좀 더 올라갈지는 모르지만, 같은 명령과 데이터를 수행하더라도 메모리 소모가 훨씬 더 많아지는 건 피할 수 없었다. 이러니 가정용 PC에서 64비트의 대중화는 Windows 2000/XP 시기는 어림도 없고, 본격적으로 램 용량이 4GB를 넘어선 2000년대 후반 Vista/7급은 돼서야 이뤄지게 됐다.

Posted by 사무엘

2017/12/11 08:31 2017/12/11 08:31
, ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1436

※ 메모리 단편화

컴퓨터에서 무작위 읽기/쓰기가 가능한 모든 기억장치.. 즉 RAM, 파일 시스템, 데이터베이스 따위에는 모두 구조적으로 단편화라는 문제가 존재한다.
메모리를 10바이트씩 찔끔찔끔 요청했는데 최소 할당 단위 제약 때문에 실제로는 수백 바이트 단위로 성큼성큼 용량이 짤려 나간다거나(내부 단편화),
전체 남은 용량은 1000바이트인데 한 600바이트 정도 연속된 구간이 없어서 메모리 할당이 실패하는 외부 단편화가 모두 존재한다.

메모리라는 게 1차원적인 공간이기 때문에 이건 뭐 어쩔 수 없다.
그래서 컨텐츠가 실제로 차지하는 용량보다 전체 소모 용량이 더 커지게 되고, 이런 걸 관리하는 프로그램이나 유틸리티에는 조각 모음(defrag), shrink, compact 같은 동작을 강제로 수행하는 기능이 있다. (뭐, 디스크 중에서 SSD는 예외적으로 조각 모음이 필요하지 않은 구조라고는 하지만.)

디스크는 애초부터 파일 시스템의 지배 하에 있으며 그 시스템이 제공하는 방식대로 디렉터리와 파일 이름을 통해서만 내용에 접근 가능하다. 일반적인 응용 프로그램이 디스크를 무슨 실린더 번호 x, 트랙 y, 섹터 z 같은 형태로 무식하게 접근하는 경우는 거의 없다. 그런 방식은 오늘날의 운영체제에서는 더욱 금기시되고 있다.

그렇게 파일명이라는 고수준 추상 계층이 있는 덕분에 디스크는 내부적으로 막 조각 모음을 해도 딱히 파일을 못 찾는 일이 발생하지는 않는다. 저수준 처리는 운영체제의 파일 시스템이 알아서 다 처리해 준다. 또한 디스크 정도면 물리적으로 액세스를 하는 데서 발생하는 병목이 소프트웨어적인 추상화 계층을 거치는 시간보다 훨씬 더 길기도 하고 말이다. 사용자에게는 외부 단편화보다는 클러스터 최소 단위로 인한 내부 단편화가 현실적으로 더 와 닿는다.

그런데 RAM은 디스크와는 사정이 다르다. 단편화를 예방한답시고 함부로 컨텐츠들을 재배치하면 memcpy 오버헤드는 둘째치고라도 그 메모리 주소를 직접 가리키고 있던 수많은 포인터들이 작살이 나 버린다.
메모리 자원이 극도로 가난하고 열악하던 16비트 Windows 시절에는 운영체제의 global/local heap으로부터 메모리를 할당받고 나면 곧바로 포인터가 돌아오는 게 아니라 핸들 하나만이 돌아왔다. 이 핸들이 가리키는 메모리는 운영체제의 사정에 따라 수시로 재배치될 수 있는데, 메모리를 실제로 사용할 때만 lock을 걸어서 위치를 고정시킨 뒤, 포인터를 얻어와서 메모리를 참조하곤 했다. 사용이 끝나면 다시 unlock을 해 줘야 한다.

이것이 바로 GlobalAlloc - GlobalLock - GlobalUnlock - GlobalFree 사이클이다. 재배치를 하는 이유는 당연히 메모리 단편화를 극복하고, 연속된 긴 메모리 공간을 언제나 확보하기 위해서이다. 16비트 시절에 메모리 블록이나 리소스 같은 데에 discardable, resident, non-resident 같은 속성이 달려 있던 이유는, 수시로 재배치 내지 재로딩 같은 빡센 메모리 관리에 대응하기 위해서이다.
운영체제가 자동으로 무슨 garbage collect를 해 주는 것도 아니고, 저런 일을 해야만 했다는 게 참 안습하다.

여기서 우리가 알 수 있는 점은, 32비트 정도 되는 주소 공간에서 가상 메모리가 제공되는 게 프로그래머의 관점에서 얼마나 축복이냐 하는 것이다. 4기가바이트 정도 넉넉한 공간이 있으면, 단편화 문제는 주소빨로 어느 정도, 상당 부분 극복이 가능해진다. 어지간히 단편화가 심한 상태라 해도, 또 대용량 메모리 요청이 들어오면 걍 다음 주소를 끌어다가 물리 메모리에다 대응시켜 쓰면 되기 때문이다.

