« Previous : 1 : 2 : 3 : 4 : 5 : ... 33 : Next »

1. 이전하는 군부대들

2010년대 이후부터 추세를 지켜보니, 서울에 있던 군부대들이 수방사 자체와 관계가 있는 것이 아니면 다들 이전했거나 이전 예정이구나!

  • 용산 미군 기지는 일부 사령부만 남기고 나머지는 몽땅 평택으로,
  • 남동부 끝자락 마천동에 있던 특전사 부대는 이천 마장면으로,
  • 서초동 한복판에 있던 정보사령부는 안양의 군사 허브인 박달산 일대로.

이거 뭐, 롸임이 "간은 충청도로, 눈은 경상도로, 심장은 서울로.."같은 느낌이다. 사실, 지금의 서울 지하철들의 선형도 이런 군부대의 영향을 받은 채로 형성되었다.

용산 미군 기지: 여기는 막 높고 험한 산까지는 아니어도 '둔지산'이라고 불리는 약간의 언덕 고지대이다. 조선 시대에는 용산이 아니라 남산 기슭부터가 이미 한양의 끝이었고 군사 훈련장이 있었다. 그러다가 일제 강점기 때는 일본군 병영이 들어왔으며 지금은 미군 기지가 들어섰을 뿐.
이 넓은 땅이 반환되면 앞으로 업무 지구로든, 공원으로든 어찌 활용될지 앞으로 기대된다. 얘를 피하느라 서울 지하철 4호선도 한강을 건넌 직후엔 어중간한 드리프트에다 1호선과 많이 겹치는 형태로 만들어질 수밖에 없었다.

마천 특전사 부대: 지하철 5호선 종점인 마천 역이 지상 도로를 쭉 따라 큰길인 오금로에 못 생기고 커브까지 틀고서 생뚱맞은 마천 초등학교 골목길에 만들어진 주 이유가 근처의 이 군부대 때문으로 추정된다.
개인적으로는 아침 일찍 여기를 지나면서 기상 나팔 BGM 들으며 청량산을 올라서 남한산성까지 간 적이 있었는데, 그로부터 몇 달 못 가 위례 신도시 개발을 위해 군부대가 이전하고 없어졌다니 놀랍기 그지없다.

정보사령부: 법원과 서리풀 공원 일대는 지금까지 내가 갈 일이 없어서 딱히 관련 데이터가 없다. 거기도 직선으로 쭉쭉 뻗어야 할 길이 지금까지 군부대+언덕에 가로막혀 몇십 년째 봉인돼 있었다. 지하철들도(2, 7호선) 이곳을 피해서 커브를 틀고 있고.. 그래도 그 언덕을 뚫고 서울 강남을 직선으로 연결하는 '서리풀 터널'이 이제야 건설 중이다.

이 글에서 자세히 다루지는 않았지만 금천구청 역 바로 근처에도 군부대가 있었으며 군부대 진입 전용선 철길까지 있었다. 거기 있던 부대는 이전해서 나간 게 이미 2000년대 말~2010년대 초로 꽤 오래됐는데 구체적으로 무슨 부대가 있었는지는 잘 모르겠다.

아울러, 군부대뿐만 아니라 인서울에 있던 지하철 차량 기지 중에서도 구로와 창동은 이전 예정이다.
지하철 차량 기지는 지축, 수서, 고덕, 방화, 신내 등 전반적으로 굉장히 외곽에 있는 편이다. 서울 최초의 지하철 차량 기지인 군자는 나름 시내 깊숙한 곳에 있는 편인데, 얘는 그래도 딱히 이전 얘기가 없다.

2. 울릉도와 제주도 신공항

울릉도와 제주도는 우리나라에서 적당히 크며, 다리를 놓을 수 없을 정도로 본토에서 충분히 멀리 떨어져 있기도 하다. 그래서 독자적인 행정구역 명칭이 있다. 울릉도는 그냥 경북 울릉 '군'이지만, 제주도는 잘 알다시피 그보다 더 큰 도 단위로 분리돼 있다.

울릉도는 공항이 없는 관계로 고정익기가 뜨고 내릴 수 없다. 옛날에 헬리콥터 기반의 여객기가 정기 취항한 적이 있었지만 아마 수지가 안 맞고 인명 사고까지 나는 바람에 나가리 났었지 싶다. 그러던 것이 지금은 중형 버스 크기의 소형 프로펠러기라도 드나들 수 있는 공항을 만들려고 터 닦고 준비 중인가 보다.

한편, 제주도는 공항이 있긴 하지만 하나밖에 없는 게 전세계에서 최상위권을 다툴 정도로 바쁘고 정신 없으며 더 확장도 할 수 없다. 그래서 남쪽 서귀포시에 작은 트래픽을 감당 가능한 공항을 하나 더 만들자는 얘기가 진작부터 있었다. 뜬금없는 해저 터널보다야 차라리 공항 하나 더 만드는 게 더 현실적일 것 같은데 이건 어찌 진행 중인가 모르겠다.

이렇듯, 울릉도와 제주도는 이렇게 위치 차이(경북· 강원권 vs 전남권), 독립 행정구역 단위의 차이(시/군 단위 vs 도 단위)와 공항 현황 차이(0 vs 1)가 있다. 6· 25 전쟁 때 울릉도는 전쟁의 여파를 전혀 겪지 않았다. 제주도는 비록 빨치산의 침투와 토벌 과정에서 4· 3 같은 사건은 있었지만 그때 따로 북괴 공산군이 상륙해서 섬을 또 점령했다거나 하지는 않았다. 그러니 UN에서 최악의 경우에 제주도에 대만 같은 남한 망명 정부를 세울 생각도 했던 것이다.

3. 서울· 수도권 오지 내지 조밀도 생각

서울 강북은 북악산과 북한산 기슭에 있는 삼청동, 청운동, 평창동, 구기동, 부암동 같은 곳이 청와대와 가깝다는 이유로 개발이 영구봉인된 오지이다. 중구라면 모를까, 종로구는 시내 도심만 포함하고 있는 게 아니기 때문이다.
서울 강남은 아무래도 구룡산· 대모산 이남의 세곡동· 내곡동, 청계산 근처의 신원동, 원지동, 염곡동 같은 곳이 오지이지만.. 이미 아파트가 지어지고 야금야금 재개발되고 있기 때문에 지금 같은 모습을 더 보기 어려워질 것으로 보인다.

성남은 대장동, 석운동, 동원동 같은 곳이 오지이다. 아직까지는..
하남은 검단산의 동쪽으로 상수도 보호원으로 얽힌 일부, 그리고 서울과 하남 경계가 그린벨트이긴 한데.. 여기도 곳곳이 재개발 중이다.

서울의 서쪽으로 광명, 부천은.. 그냥 지역 경계 구분이 없다는 생각이 들 정도로 너무 빽빽해졌다.
군포와 구리는 인구는 많을지 모르지만 도시 크기가 너무 작은 것 같다.
과천은 지도 상의 면적은 그럭저럭 존재감 있지만 청계산과 관악산이 대부분을 차지하기 때문에 그 사이의 좁은 시가지는 면적이 아주 작다. 과천선 철도 양 옆 구간 말고는 정말 별 거 없다.

4. 자잘한 섬으로 이뤄진 지역

우리나라의 해안· 항구 도시들을 보면, 아주 크고 두드러지는 섬(본토와 다리로 연결된 것도 포함)이 본진이고 그 주변의 작은 섬들까지 행정구역상 포함된 것(제주도, 울릉군, 진도군, 고흥군, 거제시..), 본진은 본토에 있고 주변의 작은 섬들이 거기에 덤으로 딸린 것(보령시, 영광군, 여수시)이 있다.

그런데 섬으로만 구성되었는데 딱히 두드러지는 본진이 없이 그것도 거리도 꽤 멀리 떨어진 섬들이 싸잡아서 한 행정구역을 이루는 경우도 있다. 바로 (1) 전남 신안군, 그리고 (2) 인천 옹진군이 여기에 속한다.

목포 바로 옆의 압해도가 신안군으로서는 본토와 가깝고 군청도 있어서 나름 본진이다. 하지만 압해도는 신안군을 구성하는 다른 섬들보다 압도적으로 크지 않으며, 저 멀리 흑산도와 가거도(최서남단 오지!)까지도 행정구역상 신안군이다. 태양계로 치면 한 행성이 단독 궤도를 구성하지 못하는 소행성대나 왜행성 같은 처지이다.

옹진군은.. 오이도 남쪽의 화성시와도 붙어 있는 영흥도도 옹진이지만, 서쪽 최전방의 연평도와 백령도까지도 옹진군 소속이다. 이건 뭐 우리가 황해도 본토를 수복하지 못한 상태에서 거기 근처의 섬만 수복하다 보니, 행정구역이 좀 기형적으로 편성된 경우라 하겠다.

국가 차원에서 영토가 단독 주도적이지 않은 다수의 자잘한 섬들로 구성된 대표적인 예는 인도네시아이지 싶다.
인구도 생각보다 굉장히 많은 나라인데 국제적으로는 저기가 별 존재감이 없다. 그리고 오세아니아 대륙과 가까워 보일 정도로 굉장히 남쪽에 있기도 해서 유라시아 대륙 문화권이라는 생각도 별로 안 들 정도이다.

5. 서울의 옛 영화 촬영소

서울 동대문구에 있는 '답십리 사거리' 교차로의 동쪽을 보면, 배봉산의 남쪽 기슭 구간을 차지하는 거대한 고개가 있고, 그 고개를 '답십리로'라는 길이 횡축으로 지나간다. 그리고 그 길의 곁에는 딱히 업무· 주거 건물이 없이 언덕뿐이며, '답십리 공원'이 조성돼 있다. 동쪽으로 더 가야 야구 연습장이나 체육관 정도만 있다.

그런데 먼 옛날.. 1964년부터 1970년까지는 여기 일대에 영화 촬영소가 있었다고 한다. 정확히는 동대문구 체육관과 근처의 동답 초등학교의 부지에 말이다. 나라에서 만든 게 아니라 어느 대인배가 사재를 털어서 만들었다.
그래서 답십리 사거리의 동쪽에 나오는 교차로의 이름은 '촬영소 사거리'이다. 촬영소라는 명칭이 붙어 있다는 건 어렴풋이 알고 있었지만 이름의 유래에 대해서는 전혀 모르고 있었는데 우연한 계기로 알게 됐다.

지금으로 치면 남양주 종합 촬영소 같은 곳이 서울에 있었다는 게 무척 흥미롭다. 뭐, 1960년대에 국산 영화에서 많은 걸 바랄 수는 없겠지만, 6년 남짓한 시간 동안 이곳에서 무려 90편에 달하는 영화가 만들어졌다고 한다.
그리고 동대문구에서는 2010년대에 와서야 여기에 영화 테마 공원을 뒤늦게 조성하려고 계획 중이라 한다. 마치 중랑구에서 망우리 공동 묘지를 근현대사 체험 테마 공원으로 꾸미려 하듯이 말이다.

지명을 보면 그 지역의 역사를 알 수 있는 경우가 많다. 그런데 마장(말을 키우던 곳), 잠실(누에밭) 같은 농촌스러운 지명은 조선 시대 같은 너무 옛날을 기준으로 만들어져 있으니 오늘날 실감이 잘 안 간다. 뭐더라, 과수원에서 유래된 명칭도 있었는데.. 아무튼 그 시절엔 거기는 인서울 도시가 아니라 그냥 한양도성 안으로 보급할 물자를 생산하는 기지였을 뿐이다.

그에 반해 촬영소, 해방촌, 기자촌 같은 명칭은 그래도 일제 강점기 이후 대한민국 시절의 사연과 유래가 담겨 있으니 이질감이 덜하다. 이런 예가 더 있는지 앞으로 더 눈여겨봐야겠다.
참고로 동대문 운동장은 조선은 아니지만 일제 시대에 생긴 시설이다. 그리고 '충무로'는 영화 촬영소라기보다는 영화 제작사들이 많이 입주했던 곳인데, 지금은 영화보다는 인쇄소로 더 유명한 듯하다.

6. 영화에 등장한 가상의 지명

본인은 먼 옛날 대학 시절에 <그녀를 믿지 마세요>(2004) 영화를 친구 컴을 통해 우연히 봤다.
그때는 본인이 한창 철덕이 되어 가던 시절이었는데, 마침 무궁화호 열차 씬과 함께 '용강'이라는 가상의 역이 나왔다.
경북선에 '용궁'이라는 역이 있긴 하지만 '용강'은 허구이다. 사실 충북선 소이 역(무배치간이)에서 역 바깥 장면을 찍었으며, 역 승강장 씬은 바로 옆의 음성 역에서 찍었다.