그 연속된 가상 메모리 주소를 실제로는 여기저기 흩어졌을 가능성이 높은 지저분한 물리 메모리로 대응시키는 건 운영체제와 CPU의 몫이다. 물리 메모리가 부족하면 하드디스크 스와핑까지 알아서 해 준다. 가상 메모리 덕분에 프로세스간에 보안이 더 향상된 것도 덤이고 말이다.

이것이 RAM과 디스크의 차이이다. 디스크에 파일명이 있다면 RAM에는 가상 메모리 메커니즘이 있다. 한 주소 공간 안에서 스레드가 여러 개 있는 경우 가상 메모리의 필요성은 더욱 커진다.
물론, 세상에 공짜는 없으니, 가상 메모리는 메모리를 관리하기 위한 추가적인 메모리도 적지 않게 소요하는 테크닉인 걸 알아야 한다. 물리적인 메모리뿐만이 아니라 가상 메모리 주소 영역 자체도 떼먹는다.
오늘날 64비트 운영체제라 해도 어마어마하게 방대한 공간인 64비트 전체를 사용하는 게 아니라 40비트대 정도만 사용하는 것도 이런 이유 때문이다.

※ 옛날 이야기

옛날의 프로그래밍 언어나 소프트웨어 플랫폼을 살펴보면, 메모리와 관련하여 오늘날 당연한 기본 필수라고 여겨지는 요소가 대놓고 빠진 것들이 적지 않아 놀라게 된다.

(1) 예를 들어 옛날에 포트란 언어는 함수 호출은 가능하지만 초기에는 동일 함수에 대한 중첩/재귀 호출이 가능하지 않았다. 세상에 뭐 이런 언어가 다 있나 싶다..;; 함수 안에서 지역 변수의 사용이 스택 기반으로 되어 있지 않고 늘 고정된 주소로만 접근하게 돼 있어서 그랬던 모양이다.

오늘날의 프로그래밍 언어에서야 지역 변수는 스택의 기준 주소로부터 상대적인 위치를 건드리게.. 일종의 position independent code 형태로 접근된다. 재귀 호출 지원뿐만 아니라 코드 실행 주체가 증가하는 멀티스레드 환경에서는 각 스레드가 또 독립된 스택을 갖고 있으니 절대 고정 주소가 더욱 의미를 상실하기 때문이다. 멀티스레드는 thread-local이라는 일종의 새로운 scope까지 만들었다.

(2) 한편, 프로그래밍 언어 쪽은 아니지만, Win32의 구현체 중에 제일 허접하고 불안정하고 열악하던 Win32s는..
멀티스레드도 없고 각 프로세스마다 독립된 주소 공간이 없는 건 그렇다 치는데... DLL은 자신이 붙는 각 프로세스별로 자기만의 독립된 데이터 공간마저도 보장받지 못했다. 16비트 DLL과 다를 바가 없다는 뜻.

옛날에 아래아한글 3.0b는 윈도 95나 NT 말고 3.1 + Win32s에서 돌아갈 때는 무슨 자기네 고유한 메모리 서버 프로그램을 먼저 실행한 뒤에야 실행 가능했다. 이제 와서 다시 생각해 보니, 그 메모리 서버가 하는 일이 바로 DLL별로 고유한 기억장소를 할당하는 것과 관련이 있지 않았나 싶다. 아래아한글의 소스를 모르는 상태에서 그냥 개인적으로 하는 추측이다.

아시다시피 16비트 Windows는 가상 메모리 같은 게 없다 보니, 콜백 함수의 실행 context를 레지스터에다 써 주는 것조차 소프트웨어가 수동으로 해야 할 정도로 진짜 가관이 따로 없었다.

※ 쓰레기(다 쓴 메모리) 수집

끝으로 garbage collector 얘기다.
heap으로부터 할당하는 메모리는 너무 dynamic한지라 언제 얼마만치 할당해서 언제 해제되는지에 대한 기약이 없다. 그걸 소스 코드만 들여다보고서 정적 분석으로 완벽하게 예측하는 건 원천적으로 불가능하다.

하지만 정해진 scope이 없는 동적 메모리를 잘못 건드려서 발생하는 소프트웨어 버그는 마치 자동차의 교통사고처럼 업계에서 상당히 심각한 문제이다.
memory leak은 당장 뻑이 나지는 않지만 프레임 단위 리얼타임으로, 혹은 수 개월~수 년간 지속적으로 돌아가는 소프트웨어에서는 치명적이다. 또한 다른 메모리/포인터 버그도 단순히 혼자만 뻑나는 걸로 끝나면 차라리 다행이지, 아예 악성 코드를 실행시키는 보안 문제로까지 상황을 악화시킬 수 있다.

이 동적 메모리 관리를 사람에게 수동으로 맡겨서는 안전하지 못하니, 메모리 자원 회수를 프로그래밍 언어 런타임 차원에서 자동으로 보장되게 하는 기법이 연구되어 왔다.
고전적인 reference counting 테크닉은 C++의 생성자/소멸자 패러다임과 맞물려서 일찍부터 연구되어 왔으며 smart pointer 같은 구현체도 있다.