그 뒤 비교적 최근에 나온 <부산행>(2016)의 경우, 맨 처음에 '진양'이라는 고속도로 톨게이트가 가상의 지명이다. 뭔가 우리나라 어딘가에 저런 이름의 고속도로 진출입로가 있을 것 같은데 그렇지는 않나 보다. 기존 지명과 안 겹치게 이름을 그럴싸하게 잘 지었다.

이 장면이 촬영된 곳은 아주 한적하고 차량 통행이 드물어서 영화 찍기에도 유리한 영동 고속도로 속사 IC라고 한다. 하이패스가 없으면 무인 정산기에다 느리게 지폐 한 장씩 넣으면서 통행료를 결제해야 한다.
본인은 이 승복 기념관을 찾아갈 때 여기를 지난 적이 있지만 그 당시에는 이곳과 부산행 영화의 관련성을 아직 모르던 상태였다.

끝으로 철도와 관계는 없지만 <아저씨>(2010)에서 잠시 등장하는 차 태식의 집 주소 "서울 용산구 동자동 산 21"도 생각난다. 이 역시 당연히 실존하지 않는 주소이다. 최대한 현실적으로 끼워맞추면 서울 역과 남산 사이의 으슥한 허름한 주택가이다.
영화를 실제로 찍은 곳은 부산 매축지 마을이라는 '도심 속 오지'이다. 서울로 치면 무슨 금화 아파트, 시범 아파트 같은 그런 곳인데, 거기도 몇 년 뒤로 다 헐리고 재개발될 공산이 크다.

Posted by 사무엘

2018/05/08 08:36 2018/05/08 08:36
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1487

Trackback URL : http://moogi.new21.org/tc/trackback/1487

Leave a comment

본인은 서울 지리와 관련해서 한강을 따라 지나는 도로(강변북로, 올림픽대로)라든가 교량(xx대교)들에 대해서는 지금까지 많이 생각해 봤다. 하지만 한강 공원의 존재에 대해서는 그냥 (1) 이름 없는 아무 한강 고수부지? 아니면 (2) 강변 따라 놓인 자전거 도로? 그 이상으로 지금까지 진지하게 생각해 본 적이 없었다. 얘도 나름 이름이 붙은 공원이 몇 군데 있으며, 한강의 아무 구간이나 찾아간다고 해서 공원이 나오는 건 아닌데도 말이다.

한강을 바다에다 비유하면 한강 공원은 마치 해수욕장과 같다. 물론 실제로는 물 속에 들어갈 수 없으며(깊고 더럽..) 공원엔 모래사장 대신 콘크리트 제방과 풀밭만 있다. 하지만 여기는 그래도 평범한 수풀과 산책로만 있는 게 아니라 돗자리 깔고 놀고, 여름엔 심지어 텐트 치고 야영까지 할 공간이 있다. 근처에 주차장이 있어서 가족이나 일행 단위로 차를 갖고 들어올 수도 있다.

도심 속에 있는 평지 공원은 면적이 너무 작다. 뒷산 언덕 공원은 자연을 즐기기에는 좋지만, 역시 공간이 좁으며 오르막의 압박이 심하다. 한강 공원은 많은 인원이 탁 트인 공간에서 쉬기 좋으며, 또한 자전거나 전동 킥보드 같은 걸 타고 멀리 돌아다닐 수도 있어서 더 좋다.

여름 주말에는 한강 공원이 피서 인파로 북적인다. 수요가 많고 장사가 되니, 근처의 가게로 치킨 같은 걸 시키면 공원 안으로 배달도 온다.
그리고 한강 공원 안에도 편의점이 있는데, 여기는 라면 자동 조리기가 있다. 봉지 라면을 끓여서는 쿠킹 호일 그릇에 담아 먹을 수 있는데, 내 경험상 이게 완전 별미다. 돈을 몇백 원 더 투자하면 계란도 얹을 수 있다.

사용자 삽입 이미지

본인은 교회 친구들과 어울려 다니면서 이런 한강 공원이라는 시설의 존재에 대해 차츰 실감하게 되었다.
서울 시내에는 총 11개의 한강 공원이 있다. 이들을 서쪽(하류 방면)에서 동쪽(상류 방면) 순으로 나열하면 다음과 같다. 강남 쪽에 있는지 강북 쪽에 있는지를 명시하였으며, 본인이 가 본 적이 있는 곳은 이름 뒤에 *표를 덧붙였다.

1. 강서(남): 주차장과 산책로만 있고, 나머지는 풀밭이라기보다는 그냥 수풀이 펼쳐진 생태 공원 형태이다. 서쪽 끝까지 가면 경인 아라뱃길을 구경할 수 있다. 강 건너편은 이미 서울이 아닌 고양시이다.

2. 난지(북)*: 이제 강북 차례이다. 넓은 잔디밭과 야구장, 캠핑장이 잘 갖춰져 있다. 강변북로 건너편의 내륙 쪽 언덕 위로는 하늘 공원이 있다. 반대로 하늘 공원에서 난지 한강 공원을 내려다볼 수도 있다.

3. 망원(북): 난지의 옆으로 홍제천을 건너면 이어지는 공원이다. 난지보다는 규모가 작지만 역시 풀밭과 축구장 농구장 테니스장 등이 다 있다.

그리고 작년 11월 말부터는 이곳에서 퇴역한 군함 세 척을 해군으로부터 증여받아서 전시를 시작했다고 한다. 1900t급 호위함인 서울함과 150t급 고속정 참수리호, 178t급 잠수정 돌고래인데, 서울함만 수상 정박이고 나머지 둘은 지상에 세워 놨다.
북한 평양에서는 대동강에 푸에블로 호를 정박시켜서 전시 중인데-_-, 우리나라 서울에도 나름 비슷한 함상 공원이 생기게 됐다.

4. 양화(남)*: 풀밭 위주여서 넓고 좋다. 게다가 여기서는 다리를 타고 선유도(하중도)로도 갈 수 있어서 더욱 좋다.
근처에 지하철역으로는 당산과 선유도가 있긴 하지만 좀 먼 편이다.

5. 여의도(남)*: 여의도에는 옛날에 넓은 광장만 있는 게 아니라 북부 전체가 고수부지였다. 그러던 것이 세월이 흘러 광장이 그냥 '여의도 공원'으로 바뀌고, 고수부지는 '여의도 한강 공원'으로 탈바꿈했다.
서울에서 적당히 중심부에 있고 지하철역과도 아주 가까이 잘 연계되다 보니(5호선 여의나루) 여기는 한강 공원들 중에 제일 유명하며, 찾는 사람도 제일 많다. 위성 사진으로 내려다보면, 전체 면적 대비 주차장이 차지하는 비율도 제일 크다.

여의도에서 서강대교를 건너면 밤섬을 경유한다. 그러나 밤섬은 무인도이다.

6. 이촌(북)*: 여의도에 이어 강북에서 나름 서울 중심부에 자리잡은 한강 공원이다. 규모가 상당히 크고 대부분 풀밭 위주이다.

7. 반포(남): 세빛둥둥섬인지 서래섬인지 뭔지 하면서 다른 공원들에 비해 좀 예술적으로 꾸며져 있는 곳이다. 본인은 구경을 전혀 못 해 봤다.

8. 잠원(남): 반포보다는 작고 평범하게 생겼고, 그냥 한남대교와 반포 옆에 거의 붙어 있다시피하다.

9. 뚝섬(북)*: 7호선 뚝섬유원지 역 덕분에 여의나루 이상으로 지하철과 가장 잘 연계되는 한강 공원이다. 게다가 이 역은 지하가 아닌 지상이기까지 하니 공원 모습이 다 보인다. 이곳이 서울 강북의 마지막 한강 공원이며, 여기 다음은 구리 한강 공원이다.
영화 <두사부일체>(2001)에는 야밤에 주인공이 어느 일진 양아치들을 패싸움을 벌여서 제압하고 참교육 시키는 장면이 나온다. 이 장면의 촬영 장소가 보아하니 뚝섬 한강 공원이다. 울타리의 모양을 보니 개인적으로 곧바로 감이 오더라.

사용자 삽입 이미지

사용자 삽입 이미지

10. 잠실(남): 그렇게 크지는 않은데, 타 공원과 달리 헬기장이 있다.

11. 광나루(남): 서울의 동쪽 끝에 있는 마지막 한강 공원으로, 풀밭뿐만 아니라 각종 구기 종목 경기장과 스케이트장, 드론 비행장, 생태 공원 등 별 게 다 있다.
여기도 친구 따라 옛날에 가 본 것 같긴 한데, 너무 오래됐고 또 날이 많이 저물었을 때 간 것이어서 더욱 기억이 희미하다.

구리 한강 공원은 서울이 아닌 타지에서 그럴싸하게 조성해 놓은 거의 유일한 공원이 아닐까 싶다. 한강의 더 상류는 상수도 보호 구역이기 때문에 봉인이고, 하류는 군사분계선(=북한)과 가까워서 봉인이어서 그렇다. 그쪽으로는 공원은커녕 아예 철책을 둘러 놓을 지경이니, 양 옆으로 더 만들 곳이 없다.

Posted by 사무엘

2018/05/03 08:29 2018/05/03 08:29
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1485

Trackback URL : http://moogi.new21.org/tc/trackback/1485

Leave a comment

1. 필름과 테이프

아날로그 방식으로 정보(주로 시청각 정보)를 저장하던 대표적인 매체는 '필름'과 '테이프'이지 싶다.
필름은 주로 (1) 정지 사진을 찍는 용도로 쓰이지만, 잘 알다시피 수만~십수만 장 이상 빠르게 돌리면서 환등· 영사를 해서 (2) 영화를 돌리기도 하며, (3) 방대한 양의 옛 종이 문헌을 촬영해서 내용을 초소형으로 보존하는 용도로 쓰기도 한다.
(3)은 TIF 내지 PDF의 아날로그판쯤 되며, 카메라가 아니라 스캐너에 더 가까운 영역으로 보인다. 이 세 종류의 필름들이 다 동일한 재질인 것도 물론 아니다.

한편, 테이프는 '자기 테이프'라는 이름으로 컴퓨터의 기억장치로 쓰이기도 하지만 일단은 '카세트 테이프' 같은 음성 저장용으로 널리 쓰였다. 그러니 유성 영화도 화면은 필름을 돌려서 상영하고, 음성은 테이프로 재생했다.
카세트 테이프는 앞뒤 구분이 있는 반면, 비디오 테이프는 그렇지 않다. 전자는 내 기억으로 최초로 개발한 곳이 필립스이고, 후자는 SONY/JVC 등 아무튼 서로 다르긴 한데.. 카세트 테이프는 테이프 단면을 좌우로 반반씩만 나눠서 사용하기라도 했나 싶다.

그런데 '릴 테이프'라고, 방송국 장비라 하면 곧장 떠오를.. 그 커다란 바퀴가 뱅글뱅글 돌아가는 기계가 있는데.. 그게 인간이 개발한 아날로그 녹음 장비 중에서는 음질이 제일 좋았다. CD건 카세트건 각종 음반들의 최초 마스터 원본 음원을 저장하는 데 요게 쓰였다고 한다. 아날로그 시절엔 말이다.

사용자 삽입 이미지

그 반면, 비디오 테이프는 말 그대로 '테이프'에 영상과 음성이 모두 담겨 있으니 신기한 일이다. 물론, 물리적인 매체 없이 전파· 전자기 신호만 취급하던 과거 TV와 비디오 테이프의 화질은 필름의 그것에 필적할 수 없었다. 디지털처럼 해상도가 정확한 숫자로 딱 떨어지는 건 아니지만 주사선의 수를 세어서 수직 해상도가 200~300대.. 그냥 VGA mode 13h 320*200보다 약간 더 좋은 수준이었다.

뭐, 실물이 있는 아날로그도 해상도가 마냥 무한대는 아닐 것이다. 디지털 같은 날카로운 계단 현상이 없는 대신, 단지 경계가 흐릿해서 알아보기 어려울 뿐이다.
그래도 영화 필름은 어지간히 오래된 것이라도 스캐닝과 복원, 리마스터링을 아주 잘 하면 디지털 규격 기준으로 거의 6K급의 해상도까지는 뽑을 수 있다고 한다. 애초에 그 넓고 큰 벽면에다가 쏴도 될 정도의 영상이 담겨진 매체이니 말이다.

인간이 1970년대에 달에서 찍은 사진과 영상 기록들은 실시간으로 전송한 동영상은 전파를 통해 보낸 것이며, 고화질 사진들은 필름 카메라로 찍은 것이다. 컬러 사진과 TV 기술만 있고, 그렇다고 없는 영상을 주작할 수 있는 디지털 CG 기술은 없던 시절이다.
참 의미심장하지 않은가? (그에 반해 세상에서 제일 끔찍하고 처참한 사진 기록이 남을 수 있었던 1940년대 2차 세계 대전 시절에는 아직 컬러가 거의 보급되지 않았었다.)

2. 매체의 차이

참고로, 어떤 정보 저장 매체가 아날로그냐 디지털이냐 하는 것은 그 매체를 읽고 쓰는 기계의 재량에 달렸지, 그 매체 자체의 물리적 특성이나 저수준 메커니즘에 막 절대적으로 의존하지는 않는다.
가령, 레이저 디스크는 기술 수준이 100% 디지털 매체인 CD와 동급이다. 하지만 그 시절에 영상 신호까지 모두 디지털로 취급하는 것은 기술적으로 부담스러웠던지라, 얘는 아날로그 기반이다. 그 대신 화질은 MPEG2급으로, 아날로그치고는 HD 축에 들었고 괜찮았다. 가정용 VHS/VCD(MPEG1)보다는 확실히 더 좋으니 말이다.

하긴, 초창기의 PC용 그래픽 카드만 해도 구닥다리 CGA와 EGA는 디지털이지만 정작 VGA는 고해상도 고색상 처리를 위해 신호 전송 방식이 오히려 아날로그 기반으로 잠시 되돌아갔다는 것도 감안할 점이다.

반대로 테이프도.. 카세트나 비디오 테이프는 일단 아날로그 최적화이다. 컴퓨터에서 쓰이는 테이프 리더는 기술적으로 모뎀이나 다름없었다. 매체가 전화선이냐 테이프냐는 차이만 있을 뿐, 거기서 얻어진 치지직~ 하는 아날로그 음성 신호를 디지털 0~1 뭉치로 변환하는 건 완전 동일하기 때문이다.

지금까지도 테이프가 비록 카세트 테이프 같은 형태는 아니지만 테라~페타바이트급 분량의 방대한 백업과 아카이빙 용으로 업계에서 여전히 쓰이고 있다. 그 테이프와 옛날 테이프의 기술적인 차이가 어떤게 있는지 궁금해진다. 일찍부터 기업용과 가정용은 성격이 굉장히 달랐다고 하는데...

아울러, 아날로그 매체들도 다 똑같은 아날로그가 아니며 디지털도 다 똑같은 디지털이 아니다. 오디오 CD는 소프트웨어적인 음성 압축은 전혀 없이 그냥 raw한 PCM 신호만이 디지털 형태로 쭉 들어있기 때문에 MP3보다는 정보의 집적도가 훨씬 낮다. 물리적인 오류에도 상대적으로 더 여유가 있다.

테이프들보다 더 아날로그스러운 물건으로는 필름(영상) 또는 LP가 있을 것이다. 비디오 테이프는 영화 필름과 동급의 아날로그를 구현한 건 아니니, 컴퓨터처럼 640*480으로 딱 떨어지는 것도 아니면서 한편으로 주사선 수 정도의 해상도는 명시적인 제약이 있다. 그리고 겨우 그런 화질을 거대한 영화관 벽면에다 쏴서 상영할 수는 없다.
LP 레코드는 그 자체에 뭔가 재생 위치 정보 같은 게 없는데(테이프의 감긴 위치 같은).. 곡의 탐색은 어떻게 했는지, 바늘의 위치로 그런 것을 변경했었는지 궁금하다. 본인은 LP가 실물 기기에서 재생되는 모습을 본 적이 없다.

3. 비디오 테이프의 기술적 한계

테이프는 비디오건 카세트건 재생을 반복하는 것만으로도 마치 자동차 타이어가 닳듯이 테이프가 늘어나고 화질· 음질이 조금씩 안 좋아지는 단점이 있었다. 아예 0 아니면 1로 깔끔하게 오류, 에러, 배드 섹터로 처리되는 게 아니라 아날로그답게 그냥 흐리멍텅해지는 것이다.
물론, CD 같은 디지털 매체도 싸구려 재료로 당장 컴퓨터에서 인식만 되게 만들어지고 어설프게 구워진 것은 10수 년도 못 버티고 내용이 지워져 버린다. 하지만 그건 보존· 보관과 관련된 문제인 것이고, 테이프는 그런 차원이 아니라 사용만으로도 열화를 피할 수 없었다.

또한, 테이프 간에 복제를 해도 100% 정확하게 깨끗하게 된다는 보장이 없었다. 특히 TV로 재생되는 신호를 잡아내는 식으로 녹화를 하면 절대로 원본과 같은 퀄리티가 나오지 않았으며, 오랫동안 재생되어 삭은 것 같은 열화가 대놓고 진행되었다.
그 열화된 사본을 재생하면서 녹화하고, 또 그 복사본을 같은 방식으로 재생+녹화 복사하고, 또 복사하고.. 이렇게 세대를 거듭하면..

영상의 색감(채도)이 갈수록 떨어지고 번쩍거리기 시작하고, 스테레오였던 음성은 모노로 짤리고, 영상과 음성이 뭉개지고 흐려지더니 급기야 컬러가 싹 사라져서 흑백으로 바뀌고.. 화면이 흔들리고 노이즈가 끼고.. 나중에는 영상은 그냥 백색잡음(white noise)으로, 음성은 테이프 늘어난 듯한 바람 소리로 수렴해 버린다. 이게 바로 자기 테이프에 기록된 아날로그 신호의 궁극적인 종말점인 듯하다.
다음 동영상은 VHS 비디오 테이프의 세대별 화질 열화 양상을 보여준다. (generation loss)

100% 아날로그인 영화 필름이 몇십 년 오래되면 영상의 색깔이 누렇게 바래지고(컬러) 경계가 뿌옇게 흐려지고(흑백), 무엇보다 필름 단면에 먼지· 이물질이 많이 붙었는지 백색 화면에서도 검은 점 같은 게 쉴 새 없이 깜빡거리게 된다. 이 정도면 그래도 우리가 충분히 직관적으로 예상하고 이해할 수 있는 방식의 화질 열화이다.

그리고 반대로 100% 디지털인 컴퓨터에서 그림이나 동영상을 손실 압축 방식으로 계속 저장하거나, 압축률을 높여서 저장하면 그 특유의 경계가 뭉개지고 깨지는 artifact를 볼 수 있다.
허나, 비디오 테이프의 아날로그 신호가 망가지는 모습은.. 정말 이질적이고 참으로 인상적이기까지 하다.

그럼 옛날에는 비디오 테이프만 갖고는 정확하게 복제된 비디오 테이프를 얻는 게 불가능했나?
영화가 비디오 테이프로 출시되면 동일 매체인 마스터 테이프를 복제하는 게 아니라 매번 영화 필름으로부터 테이프에다 기록을 해야 했나?
그건 아니었을 텐데.. 비싸더라도 TV 신호 변환-역변환이 아니라 테이프의 신호를 직통으로 베껴 쓰는 전문적인 비디오 테이프 복사기도 있었으리라고 생각된다. 소프트웨어의 디버깅으로 치자면 실행을 하지 않는 정적 분석처럼 말이다.

하나 더 첨언하자면, 옛날 아날로그 비디오에서는 각 화면의 정확한 픽셀은커녕 정지화면을 제대로 보기도 어려웠다. 일시정지 기능이 굉장히 구현하기 어려운 기능이었기 때문이다. 비디오 플레이어에 컴퓨터 같은 자체적인 비디오 메모리가 있지 않으니, 한번 보낸 영상이 그대로 자연스럽게 유지되지 않았다. "즐겁게 재생하다가 그대로 멈춰라"를 할 수 없었다.

pause 상태가 되면 비디오 테이프는 안 돌아가지만 헤드는 어떻게든 돌면서 테이프의 동일 지점을 미세하게 계속 스캔해야 했다. 그러니 자동차 타이어가 헛돌고 특정 지점만 계속 닳는 것과 같으며, 테이프에 좋을 리가 없었다. 그리고 기껏 정지시킨 화면은 화질이 구려지고(심하면 흑백으로..) 노이즈가 꼈다.

뭐, 굳이 따지자면 비디오 테이프는 일시정지가 어렵지만, 컴퓨터의 디지털 동영상은 역방향 재생이 불가능한 형태이다. (구간 seek를 위한 키프레임만 일정 시간 간격으로 놓여 있을 뿐임) 매우 정교하게 만들어진 f'(x) 함수로부터 f(-x)를 실시간으로 유도하는 게 쉬울 리가 없을 것이다. 서로 제각기 희생하고 포기한 분야가 있다.

4. 브라운관 수상기

두툼한 브라운관(CRT, 음극선관)은 완전히 퇴물로 전락해서 21세기 무렵부터는 전세계적으로 생산이 중단됐다. 증기 기관차는 1950~60년대부터 자취를 감췄으니 이와는 거의 반세기에 가까운 간격이다.
차라리 완전 옛날 물건에 속하는 LP, 카메라용 필름 같은 건 극소수 마이너한 수요라도 있다지만, 브라운관 모니터나 카세트· 비디오 테이프 같은 건 진짜로 명줄이 끊겼나 보다.

사용자 삽입 이미지

그래도 설계 한도 이내의 아무 해상도나 픽셀의 뭉개짐 없이 자연스럽게 지원 가능한 디스플레이 기술은 예나 지금이나 브라운관이 유일한데... 그걸 생각하면 과거의 브라운관 모니터가 문득 다시 보고 싶어질 때도 있다.
옛날에 형광등이 처음 켜질 때 딜레이가 있던 것처럼.. 브라운관 모니터는 처음 켤 때 전자총을 예열하느라 화면이 서서히 fade in 되는 딜레이도 있었다.

너무 어린 시절이어서 정확한 디테일이 기억 나지는 않지만, 과거에도 텔레비전은 자체적으로 공중파 영상을 수신하는 부분과 영상 신호를 표시하는 부분이 분명하게 분리되어 있지 않았을까 생각된다. 전자를 사용하지 않고 후자를 다른 기계와 연결하면 TV를 컴퓨터, 비디오, CCTV 등으로 활용할 수 있을 것이다. 굳이 감시용 녹화 영상이 아니라 학교 방송부에서 송출하는 내부 방송도 공중파가 아니니 CCTV의 일종이지 않겠는가?

단자를 잘 연결하면 가정용 텔레비전을 컴퓨터 모니터로 쓰는 것도 실제로 가능은 하다. 하지만 고해상도 화면이 선명하게 표시되지 않기 때문에 이걸로 눈 버리지 않고 컴퓨터 작업을 하기는 어렵다(브라운관 기준).

같은 브라운관 기술 기반이어도 텔레비전과 컴퓨터 모니터는 만드는 방식이 미묘하게 차이가 있기 때문이다. 마치 군대 사격과 스포츠 사격의 차이와 비슷한 양상인 것 같다. 텔레비전은 안 그래도 멀리 떨어져서 시청하니 화면 크기를 더 키우는 데 중점을 둔 반면, 모니터는 가까이서 들여다보며 문자를 읽을 일이 많으니 작더라도 픽셀이 더 선명하게 찍히도록 만들어진다.

2000년대 중후반부터는 컴퓨터 모니터가 4:3이 아닌 16:9 종횡비의 와이드 화면이 급격히 대세가 됐다. 이때는 컴퓨터 모니터가 액정 위주로 바뀐 뒤이다.
그럼 한 가지 의문이 생긴다. 브라운관 모니터 중에도 단순히 크고 해상도 높은 모니터가 아니라, 와이드 종횡비인 모니터가 있었을까?

본인은 그런 게 있을 리가 없다고 생각했으나, 검색을 해 보니 실제로 있었다.

사용자 삽입 이미지

먼 옛날 본인의 대학 시절, id 소프트웨어에서 Doom 3이 나오네 마네 하던 시절에 이런 홍보 동영상을 봤었는데..
영상 중에는 그 이름도 유명한 존 카맥이 코딩을 하는 장면이 있다.

알고 보니 저건 굉장히 옛날 모습이었다. 당대의 Doom 3 제품이 아니라 무려 1995년, 도스용 Quake를 개발하던 시절의 모습이다.
그런데 1995년.. 서민들의 컴퓨터는 해상도가 기껏해야 800*600, 1024*768 이러던 시절이었을 텐데 존 카맥이 쓰던 컴퓨터의 모니터는.. 1920*1080 와이드 화면이었다. 액정이 아닌 브라운관 모니터로 저런 해상도와 종횡비를 지원하는 물건이 있었던 것이다. 물론 그 크기와 무게, 가격은 감당하기 심히 압박스럽겠지만..;;

그리고 저 당시에 존 카맥의 Quake 개발 환경은 도스도, Windows도 아니고.. 그 이름도 유명한 NextStep이었다. 개발에 사용한 하드웨어와 소프트웨어부터가 그야말로 평범하지 않은 값비싼 명품 일색이었다. 뭐, 저분은 Doom 1/2가 초대박을 터뜨린 덕분에 백만장자가 됐고, 고급 스포츠카를 굴리며 떵떵거리며 살았으니 개발 장비를 최고급으로 지르는 것쯤이야 일도 아니었을 것이다.