이건 원리가 아주 간단하며, 언어 차원에서 포인터의 scope가 벗어나는 족족 메모리가 칼같이 회수되는 게 컴파일 시점에서 보장된다. 그래서 깔끔한 것 하나는 좋다.
허나 이 기법은 생각보다 비효율과 단점도 많다. 대표적인 논리적 결함인 순환 참조는.. 서로 다른 두 객체가 상대방을 서로 참조하여 똑같이 참조 횟수가 1보다 커지고, 따라서 둘이 메모리가 결코 해제되지 않아서 leak으로 남는 문제이다.

즉, 레퍼런스 카운팅이 잘 동작하려면, 참조를 받은 피참조자는 자신을 참조하는 놈을 역참조하지 말아야 한다. 이걸 어기면 객체간의 레퍼런스 카운트가 꼬여 버린다.
문제는 이걸 일일이 조심하면서 코드를 작성하는 게 상황에 따라서는 차라리 걍 메모리 자체를 수동으로 관리하는 게 나을 정도로 효율이 떨어질 수 있다는 것이다. 게다가 고리가 어디 A-B, B-A 사이에만 생기겠는가? A-B, B-C, C-A 같은 식으로 더 골치 아프게 생길 수도 있다. 참조 관계는 정말로 cycle이 없이 tree 형태로만 가야 한다.

그러니 이 문제는 예상 외로 굉장히 심각한 문제이다. 멀티스레드에서의 '데드락'하고 다를 바가 없다! 서로 뭔가 꼬여서 끝이 안 난다는 점, 잡아 내기가 극도로 어렵다는 점이 공통점이다.
성능을 더 희생하고라도 메모리 leak 문제를 완전히 다른 방식으로 접근한 전용 garbage collector가 괜히 등장한 게 아니었겠다 싶다.

가비지 컬렉터라고 해서 무슨 용 빼는 재주가 있는 건 아니다. 기본적으로는 당장 접근 가능한 메모리로부터 출발해서 그 메모리로부터 추가로 접근 가능한 메모리 블록을 줄줄이 순회하여 표시를 한 뒤, 표시가 없는 메모리를 죄다 해제한다는 아이디어를 기반으로 동작한다. 동적으로 할당받은 메모리 내부에 또 동적 할당 메모리의 포인터가 있고, 그게 또 이상하게 얽히고 배배 꼬인 걸 어떻게 일일이 다 추적하는지 더 구체적인 방법은 잘 모르겠지만.

어찌 보면 단순무식하다. 주인 없이 주차장에 장기간 방치되어 있는 폐자전거들을 일괄 처분하기 위해 모든 자전거에 리본을 달아 놓은 뒤, 일정 날짜가 지나도록 리본이 제거되지 않은 자전거를 갖다 버리는 것과 개념적으로 비슷하다! 혹은 기숙사의 공용 냉장고에서 주인에게로 접근(?)이 안 되는 장기 방치 식품을 주기적으로 제거하는 것과도 비슷한 맥락이다. 단지 좀 더 성능을 올리기 위해, 메모리 블록들을 생존 주기별로 분류를 해서 짬이 덜 찬 메모리가 금방 또 해제될 가능성이 높으므로 거기부터 살펴보는 식의 관리만 하는 정도이다. 자바, .NET의 가상 머신들도 이런 정책을 사용한다.

이건 즉각 즉각 자원이 회수되는 게 아니며, 리얼타임 시스템에서는 적용을 재고해야 할 정도로 시공간 오버헤드도 크다. 그러나 한번 수집이 벌어질 때 랙이 있다는 말이지, 매 대입 때마다 시도 때도 없이 카운터 값을 변화시키고 그때 스레드 동기화까지 해야 하는 레퍼런스 카운팅도 성능면의 약점은 상황에 따라 피장파장일 수 있다.

언어 차원에서 이런 가비지 컬렉터가 제공되어서 delete 연산자와 소멸자 자체가 존재하지 않는 언어가 요즘 추세이다. 자바나 C#처럼. 하지만 메모리는 그렇게 자동으로 수집되지만, 파일이나 다른 리소스 핸들은 여전히 수동으로 해제를 해야 할 텐데 무작정 소멸자가 없어도 괜찮은지는 잘 모르겠다. 본인은 그런 언어로 대규모 프로그램을 작성한 경험이 없다. C++ 이외의 언어에서는 RAII 개념이 아예 존재하지 않는 건지?

Posted by 사무엘

2015/09/20 08:28 2015/09/20 08:28
, ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1140


블로그 이미지

철도를 명절 때에나 떠오르는 4대 교통수단 중 하나로만 아는 것은, 예수님을 사대성인· 성인군자 중 하나로만 아는 것과 같다.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2021/03   »
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

Site Stats

Total hits:
1556007
Today:
569
Yesterday:
1742