존 카맥은 2013년을 끝으로 id 소프트웨어에서 퇴사하여, 게임 개발자 및 실시간 렌더링 3D 컴퓨터그래픽 '구루'(guru)로서의 커리어는 사실상 종지부를 찍었다. 그래도 경영이나 기획 쪽이 아닌 순수 기술자· 엔지니어이다 보니, id의 창립자들 중에서는 제일 오랫동안 남아 있다가 퇴사한 거다. 그랬는데 어째 Doom의 2016년도 리부트작에서는 일말의 기여를 하거나 자문에 응해 준 게 있는지 'former(前) 어쩌구' 하는 직함으로 크레딧에 등장한 모양이다.

지금이야 개나 소나 들고 다니는 그 작은 스마트폰의 화면 해상도가 20여 년 전 존 카맥이 쓰던 최고급 모니터의 그것보다 더 높은 지경이다. 3K~4K 해상도가 기본이고, 아이맥은 5K 화면까지 나와 있다.
또한, 휴대용 전자기기에서 액정 화면이라 하면 옛날 계산기처럼 그냥 녹색 배경에 검은색으로 7-segment 숫자나 찍혀 나오는 장비가 고작이었는데.. 언제부턴가 거기서 초고해상도 천연색 그림이 찍혀 나오고 있다. 경이로운 일이 아닐 수 없다.

공공장소에서 볼 수 있는 LED 전광판은 크기는 좀 더 크지만, 오랫동안 청색과 백색의 불모지로 여겨져서 주황이나 녹색 글자만 볼 수 있었지만 이 역시 천연색으로 바뀐 지 오래다. 얘는 디스플레이라기보다는 광원· 조명 기술로 각광받고 있으며, LCD에다가 빛을 비추는 수단으로도 쓰인다. 애초에 LED와 LCD는 비슷해 보여도 영어 이니셜의 의미가 서로 완전히 다르다.

5. 프로젝션 장비

끝으로.. 프로젝터 얘기만 더 하고 글을 맺겠다.
지금이야 컴퓨터 화면을 벽면에 그대로 쏴 주는 프로젝터가 주류이지만 옛날에, 1990년대까지만 해도 OHP 필름을 쏴 주는 프로젝터가 학교나 회의실 같은 데서 널리 쓰였으며 필름 인쇄가 가능한 잉크젯 프린터가 따로 있을 정도였다. 아날로그· 오프라인 매체답게 필름에다 실시간으로 밑줄을 긋는 등 수정이 자유로우며, 필름 여러 장을 옮기고 겹칠 수도 있는 건 오늘날의 컴퓨터 기반 프레젠테이션이 쉽게 흉내 낼 수 없는 장점이라 하겠다.

그러다가 그게 발전하여 그냥 실물 영상을 TV 화면으로 보내 주는 기기도 잠시 쓰였으나.. 얘는 가성비가 별로였을 것 같으며 실제로 금방 사라졌다. 캠코더? 비디오 카메라? 는 동영상을 찍으라고 만들어진 물건이지 발표 자료를 표시하는 용도는 아닐 테니까. 그래도 본인은 학창 시절에 이런 물건을 본 기억이 있다.

이런 장비가 없던 더 옛날엔 그냥 A0 전지 크기의 괘도가 교보재로 쓰였다. 지금도 전자 장비를 동원할 수 없는 군대 같은 데서는 야전 교육용으로 저런 게 쓰인다.

사용자 삽입 이미지

Posted by 사무엘

2018/04/25 08:33 2018/04/25 08:33
, , , , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1482

Trackback URL : http://moogi.new21.org/tc/trackback/1482

Leave a comment

1. 2017년 4월: 찬송가+CCM 메들리
https://www.youtube.com/watch?v=mvGJ4kNv99M

본인은 다니는 교회에서 수 년 동안 국내외의 여러 찬양곡들을 개척하고 메들리를 짜기도 했지만, 이때 했던 특송은 다음과 같은 점에서 본인에게 인상깊었던 기억으로 남아 있다.

  • 특별하게 확 꽂히는 곡이나 컨셉, 단서가 없이 완전 백지 자유 주제 상태였다. 덕분에 찬송가 책을 처음부터 끝까지 이 잡듯이 뒤지면서 선곡과 편성에만 2시간 가까이 걸렸다.
  • 같은 E장조 4/4박자짜리 세 곡이 최종적으로 뽑혔는데.. 전부 그 당시엔 내가 모르던 신곡이었다. 가사와 악보를 머릿속으로만 읽고 연결해 보면서 "음 이 순서대로 부르면 좋겠다"라고 계획을 수립했다. 그 결과는 다음과 같다.

(1) 맑고 밝은 날 It’s a happy day
어린이 찬송 같기도 한 짤막하고 명랑 발랄한 곡을 도입부에 넣었다.

(2) 변찮는 주님의 귀한 약속 Sweet are the promises, kind is the word
박자가 흥겨운 곡 다음으로 본론은 화음이 아름다운 19세기 클래식 찬송가로 넣었다. (나머지 앞뒤 곡은 20세기 CCM임)
후렴의 "주님 가신 곳에~ 나도 따르겠네" 부분.. 난 이런 스타일의 합창에서 느껴지는 harmony를 짱 아주 좋아한다. 물론 교회 친구들이 잘 불러 줬다. 반주자도 마찬가지~!!

참고로 이 찬송은 <예수 나를 오라 하네>와 후렴 가사가 서로 아주 비슷하다. 똑같이 ‘나는 주님을 따르리’이다.

Where he leads I’ll follow, follow all the way (우리가 부른 곡)
Where he leads me I’ll follow, I’ll go with him all the way (예수 나를 오라 하네)


(3) 사랑해요 목소리 높여 I love You, Lord; and I lift my voice
그 다음으로 워십송 스타일의 조용하고 우아한 곡으로 마무리를 지었다.
여기도 화음을 넣으면 더 멋있어졌겠지만 그러지는 않고 그 대신 조를 올려서 반복했다. 이렇게 해서 그럴싸한 메들리가 완성됐다.

2. 2017년 5월: 고린도전서 13장 사랑장 찬송 메들리
https://www.youtube.com/watch?v=FtS15e9fsaI

(1) "천사의 말을 하는 사람도" (원제는 <사랑의 송가>라고 하는데, Tina Benitez라고 인터넷에서 정체를 도저히 찾을 수 없는 여자 이름의 작곡자)
(2) 그리고 "사랑은 언제나 오래 참고". (정 두영 1939-2005 작곡.)

둘은 고린도전서 13장 일명 사랑장을 배경으로 만들어진 곡이며 꽤 유명하다. 두 곡은 제각기 가사에 포함시킨 구절도 있고 생략한 구절도 있다.
그리고 작곡자가 서로 완전히 다르나, 둘 다 3/4박자 D장조이며 박자와 분위기가 서로 놀라울 정도로 비슷하다.

이 점을 착안하여 본인은 이 두 곡을 잘 취합하면 고린도전서 13장 전체를 꽤 그럴싸하게 음악으로 '스토리텔링' 할 수 있겠다는 생각을 하게 됐다. (이건 답이 너무 뻔히 나와 있기 때문에.. 교회 음악 한다는 전세계의 날고 기는 다른 음악 전공자들도 분명히 이렇게 생각을 했으리라 여겨진다.)

먼저 사랑의 송가 1절로 시작한다. 1절 가사는 성경 본문에서 1~3절을 커버한다. 아무리 거창하고 대단한 능력이 있어도 사랑이 없으면 말짱 도루묵이다~
사랑의 송가의 후렴인 "하나님 말씀 전한다 해도 그 무슨 소용이 있나, 사랑 없으면 소용이 없고 아무것도 아닙니다"는 이때 딱 한 번만 부르고 더 부르지 않는다.

그 뒤, 본론에 속하는 사랑의 속성에 대한 설명은 정 두영 곡이 더 자세히 잘 해 놨으니 그 곡으로 넘어간다. "사랑은 영원토록 변함없네"까지 부른다. 성경 본문에서는 8절까지 나간다.

다음으로 성경 본문에는 "현재의 불완전과 미래의 완전"에 대해서 비유 설명을 하는 부분이 있는데, 이건 노래에서는 둘 다 빠져 있다. 그렇기 때문에 중간 간주를 하면서 간단히 9~10절을 나레이션 낭독을 했다. 곡이 바뀔 때 4마디 정도 짤막한 간주가 있는데, 간주 선율은 곡의 앞뒤 분위기를 생각해서 내가 대충 작곡해 넣었다.

간주가 끝난 뒤에는 사랑의 송가로 돌아가서 3절 앞부분을 부른다. 이게 12절에 해당하니까. "지금은 희미하게 보이나 ... 우리도 주를 알리"
이거 부르고 나서는 아까 중단했던 정 두영 곡의 클라이막스로 '간주 없이' 자연스럽게 곧장 넘어가서 곡 전체를 마무리 짓는다. "믿음과 소망과 사랑은 이 세상 끝까지 영원하며.."

* 북괴와 관련된 진실, 대북관과 관련된 진실· 진리를 전할 때는 내 경험상 사랑이 담기기가 정말 불가능에 가깝게 무지무지무지무지 힘들긴 하다-_-;;. 다만, 성경이 말하는 사랑이랑 인간이 흔히 생각하는 사랑은 일치하는 부분도 있고 그렇지 않은 부분도 있다. 무작정 젠틀하고 공손하고 댄디하고 부드럽고 유하기만 한 게 사랑은 아니다.

3. 2017년 12월: 성탄 찬송 메들리
https://www.youtube.com/watch?v=pbSMPEOlZHs

우리 교회는 성경에 기록된 예수님의 성육신과 탄생만 믿지, 12월 25일 성탄'절'을 믿지는 않는다.
그래서 교회 안에 크리스마스 트리 같은 것을 꾸미지 않으며, 사용하는 찬송가에도 '탄생' 카테고리의 곡은 기성 교회 찬송가들보다 매우 적다. '고요한 밤 거룩한 밤'조차도 별 영양가나 교리 메시지가 없고 모호하다는 이유로 제외시켰을 정도이다.

그래도 나름 2017년은 청년부 특송을 하는 날이 크리스마스 이브이기도 하니, 조심해서 탄생 관련 곡을 골라서 불렀다.
성경적인 내용이 전혀 없는 캐롤이야 당연히 제끼고, "기쁘다 구주 오셨네"(joy to the world), God rest ye merry gentlemen(이건 한국어 가사가 기억 안 나네.. 기성 교회 찬송가에 있는데..), "그 맑고 환한 밤중에" 등 여러 곡들을 고려했는데, 최종적으로 뽑힌 건

(1) "천사들의 노래가"(Hark! the herald angels sing), 그 다음
(2) "참 반가운 성도여"(O come, all ye faithful)를 연결하는 것이었다.

논란의 여지를 없애기 위해 가사에서 '베들레헴', '아기 예수' 이런 단어가 나오는 부분은 다 뺐다. 날짜와 장소는 중요하지 않고 오로지 예수님의 탄생 사건과 "그분께 영광과 경배"에만 집중할 수 있게 가사를 편성했다.
'동정녀'도 '처녀'로 수정했다. 동정녀는 마리아가 평생 결혼 안 하고 살았다는 오해를 야기하는 명칭이기 때문이다.

곡이 바뀌는 간주 중에는 눅 2:10, 14절 암송을 하는데, 중간에는 2:11-12 대신에 사 9:6을 집어넣었다. 구유에 놓인 아기 예수스러운 묘사 대신 "놀라우신 이, 강하신 하나님, 평화의 통치자"라는 더 뽀대 나는 타이틀이 등장하기 때문이다.
그리고 그 타이틀이 나올 때쯤에 간주 멜로디도 제일 역동적이고 세게 이어지도록 음표에다 악센트를 넣었다.

4. 2018년 2월: 내 진정 사모하는 친구가 되시는
https://www.youtube.com/watch?v=-low5ichQVc

이때는 청년부 특송 역사상 최초로.. 빈손 무악보를 시도했다.

무악보이니 선곡 원칙이 예전과는 완전히 달라졌다. 길고 화려한 신곡이라든가 복잡한 메들리 같은 건 싹 잊어버리고, 그 대신 우리에게 친숙한 곡, 멜로디에 반복 많고 가사도 외우기 쉬운 곡.. 그러면서도 달달 외울 가치가 있을 정도로 가사가 아름답고 영양가도 충분하고, 심지어 박해나 순교를 앞두고도 떠오를 만한..! 그런 검증된 명곡을 찾게 됐다.

성경에서 사도행전 16장을 보면, 바울과 실라가 채찍 맞고 감옥에 갇혔을 때 찬송을 크게 불렀다고 나온다. 발에 차꼬가 채였고, 전깃불도 없던 시절에 한밤중이었는데.. 여러 정황상 이들이 우리 찬송가 책 펴서 "100장 뭐뭐뭐 부릅시다" 이랬을 가능성은 없다. 당연히 외우고 있던 찬송을 불렀지.

그래서 단순히 구원, 찬양 이런 쪽보다는 신뢰, 인도, 동행, 사랑... 이런 카테고리를 눈여겨보게 되었고..
두세 곡이 경합을 벌인 끝에 최종적으로는 "내 진정 사모하는 친구가 되시는"이 뽑혔다. 안 그래도 이 찬양 좋아하는 친구들이 많아서 공감대가 금세 형성됐다. 여러 가지로 따져 봤을 때 암송용으로 정말 최적의 찬송가임이 틀림없었다.

가사를 외우는 것 자체는 그리 어렵지 않았다. 하지만 2절 부르다가 3절 가사가 튀어나오는 식으로 꼬이지 않고 자신 있게 순서를 유지하는 게 생각보다 까다로웠다. 게다가 주선율 말고 화음 파트 멜로디를 외우는 것도 꽤 어려웠다. 그래서 나만 혼자 테너를 부르고 다른 분들은 다 멜로디로 갔다.

가사 암송을 위해서 다른 음악적인 기교들을 극도로 최소화하게 됐지만.. 이것만 있으면 단조로우니 간주 중에 성경 구절 암송을 넣었다.
이 찬송의 가사는 예수님에 대해서 "골짜기(산 밑)의 백합"(아 2:1)과 "빛나는 새벽별"(계 22:16)이라는 칭호를 인용했다. 아 2:1만 인용했으면 "샤론의 장미"가 뒤따르고 계 22:16만 인용하면 "다윗의 뿌리"가 나왔을 텐데 두 구절을 부분적으로 인용했다.
그래서 간주 중엔 그 해당 구절 둘을 완전히 읽을까 생각했으나.. 아가서 5장으로 계획을 바꿨다.

후렴 끝부분의 "이 땅 위에 비길 것이 없도다"가 영어 가사로는 "he is the fairest of ten thousand to my soul"이어서 아 5:10에서 모티브를 뒀기 때문이다(1만 명 중에서도 최고). 우리말로는 음절수를 맞출 수가 없어서 그냥 '짱'이라는 뜻으로 의역된 것이다. 그리고 다음 구절로는 "그분은 모든 것이 사랑스럽도다"라고 고백하는 16절을 골랐다.

생각도 안 하고 있었는데 특송 중에 다른 책도 아니고 아가서를 인용하여 암송하는 기회가 이렇게 찾아왔다. 내용이 내용이다 보니 암송 첫 주자로는 목소리가 예쁜 자매님을 지정했다.

주중에 우리 청년부 내부에서는.. '친히'는 보통 높은 사람이 낮은 사람한테 쓰는 말이 아니냐, "예수님이 친히 인간을 찾아오신" 거지 인간이 감히 '친히' 주님을 뵐 수 있느냐~ 높임법이 어긋난 게 아니냐는 진지한 이의가 제기되기도 했다.

이 때문에 국어사전을 찾아보고 국립국어원 말뭉치 용례까지 뒤져 본 뒤에야 꼭 높은 사람에만 해당되는 건 아니고 '친하게, 몸소, 손수, 직접'이라는 뜻으로 쓰기에 무리가 없다는 결론을 내리게 됐다. 이런 안목과 의견도 각 개인이 가사를 글자 단위로 일일이 다 외우고 곱씹으니까 생길 수 있었을 것이다.

난생 처음으로 빈손으로 강단에 서다 보니.. 사람들이 손을 어떤 자세로 하고 있을지, 시선을 어디에 둘지 꽤 어색해했다. 악보를 꽉 파지(!)한 채 얼굴을 악보 속에 파묻을 수가 없으니까!! 하지만 악보가 없이 열린 모습이 다시 봐도 너무 좋다. 곡의 난이도를 낮추더라도 진작에 이런 시도를 해 봤어야 했다.

한 주 동안 좋은 찬송의 가사를 암기해서 한 치의 실수 없이 불러 준 친구들, 그리고 코드(화음) 취향이 나랑 꼭 맞게 반주를 너무 잘 해 준 반주자 덕분에 이런 특송이 불러질 수 있었다.

Posted by 사무엘

2018/04/22 08:38 2018/04/22 08:38
, ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1481

Trackback URL : http://moogi.new21.org/tc/trackback/1481

Comments List

  1. 김경록 2018/04/26 13:31 # M/D Reply Permalink

    제가 용묵님 덕뿐에 다시 교회를 다니나 봅니다. ㅎㅎ 근데 이제 개발환경이 맥이라서 날개셋 입력기를 못쓰고 있어서 아주 안타까워요. 편하고 좋았는데 아쉬워요

    1. 사무엘 2018/04/26 17:01 # M/D Permalink

      경록 님! 오랜만에 뵙습니다. 좋은 소식 전해 주셔서 고맙습니다. ^_^ 저도 회사에서 macOS 및 iOS 개발을 위해서 가끔 mac을 만지고는 있는데.. 여기서도 제 입력기와 편집기가 있으면 좋겠다는 아쉬움을 느끼곤 합니다.
      날개셋 한글 입력기는 비록 mac용이 나오고 있지는 못하지만 여전히 다음 버전 개발이 진행 중입니다. 현재의 계획대로라면 다음 버전이 일단은 가까운 미래에 '최후의' 메이저 업데이트가 될 예정입니다.

Leave a comment

5. 엔진 브레이크

엔진 브레이크라는 건 감속· 제동을 위해 자동차에 따로 장착되는 기계 장치를 가리키는 게 아니다. 이미 있는 엔진의 특성을 이용해서 차의 속력을 슬금슬금 줄이는 일종의 운전 테크닉에 가깝다.
자동차에서 엔진이 돌아가는 것과 바퀴가 돌아가는 것 사이의 관계는 뭐랄까 참 미묘하다. 서로 영향을 주고받는다. 엔진이 돌아가는 것에 비례해서 바퀴가 돌아가지만, 반대로 바퀴가 관성을 따라 계속 굴러가는 것이 엔진을 덩달아 회전시켜 주기도 한다.

엔진 브레이크의 본질은 강제로 기어를 저단으로 바꿔서 바퀴가 굴러갈 때 엔진을 덩달아 회전시키는 것을 굉장히 어렵게 하는 것이다. 그러면 아무리 내리막이라 해도 차가 호락호락 미끄러져 내려가지 않게 된다. 1단으로 고정이라도 시키면 차가 조금만 가속되어도 엔진 회전수가 팍 치솟으면서 굉장히 큰 저항 같은 게 걸린다. 물론 엔진 브레이크를 오· 남용하면 변속기를 포함한 파워트레인 계통이 퍼질 위험이 있지만, 그건 무슨 시속 100에서 1~2단 고정을 시켜서 엔진 회전수가 레드존 이상으로 치솟았을 때에나 걱정할 사항일 뿐이다.

이런 관점에서 보면, 변속기를 D로 놓고 주행하던 중에 가속 페달에서 발을 잠시 뗀 상황은 정말 순수하게 자전거 페달에서 발을 떼고 관성만으로 달리는 것과 같은 상황이 아니다. 정말 순수하게 관성 주행을 하려면 변속기를 N으로 옮기든가, 수동 변속기라면 클러치를 밟고 있어야 한다. 엔진이 바퀴와 연결되어 있는 한 고단 상태라도 아주 약하게나마 엔진 브레이크가 걸려 있는 셈이다.

관성만으로 자동차 바퀴를 굴리고 바퀴와 연결된 엔진까지 돌리는 상태는 오래 가지 못한다. 자동차는 지금 설정된 단의 기준으로 아이들링 rpm에 해당하는 최저 속도까지 서서히 감속될 것이고 엔진 rpm도 비례해서 줄어들 것이다. 액셀을 안 밟고 계속 방치하면 힘이 부족해서 현재의 '단'도 공기 저항 등 여러 이유로 인해 유지되지 못할 것이다. 그러니 자동 변속기는 알아서 더 저단으로 변속을 할 것이고, 궁극적으로 자동차는 최저단인 1단에서 그냥 슬슬 기어가는 상태로 되돌아가게 된다. 단순히 공기 저항 같은 요인 때문에 감속되는 게 아니라 엔진 브레이크가 걸려서 그렇게 된다는 뜻이다.

엔진 브레이크는 브레이크 페달의 부담을 일부 분담해 줄 뿐, 얘 단독으로 차를 완전히 세우지는 못한다. 토크가 작고 회전수 편차가 큰 휘발유 엔진이 엔진 브레이크의 성능이 더 좋은데, 정작 드럼 방식 브레이크 기반이고 엔진 브레이크가 더욱 절실히 필요한 차량들은 디젤 엔진 대형 차량이라는 게 역설적이다.

6. 접지력

브레이크라는 건 동작하기 위해서 충족되어야 하는 매우 기본적이고 중요한 전제 조건이 있다. 바로 바퀴가 제대로 된 접지력을 발휘하는 것이다. 바퀴가 접지력을 상실하면 굳이 급발진처럼 엔진에 의해 속도가 더 붙지는 않을지 몰라도, 핸들과 브레이크가 말을 전혀 듣지 않고 차가 미끄러지기 때문에 매우 위험한 상황에 빠진다.

밥을 먹고 있는데, 식탁 표면에 물이 흘려져 있으면 그 위의 밥그릇이나 반찬 그릇이 가끔 케바케로 미끄러지고 저절로 움직이기도 한다. 그 얇은 수면 위로 설마 부력이 작용했을 리는 없지만 지면 정지 마찰력이 극도로 작아지긴 한 것 같다. 그걸 보고서는 "아! 빗길에서 그 무거운 자동차가 미끄러지는 것도 바로 이런 원리이겠구나" 하는 생각이 들었다. 난 딱히 난폭운전을 하지 않아서 그런지 빗길에서는 차가 물의 저항 때문에 더 잘 안 나아가면 안 나아가지, 딱히 미끄러지거나 한 적은 없었던 것 같다.

일상생활에서 뭔가 도구 차원에서 접지력을 향상시켜서 미끄러짐을 방지하기 위해서는 스노우 타이어와 체인(자동차), 아이젠(등산) 같은 게 쓰인다. 그러고 보니 유리병 뚜껑 같은 게 너무 조여져 있어서 안 따지고 손으로 돌려도 손만 미끄러질 때도, 옷이나 헝겊류를 씌우고 그걸 돌리면 뚜껑이 돌아가서 열리는 경우가 생긴다. 이건 병따개나 손톱깎이처럼 지레의 원리로 토크를 키운 게 아니라, 순전히 접지력을 올리는 좋은 예이다. 회전력만 세다고 해서 장땡이 아니다.

자동차는 밥그릇과 비교했을 때 다소 길쭉한(?) 외형이고, 스스로 굉장한 고속으로 움직이기도 있기도 하다. 그렇기 때문에 진행 방향 기준으로 앞뒤의 무게 분배의 균형도 꽤 중요하다.
핸들을 꺾었는데 미끄러져서 차체가 운전자의 기대보다 더 큰 반경으로 돌게 됐다. 그래도 차가 앞뒤 방향이 유지라도 되면 그건 '언더스티어' 성향이다. 그 반면, 조향 과정에서 차의 뒷부분이 원심력을 감당 못 해 드리프트 하듯이 홱 도는 것은 '오버스티어' 성향이다.

묘기· 곡예 운전을 하려면 이런 차의 특성을 잘 알아야 한다. 갑자기 튀어나온 차량을 피하러 핸들을 갑자기 꺾다가 차의 뒷부분이 덜렁덜렁 요동치는 걸 피시테일(fish tail) 현상이라고 하는데.. 이건 일종의 언더스티어 성향으로 봐야 하나 모르겠다. 흔한 통념과는 달리, 딱히 전륜구동이냐 후륜구동이냐를 가리지는 않는다. 엔진이 실린 앞부분이 더 무거운 자동차라면 언제든 발생할 수 있다.

피시테일 현상에서 벗어나려면 마치 급발진에 대처할 때와 마찬가지로 당장의 직감과는 어긋나는 방식으로 자동차를 조작해야 한다. 브레이크를 밟을 게 아니라 오히려 가속을 해야 한다. 그래야 무게중심이 뒤로 쏠리면서 차량의 뒷부분이 무게를 얻고 불안정한 진동을 멈추기 때문이다. 커브를 돌 때 감속이 아니라 오히려 가속을 하듯이 말이다.

이런 식으로, 자동차의 주행에는 연료를 연소시켜서 그 폭발력으로 바퀴를 굴리기까지 전반적인 과정이 비선형적이고 정량적으로 기술하기 어려운 요소가 많다. 무슨 우주 공간처럼 마찰이고 공기 저항이고 다 없고, 그저 연료를 뒤로 분사해서 곧이곧대로 작용· 반작용대로만 나아가는 거라면 기술하기 참 쉽겠지만 현실은 그렇지 않다는 얘기이다. 타이어의 접지력이라든가, 공기 저항 같은 건 최하 대학에서 기계공학 학부나 대학원 수준이 돼야 다뤄질 것이다.

단적인 예로, 자전거만 해도 차체가 너무 무거우면 처음에 출발할 때 페달을 밟는 게 아니라 그냥 발로 땅을 뒤로 차고 나아가는 게 덜 힘들지 않은가? 그런 게 무슨 원리로 왜 발생하는 차이인지가 단순 경험적인 직감이 아니라 수식으로 아직 좀 알쏭달쏭하다. 완전히 이해를 못 했다.

타이어가 평소에 그렇게도 좋은 승차감을 선사하지만, 바람이 빠지면 완전히 다른 물질로 바뀐 게 아닌가 싶을 정도로 차체를 안 나아가게 만든다. 공기의 있고 없고 차이가 무슨 역학적인 차이를 만들어 내는 걸까?
더 나아가 차체의 무게와 엔진 종류, 배기량, 기어비가 주어졌을 때 그 차의 경제 속도나 최적 연비,  등판능력 한계를 구하는 근거도 내가 이해 가능한 한도까지 알아 가고 싶다.

7. ABS

자동차가 바퀴가 굴러가는 속도(A)와 차체가 움직이는 속도(B)가 일치하지 않게 돼서 좋을 건 전혀 없다. A>B인 건 바퀴가 헛도는 것이고, A<B인 건(심지어 A=0일 수도..) 미끄러지는 것이다. 미끄러지는 현상을 차량 전체의 관점에서는 skid라고 표현하고, 타이어의 관점에서는 잠김(lock)이라고 표현하는가 보다.

ABS란 제동력 자체가 아니라 접지력 향상을 위해서 고안된 안전 장치이다. 수십 년 전까지만 해도 고급차에만 존재하던 값비싼 선택사양이었으나, 2010년대 이후부터는 경차에도 의무적으로 달리는 모든 차들의 필수품이 된 지 오래이다.

얘는 브레이크를 기계의 힘으로 넣었다 끊기를 반복함으로써 접지력의 향상을 도모한다. 즉, 시속 100km 상태에서 150m를 더 나아가야 멈춰설 것을 120m 만에 멈추게 해 주는 게 아니다. 미끄러운 빗길· 빙판길 커브에서 브레이크를 꾸욱 깊게 밟았을 때 차가 전방을 향해 쫘악 미끄러져서 길을 이탈하는 게 아니라, 제동 거리가 얼마가 나오건 커브 틀면서 원래 성능대로 곱게 멈춰서는 것 자체를 도와준다는 뜻이다. 먼저 바퀴가 땅에 제대로 붙어 있어야 그 다음에 핸들이고 브레이크고가 말을 들을 것이기 때문이다.

사용자 삽입 이미지

위의 사진은 ABS가 하는 일을 정확하게 묘사하고 있다. 정말 센스 대박이다~!! ㅋㅋㅋㅋㅋ 한눈에 바로 이해된다.
노면이 미끄러워서 바퀴가 잠기는 현상이 감지되면, ABS는 운전자의 브레이크 동작을 기계적으로 수 차례의 브레이크 밟기+떼기 트레몰로로 구현해 준다. ABS는 anti-lock brake system의 약자이다만, 각종 프로그래밍 언어에서는 절대값을 구하는 함수의 명칭으로 훨씬 더 많이 알려져 있다..;;

굳이 빗길이나 빙판이 아니어도, 고속 주행 중에 그야말로 강한 관성이 느껴지고 타이어의 스키드 자국이 생길 정도로 브레이크를 강하고 깊게 밟으면 ABS가 발동된다. 스키드 자국이라는 게 타이어가 멈춘 채로 차체가 움직여서 타이어가 길바닥에 질질 긁혔다는 뜻이니 말이다.

이때 브레이크를 밟는 발에서 부르르르~ 떨림이 느껴질 것이다. 트레몰로가 연주되었다는 흔적이다. 브레이크를 사뿐히 즈려밟고 부드럽게 정지하는 평상시에는 ABS의 존재를 체험할 일이 없다.
사실, 오늘날은 ABS는 차체 자세 제어 장치(현대 자동차에서 사용하는 용어는 VDC)라는 최첨단 주행 안전 시스템의 일원, 구성원이 되어 있다. 자동차가 운전자가 의도했던 대로 움직이고 있는지, 아니면 미끄러지는 중인지, 어느 방향으로 무슨 가속도가 작용하고 있는지를 몽땅 파악해서 타이어별로 서로 다르게 구동력/제동력을 공급해 주는 경지에까지 도달해 있다.

본인도 옛날에 눈이 내리고 얼어서 빙판이 된 '오르막' 비탈길을 차를 몰고 오른 적이 있었는데... 뭔가 미끄러지겠다 싶은 상황에서 차가 미끄러지지는 않고 그 대신 부르르르~ 떨면서 계기판에는 생전에 본 적이 없는 경고등이 잠깐 켜졌다가 꺼지는 걸 봤다. 나중에 알고 보니 그건 VDC가 동작한 것이었고, 떨림은 VDC의 명령을 따라 ABS가 발동된 흔적이었다.

8. 맺음말: 타 교통수단의 제동 장치

(1) 지금까지 자동차 내지 자전거 위주로 브레이크 얘기를 늘어놓았다만.. 비행기의 랜딩기어 바퀴에도 브레이크가 달려 있다. 애초에 저 ABS도 맨 처음에는 젖은 활주로에 착륙할 때 미끄러지지 말라고 비행기용으로 개발되었다가 나중에 자동차와 철도 차량에도 전해진 것이다.
(여담이지만 안전벨트도 맨 처음엔 비행기를 위해서 개발된 거다. 이건 철도에는 필요 없어서 도입되지 않고 자동차에만 추가로 전해졌지만.. 처음부터 자동차를 위해서 발명된 대표적인 안전 장치로는, 금만 가지 와장창 박살나지 않는 '안전유리'가 있다.)

다만, 비행기는 지상 주행의 비중이 자동차보다 훨씬 작으며, 몇백 명이 타는 대형 여객기라 할지라도 접지 형태는 고작 '삼륜차'에 가깝다..! 그렇기 때문에 브레이크도 뒷쪽 바퀴들에만 달려 있다. 착륙 직후에는 플랩, 스포일러, 엔진 역추진처럼 공기를 직접 맞닥뜨리는 방법으로 속도를 줄이고 또 줄인 뒤에, 바퀴 제동은 기체를 완전히 세우는 결정타로만 사용된다.

비행기 조종석의 페달은 자동차의 액셀/브레이크와는 달리 양발로 조작하며 앞쪽과 뒤쪽의 부위 구분까지 있다. 발꿈치(뒤) 쪽은 비행기가 떠 있을 때 사용하는 방향타이고, 발가락(앞) 쪽은 비행기가 지상 주행 중일 때 사용하는 브레이크이다. 즉, 이륜차처럼 브레이크가 앞뒤 구분이 있는 게 아니라 좌우 구분이 있는 셈인데, 양쪽 바퀴의 제동 정도를 달리함으로써 '조향'을 할 수 있다. 무한궤도 탱크가 방향을 전환하는 것처럼 조향하긴 하지만 추력· 동력 조절이 아니라 제동력 조절이라는 차이가 있다.

(2) 전기로 달리는 차량은 차축을 발전기에다 연결해서 "기왕 제동을 걸 거면 이미 가진 운동량으로 에너지 생산이나 덤으로 하면서 서자"라는 발상을 실현한다. 이것도 방법이 한 가지만 있는 게 아니어서 '발전 제동'과 '회생 제동'이라는 메커니즘이 있다.

역에 정차할 때 전동기 인버터에서 나는 소리가 가속 구동음의 역순으로 주파수가 올라갔다 내려가기를 반복하는 것들이 있다. 이건 개념적으로 자동차의 단을 단계적으로 낮추는 거나 다름없는데, 일종의 엔진 브레이크이기라도 하나 하는 생각도 든다.
그나저나 1세대 KTX(떼제베)는 내부적으로 제동을 어떻게 하는지, 역에 정차할 때 여느 절도 차량에서도 들을 수 없는 시끄러운 굉음이 나는 걸로 악명 높다. 좀 개선이 필요한 점으로 보인다.

(3) 엘리베이터 중에도 한 30층 정도 되는 고층 건물에서 운행되는 초고속 엘리베이터는 브레이크가 있다. 도착층의 3~4층 전부터 이미 감속하는 게 느껴질 정도인 엘리베이터는 우리가 흔히 탈 수 있지는 않아 보인다.

Posted by 사무엘

2018/04/04 19:32 2018/04/04 19:32
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1475

Trackback URL : http://moogi.new21.org/tc/trackback/1475

Leave a comment

* 예전에 썼던 글을 내용을 보충하여 리메이크 한 것이다.

1. 들어가는 말: 자전거의 브레이크부터

육해공의 모든 교통수단들은 가속 장치만 있는 게 아니라 제동 장치도 어떤 형태로든 갖추고 있다. 어찌 보면 잘 가는 것보다도 제때에 잘 서는 게 더 중요하기 때문이다.

제일 간단한 교통수단인 자전거의 경우, 19세기쯤에 자전거가 단순히 앞뒤로 배치된 바퀴 둘에다 안장 달린 수레에 불과했던 시절에는 페달이나 체인뿐만 아니라 브레이크도 없었다. 땅을 발로 차서 가속하고, 제동도 발바닥으로 땅을 끌어서 했다. 굉장히 원시적이었고 신발에 무리를 많이 줬을-_-;; 것 같은데, 페달이 발명된 것과 비슷한 맥락으로 브레이크도 응당 도입되었다.

이륜차의 브레이크는 잘 알다시피 양손 핸들에 두 개가 달려 있어서 각각 앞바퀴와 뒷바퀴에 대응한다. 자전거 정도야 림(rim) 방식이라고 타이어의 금속 테 부분에다가 브레이크 패드를 압박해서 제동을 거는 간단한 방식이 많이 쓰인다. 그러나 접촉 부위가 물이나 흙먼지 등으로 오염되면 제동력이 쉽게 떨어진다는 단점도 있다.

림 브레이크는 앞바퀴에서 주로 쓰이는 듯하다. 뒷바퀴는 다른 부분이 꽉 조여지면서 제동이 걸리는데 이건 무슨 방식이라 불리는지 잘 모르겠다.
고속 주행용 고급 자전거에는 크기만 더 작을 뿐 자동차의 것과 별 차이 없는 정교한 디스크 브레이크가 달려 있기도 하나, 너무 고퀄인 브레이크는 비싸고 무엇보다도 차체를 무겁게 한다는 단점도 있다는 걸 감안할 필요가 있다. (자전거는 사람의 힘으로 움직이는 만큼, 최대한 가벼워야 한다.)

평소에 서서히 멈춰설 때에야 취향대로 쥐기 편한 쪽의 브레이크만 편파적으로 써도 된다. 하지만 급제동을 걸 때는 편파적인 제동이 위험하다. 특히 자전거 같은 가벼운 이륜차는 뒷바퀴보다도 앞바퀴 급제동이 더 위험하다. 뒤쪽이 관성을 이기지 못하고 확 들려 올라가면서 운전자를 앞으로 패대기(...)치기 때문이다.

이런 이유로 인해 자전거는 오른손 브레이크가 앞바퀴이고 왼손이 뒷바퀴이던 것이, 2010년경부터는 방향이 바뀌어 오른손이 뒷바퀴와 연결되게 되었다. 사람들이 위급한 상황에서는 왼손보다 오른손 브레이크를 반사적으로 꽉 잡는 편인데, 그걸로 앞바퀴를 붙잡으니 더 위험한 경우가 많았기 때문이다. 비슷한 시기인 2009년쯤에 보행자의 통행 방향이 오랜 좌측통행 관행을 깨고 우측으로 바뀐 것과 비슷한 맥락으로, 이륜차에도 단절적인 변화가 추가된 셈이다.

2. 자동차의 브레이크 -- 제동력 전달: 브레이크액(소형차) 방식과 공기압(대형차)

다음으로 자동차의 브레이크는 사람의 누르거나 밟는 힘으로 감당하기란 택도 안 되게 무거우면서 또 넘사벽급으로 빠르게 운동하는 기계를 신속하게 세워야 한다. 그렇기 때문에 구조가 더 복잡하다.

자동차에 가속 구동축은 일반적으로 앞바퀴나 뒷바퀴 중 한 곳에만 있다. 모든 바퀴가 구동축인 차량은 오르막과 험지 주행 성능을 매우 중요시한 군용차나 일부 SUV 정도밖에 없다. 그러나 브레이크는 어떤 자동차라도 반드시 모든 바퀴에 달려 있다. 급제동을 편파적으로만 했다간 사륜 자동차도 옆으로 홱 돌아가는 등 이륜차만큼이나 큰 위험에 빠지기 때문이다.

그런데, 자동차는 한 페달만 밟아도 이 모든 바퀴가 동등(일단은..)하게 제동이 걸리는 게 일면 신기하게 느껴지지 않는가? 이건 브레이크액(소형차의 유압-배력 방식)이나 압축 공기(대형 트럭· 버스의 에어 방식) 같은 유체의 유압을 이용해 (1) 페달 밟는 힘을 각 바퀴의 모든 브레이크에 동시에 분산해서 전하기 때문이다. 엔진의 동력을 두 바퀴에 분산 전달하는 용도로는 차동 기어 같은 톱니바퀴가 쓰이는 반면, 브레이크에서는 저런 메커니즘이 쓰인다.

그리고 차량용 브레이크에는 어떤 형태로든 '엔진의 출력'을 동원하여 (2) 사람이 페달을 밟은 힘을 증폭시켜서 더 큰 제동력이 전해지게 하는 장치가 있다. 핸들의 파워스티어링에만 증폭 장치가 있는 게 아니며, 사실은 브레이크의 증폭 장치가 더 중요하다. 유압-배력 브레이크에는 엔진 압축 행정 과정에서 생기는 진공을 이용한 브레이크 부스터가 있고, 에어 브레이크는 아예 엔진 출력을 바탕으로 동작하는 압축 공기 챔버가 따로 있다.

그러니 자동차의 브레이크는 시동이 꺼지고 나면 마치 오르간 악기처럼 진공압 또는 공기압이 남아 있는 동안만 동작한다. 그게 다 빠진 뒤에는 브레이크 페달이 아예 밟히지 않는다. 급발진 폭주가 시작됐다고 해서 무작정 시동을 꺼 버렸다면 그 뒤부터는 핸들 잠기지, 브레이크도 동작 원천이 더 보충되지 않아서 일회용 시한부 인생이 되었음을 알고 유의해야 한다. 언제든지 잡을 수 있는 자전거 브레이크 같은 걸 생각해서는 안 된다.

엔진 동력에 의존하는 브레이크 말고, 차 시동이 꺼진 뒤에 멈춰 선 차를 미끄러지지 않게 고정하는 브레이크는 주차 브레이크라고 따로 있다. 요건 보통 뒷바퀴에만 달려 있는 편인데, 주행 중에 얘를 급하게 당겨서 차를 감속하거나 세우면 역시나 편파적인 제동으로 인해 차가 돌아가 버릴 위험이 있다. 그래도 차라리 뒷바퀴를 붙잡지 앞바퀴를 붙잡는 건 더 위험한 듯하다.

3. 베이퍼 락과 페이드

자동차의 엔진은 연료의 연소와 폭발로 인해 지속적으로 열을 받으며, 이거 조절을 위해서는 라디에이터와 냉각수 같은 냉각 계통이 반드시 필요하다.
한편으로 브레이크는 제동 과정에서 자기 패드와 로터 사이의 마찰로 인해 열을 받는다. (타이어와 지면 사이의 마찰열은 또 별개의 문제) 두 손바닥만 살살 비벼도 열이 나는데, 그 무겁고 빠른 자동차를 세우는 과정에서 열이 안 날 수가 없다.

그런데 더운 날씨에 급커브 내리막에서 짧은 시간 동안 브레이크를 수십 회 이상 너무 자주 깊게 오래 밟으면 브레이크 패드가 달아오르고 과열된다. 그래서 접촉면의 마찰이 작아지고 미끌미끌해져서 "브레이크를 밟았는데 왜 서지를 못하니" 상태가 돼 버린다. 이것을 페이드(fade) 현상이라고 한다.

이보다 상태가 더 나빠지면 유압-배력식 브레이크의 경우, 브레이크액 자체가 섭씨 300도를 넘나드는 온도를 견디지 못하고 부글부글 거품이 일고 기화해 버린다. 그래서 운전자가 브레이크를 밟아도 기화된 브레이크액이 스스로 압축되어 운동량을 흡수하고, 지시가 브레이크로 가지 않는다.
브레이크 페달은 밟는 대로 쑤욱 밟혀 들어가는데, 제동은 전혀 걸리지 않게 된다! 이것을 베이퍼 락(vapor lock) 현상이라고 한다.

베이퍼 락과 페이드는 원인은 비슷하지만 성격이 다르다. 페이드는 브레이크가 정상 작동했는데도 제동력이 떨어지는 것이고, 베이퍼 락은 애초에 밟아도 제동 명령 자체가 인식되지 않는 것이다.

브레이크액은 꼭 저렇게 혹사당하지 않았더라도 시간이 흐르면서 차츰 변질되고, 수분이 섞이면서 끓는점이 점점 낮아진다(= 베이퍼 락이 더 쉽게 발생하게 됨). 그렇기 때문에 엔진 오일만치 자주는 아니어도 일정 주기로 교환이 필요하다.
냉각수는 혹한기에도 얼지 않아야 하며 브레이크액은 끓지 않아야 하니, 자동차에 들어가는 액체는 어떤 온도에서도 액체 상태가 유지되는 게 중요하다는 것을 알 수 있다.

에어 브레이크 기반인 대형 차량들은 베이퍼 락 현상이 존재하지 않는다. 디젤 엔진에 점화 플러그가 없듯, 에어 브레이크에는 브레이크액이란 게 존재하지 않는다. 에어 브레이크는 베이퍼 락 없고 제동력을 전하는 성능도 탁월하지만, 더 비싸고 큰 부품이 필요하고 압축 공기의 비축을 위해서도 엔진 출력이 상시 소모되기 때문에 천상 대형 차량용이다. (에어컨도 냉매 컴프레셔에서 전기든 엔진 출력이든 에너지 소모가 제일 많다는 점을 생각해 보자)

버스를 타 보면, 신호대기로 인해 정지했을 때 기사 아저씨가 무슨 스위치를 조작하고 차에서는 "축~ / 취익!" 이렇게 공기 빠지는 것 같은 소리가 나는 걸 볼 수 있다. (문을 여닫을 때도 비슷한 공기 빠지는 소리가 나지만, 아직 문도 열리기 전이고 멈춘 직후에)
그건 그 잠깐 서 있는 동안에도 주차 브레이크를 채우는 소리이다. 버스는 주차 브레이크도 공기압 방식이기 때문이다.

에어 브레이크를 사용하는 대형 버스· 트럭의 계기판을 보면 승용차에는 없는 '공기압' 계기가 있다. 이건 타이어의 공기압이 아니라 에어 브레이크에 비축된 공기압을 나타낸다. 주행을 하다 보면 압력이 올라가고, 엔진 회전수가 높을수록 더 빠르게 올라간다. 그 반면, 빡세게 브레이크를 자주 밟다 보면 압력이 감소하여 바늘이 왼쪽으로 돌아간다.

쉽게 말해 이건 이 차량의 제동력의 비축 상태를 나타내는 것이나 마찬가지이기 때문에 속도계· 연료계· 냉각수 온도계에 준하는 매우 크리티컬한 계기이다. 타코미터가 오른쪽 끝(지나친 고회전)에 레드존이 있다면, 공기압계는 마치 연료계처럼 왼쪽(고갈..)이 레드존이다. 굉장히 흥미로운 특성으로 보인다.

4. 자동차의 브레이크 -- 제동 방식: 디스크와 드럼

브레이크는 제동력 전달과 증폭 방식에서는 저렇게 유압-배력 방식과 에어 방식으로 나뉘고, 실제로 바퀴를 붙들어 물리적인 제동을 거는 방식에서는 디스크 방식과 드럼 방식이 나뉜다. 차축 주변에 크고 반들반들 윤기 나는 금속 원판이 보이고 타이어 휠의 비주얼도 그걸 다 노출하는 형태이면 디스크 브레이크이고, 그냥 꽹과리 내지 솥뚜껑 같은 작고 납작한 금속판만 보이면 드럼 브레이크이다. 그래서 옛날 차들과 요즘 차들은 휠의 디자인 트렌드도 차이가 난다.

사용자 삽입 이미지사용자 삽입 이미지

옛날에는 대부분의 자동차들이 앞바퀴는 디스크, 뒷바퀴는 드럼 방식 브레이크를 썼다. 그러나 오늘날은 어지간한 승용차들은 100% 디스크이고, 경차 또는 반대로 트럭· 버스 같은 대형차들은 뒷바퀴 드럼을 고수하는 중이다. 드럼 방식은 디스크보다 가격 대 제동성능이 더 좋지만, 폐쇄적인 구조로 인해 과열 위험(= 페이드 현상)이 더 높다는 단점이 있다.

유독 대형차들이 언덕길에서 갑자기 브레이크가 고장 나서 사고를 내는 빈도가 더 잦은 건 (1) 근본적으로 차가 워낙 크고 무거워서, (2) 워낙 저렴하게 혹사당하는 상용차이다 보니 주행 거리가 매우 길고 과적· 차량 노후· 정비 불량 등의 위험이 있어서 외에도 (3) 드럼 브레이크라는 점도 적지 않게 작용한다. 그러니 한여름에 긴 내리막을 조심스럽게 주행할 때에는 자꾸 페달만 밟지 말고 엔진 브레이크 같은 다른 보조 제동 방법도 적극 활용해야 한다.

Posted by 사무엘

2018/04/02 08:32 2018/04/02 08:32
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1474

Trackback URL : http://moogi.new21.org/tc/trackback/1474

Leave a comment

1. 물과 공기의 차이

1기압에 온도가 20도대인 지구의 공기는 사람이 활동하기 쾌적한 환경이다. 기온이 체온에 근접하면 체열을 밖으로 제대로 내보낼 수가 없어서 더위를 느끼게 된다.
하지만 20도대의 물은 수영을 하기에 여전히 꽤 차가운 물이다. 물의 온도는 체온에 근접해야 그럭저럭 미지근하고 물놀이를 할 만하다고 여겨진다.

7~80도대, 심지어 그보다 더 뜨거운 공기는 사우나에서 겪을 수 있으며 잠깐 정도면 버틸 만하다. 그러나 같은 온도의 물은.. 닿는 즉시 화상을 입는 뜨겁고 위험한 물이다. 그렇다면 여기서 온도라는 건 도대체 과학적으로 무엇을 의미하는 걸까?
사실, 인체 내부는 온도의 변화에 의외로 취약하다. 체온이 정상보다 단 몇 도만 더 높거나 낮아지면 사람은 정상적인 활동을 못 하고 앓아눕게 된다.

저온에서는 세포의 물질대사가 정상적으로 이뤄지지 못한다. 사람이 추운 실외에서 이불 같은 거 안 덮고 그냥 자다간 그대로 동사하는 수가 있다.
그리고 반대로 고온도.. 뇌를 구성하는 단백질은 40도 정도만 돼도 생화학적으로 변성되고 맛이 가 버린다고 그런다. 여기에는 내부의 감기 같은 질병 때문에 열이 나는 것, 혹은 외부의 혹독한 무더위 때문에 열이 나는 것(열사병..)이 모두 포함된다.

특히 소아 때 이런 열병을 오랫동안 겪는 건 굉장히 치명적인지라, 병이 나은 뒤에도 머리와 몸에 영구적인 장애가 남기 십상이다. 헬렌 켈러가 대표적인 예이다. 우리나라는 한여름에 어린이집 교사와 운전사의 부주의로 인해 어떤 아이가 한여름 땡볕에 더운 차내에서 몇 시간째 방치되어 혼수 상태에 빠진 사고가 몇 건 나곤 했는데 그 애가 지금은 어찌 됐나 모르겠다.

기왕 말이 나온 김에 더 끔찍한 얘기를 꺼내자면, "왕창 고온인 공기" vs "온도 자체는 그리 높지 않지만 열전달 효율이 넘사벽급으로 높은 유체" 이 둘의 차이가 따지고 보면 화형과 팽형의 차이를 만든다. 새까맣게 탄 시체도 끔찍하지만, 검지만 않을 뿐 뻘겋게 익고 퉁퉁 불어 터진 시체도 끔찍하기는 마찬가지일 것이다.

뜨거운 공기든 뜨거운 물이든, 작열통은 의학적으로 볼 때 신체 절단과 더불어 인간이 느끼는 가장 끔찍하고 괴로운 고통으로 여겨지고 있다. 성경에서도 지옥이 괜히 결코 꺼지지 않는 "불"로 묘사되는 게 아니다. 주토피아에 나오는 것처럼 "ice them"이면 차라리 양반이지, 진짜 본좌는 "burn them"인 것이다.

수은주가 달린 일반 온도계를 펄펄 타는 불에다 던져 넣으면 재질에 따라서 불타거나 녹고 깨지고 파괴될 것이다. 그러나 펄펄 끓는 물에 넣어서 100도대의 온도를 측정하는 것 정도는 문제가 없다. 이걸 생각하면 단백질로 구성된 인체(생체)만이 그런 저고온(?)에 굉장히 취약한 재질이라는 걸 유추할 수 있다. 고온의 공기는 그나마 고온의 여파가 끼치는 '정도'가 덜한 매체이기 때문에 상대적으로 더 오래 버틸 수 있을 뿐이다.

2. 습도

앞에서 물의 온도와 공기의 온도 얘기가 나왔는데.. 사실은 사람이 공기 중에서 더위나 추위를 느끼는 것에는 공기의 온도뿐만 아니라 잘 알다시피 공기에 포함된 습기도 굉장히 큰 기여를 한다. 이런 차이 때문에 날씨가 더워도 굉장히 기분 좋게 더울 때가 있는가 하면, 그렇지 않을 때도 있다.

낮 기온이 30도를 훌쩍 넘겨 40도에 근접한다면, 직사광선은 굉장히 뜨겁고 따가우며 땀 나고 더운 게 맞다. 실내에서는 에어컨을 틀어야 한다.
그래도 기온만 높지 습도가 별로 높지 않다면 상황이 낫다. 밖에서 조금만 바람이 불거나 그늘에 들어가면 금세 시원함이 느껴진다. 그리고 저녁이 되어 해가 지면 언제 그랬냐는 듯이 기온이 굉장히 신속하게 내려간다.

이와 반대로 습도가 높으면.. 낮 기온이 30도를 채 넘지 않고 심지어 해가 안 나더라도 푹푹 찌며 쏟아지는 땀을 감당할 수 없어진다. 땀이 나도 잘 증발하지도 않기 때문에 불쾌지수가 최고로 치닫는다.
이런 날이 꼭 밤에도 기온이 내려가질 않고 열대야가 계속돼서 사람들을 고통에 시달리게 만든다. 에어컨은 온도가 아니라 습도를 낮추는 기능 때문에 더 필요하다.

습도라는 건 공기 중에 존재하는 수증기의 농도를 말한다. 물은 1기압에서 섭씨 100도에서 끓기 시작해서 몽땅 수증기로 바뀌며, 물의 끓는점이나 어는점은 잘 알다시피 공기의 압력에 따라 달라진다(고산 지대에서는 물이 더 낮은 온도에서 끓음). 물이 공기를 녹이고 있는 것만큼이나 반대로 공기도 수분을 함유할 수 있다.

그 뿐만 아니라 100도보다 낮은 온도에서도 공기와 접촉하는 수면에서는 일부가 수증기로 증발하기도 한다.
이건 안개 내지 구름과는 다른 개념이다. 그건 수증기가 아닌 미세한 물 알갱이가 공기 중을 떠다니는 것이다. 이는 마치 순수한 회색과 흑백이 교대로 촘촘하게 늘어선 디더링의 차이와도 비슷하다. 물이 어떻게 이런 두 형태로 모두 존재할 수 있는지 난 완전히 직관적으로 이해를 못 하겠다.

공기가 머금을 수 있는 습기의 한계라는 게 공기의 온도에 따라 달라지기 때문에 습도에는 절대 습도와 상대 습도라는 개념이 따로 존재한다. 물이 온도가 올라갈수록 기체를 녹이고 있기 어려워지는 것과 마찬가지로, 공기 역시 온도가 올라갈수록 습기를 품기 어려워진다. 이 때문에 같은 양의 수분을 머금고 있더라도 온도가 올라가면 상대 습도는 더 올라간다. 겨울이 전반적으로 건조하고 여름이 전반적으로 습한 것도 이런 상대 습도의 차이 때문이다.

3. 진공

그럼 물과 공기가 있는 상황이 아니라, 반대로 물과 공기가 전무하여 진공에 가까운 우주로 나가면 온도라는 게 어떤 영향을 끼칠까? 솔직히 말해 이 역시 난 잘 모르겠고 상상이 잘 안 된다.
공기 제로, 압력 제로, 습도 제로이다 보니 거기는 햇볕을 받느냐 마느냐에 따라 뻑하면 영하 1~200도와 영상 수백 도를 오르내리게 된다. 단지 그 온도의 여파가 지구 표면보다 훨씬 덜하다. 진공인 게 인체에 훨씬 더 해롭지, 온도 자체가 사람을 즉시 태워 죽이거나 얼려 죽이지는 않는다.

하지만, 그럼 우주 공간에서 온도가 영향을 전혀 안 끼치는가 하면 그것도 아니다. 그렇기 때문에 인공위성은 뱅글뱅글 돌면서 몸체가 태양열을 골고루 받게 자세를 잡는다. 이거 조절 잘못해서 배터리가 과열이라도 되면 터지는 사고가 나기 때문이다.
또한, 우주 공간에서 수성이나 금성 같은 내행성으로 날아가는 탐사선은 커다란 양산처럼 생긴 차폐막을 앞에 두르는 형태로 설계되었다.

달에 착륙했던 아폴로 우주선 승무원들 역시 직사광선을 피해서 그늘 또는 저녁 시간대를 선택해서 주로 활동했다.
그러니 이런 정황들을 종합했을 때, 진공에서의 온도라는 게 어떤 의미를 갖는지 갈피를 잘 못 잡겠다. 일단 진공이라면 앞서 언급했듯이 각종 물질의 상태가 바뀌는 온도(끓는점, 어는점??)부터가 우리의 상식을 벗어나는 형태로 바뀌어 버리기도 하니 말이다.

참고로, 사람이 우주에 맨몸으로 있으면 체내의 공기가 유출되고 체액이 끓어오르면서 신체 상태가 잠수병 이상으로 엉망진창이 되며, 수 분 이내로 의식을 잃고 곱게 질식사한다. 그렇다고 해서 눈알이 튀어나오거나 몸이 풍선 터져듯이 터지면서 끔살 당하지는 않는다. 더구나 잘 훈련받으면 수 초 정도 동안 맨몸으로 우주 공간에 노출되고도 살 수 있다.

당연한 얘기이지만 진공은 무중력과는 별개의 조건이다. 진공은 쇠구슬과 깃털이 똑같은 속도로 떨어지는 것이고, 무중력은 둘 다 둥둥 떠다니는 것이다. 물론 둘 다 현실에서는 도저히 상상이 안 되는 상황인 건 마찬가지이다만... 우주 개발 초기에 선진국에서 벌어졌던 여러 테스트· 훈련, 생체 실험-_- 중에는 진공을 버티는 것이 당연히 포함돼 있었다. 원심 가속기나 자유 낙하를 통해 흉내 냈던 무중력과는 별개의 코스이다.

4. 열이 전달되는 원리

온도를 변화시키는 열이 전파되는 메커니즘으로는 "대류, 전도, 복사"라는 세 종류가 있다. 이 개념 자체는 초· 중딩 과학 시간에 진작부터 배운다. 그런데 이게 생각보다 굉장히 심오한 개념이다. '열전달'은 전자기학, 뉴턴 역학, 양자 역학만큼이나 물리학의 엄연한 한 분야이고 공대에서 전공 필수 과목이다.

'대류'(convection)는 유체(주로 기체) 내부에서 온도의 차이가 나는 분자들이 물리적으로 직접 상하로 움직이고 돌면서 열이 골고루 전달되는 것을 말한다. 바닷가에서 바람이 끊임없이 부는 것(땅과 물의 엄청난 비열 차이!), 화재 현장에서 불꽃이라든가 뜨거운 공기가 굳이 위로 솟구치는 것이 모두 대류 현상이다.
그러니 이건 가장 거시적인 규모의 열 전달이다. 분자간의 온도 차이가 아니라 단순 농도· 밀도 차이로 인해 발생하는 '확산'과는 다른 현상이다.

열은 매체가 저렇게 몸소 움직이지 않아도 전해질 수 있다. 펄펄 끓는 냄비의 영향으로 냄비 손잡이라든가 안에 넣어 뒀던 국자까지 뜨거워지는 게 대표적인 예이다. 금속의 분자가 직접 움직일 리는 없으니, 이때는 직접 이동이 아니라 일종의 열역학적 '진동'이라는 미시 현상을 통해서.. 마치 소리가 전해지듯이 열이 전해진다. 이 현상을 '(열)전도'(thermal conduction)라고 한다.

진정 골때리는 건 가장 미시적인 현상인 '복사'(radiation)이다. 열은 전자기파의 형태로 아무 매질· 매체가 없는 곳에서도 퍼져 나가서 전해질 수 있다. 적외선이라고 다들 들어 보셨을 것이다. 애초에 전자기파는 파동 같기도 하고 입자 같기도 한 이상한 물건이니 말이다. 저 복사는 copy나 duplication과는 아무 관계 없고, '내리쬠'이라는 뜻이다.

'복사'라는 게 있기 때문에 아무것도 없는 우주 공간에서도 태양열이 지구로 전해질 수 있다. 음파(소리)는 순수한 진동일 뿐이기 때문에 공기가 없는 곳에서는 퍼져 나갈 수 없고 속도도 훨씬 더 느리지만, 복사열은 위상이 빛과 같다.
전자레인지는 그릇은 별로 데우지 않고 안의 음식만 데우는 것이 무척 기가 막히고 신기한데, 이것만 봐도 열은 대류나 전도 같은 물리적인 접촉이 아니어도 직통으로 전해지는 게 가능함을 알 수 있다. 복사는 도선의 전기 저항으로 인해 발생하는 열하고도 물론 다른 개념이다.

물을 끓이면 왜 물이 가만히 있질 않고 보글보글 사정없이 요동치는지, 무슨 근거와 원동력으로 저러는 걸까? 이건 열전달 내지 물질의 상태 변화와 관련된 여러 미시적인 현상들이 복합적으로 작용한 결과이다.
그리고 지표면에서 물과 공기뿐만 아니라 그 밑으로 땅 속에서도 물질이 끊임없이 순환하고 화산· 지진 같은 지질 현상이 발생하는 원동력도 따지고 보면 맨틀의 대류 같은 열 때문이라고 해도 과언이 아니다.

지구의 자전은 아주 서서히 느려지고 있지만, 지구 내부는 지열 때문이든 자기장 때문이든 활동이 여전히 왕성하고, 옛날보다 오히려 더 활발해지는 듯한 느낌이다. 성경이 말하는 대로 지구 발 밑에 지옥이라는 뜨거운 장소가 있다면, 지구의 내부 구조와 양상은 타 행성과는 근본적으로 다를 수밖에 없을 것이다.

5. 열병합 발전소 -- 열전달과 폐열 재활용의 실제 사례

발전소 중에는 우리에게 친숙한 수력· 화력이나 원자력 말고 '열병합'이라는 놈이 있다. 얘는 사실 화력 발전의 파생 변종이다.
물을 끓이고 증기 터빈을 돌려서 발전기를 가동하려면 열을 만들어 내야 하는데, 이 열이라는 게 열역학 이론적인 한계 내지 기술의 한계로 인해 전부 전력 생산에 쓰이지는 못한다. 거의 과반이 폐열로 버려진다. 딱히 재활용할 길이 없기 때문이다.

8~90도에 달하는 뜨거운 물이 한 트럭이 있다 해도, 그것만으로 아무리 용을 써 봤자 100도 이상으로 실제로 펄펄 끓는 물을 한 컵만치라도 만들어서 증기 기관을 굴릴 수는 없잖은가? 그런 맥락에서 말이다.

전체 열량의 합이야 물론 90도짜리 물 한 트럭이 100도짜리 물 한 컵보다 더 많을 것이다. 그러나 외부에서 에너지를 소비하여 열을 가해 주지 않는 한, 물의 온도 자체를 스스로 높이는 것은 불가능하다. 그건 열역학적으로 자연스러운 방향을 거스르는 일이기 때문이다.

열병합 발전소는 이런 어중간한 열이 담긴 온수를 수집해서 난방용으로 주변 지역에 공급해 준다. 전기만 파는 게 아니라 열도 판다. 전동차에 회생 제동이 있다면 화력 발전소에는 이런 열병합 시설이 있는 셈이다.

그럼 처음부터 모든 화력 발전소에다 열병합 시설을 추가하면 되지 않나 의문이 들 수 있다. 하지만 이 열이라는 건 폐열을 기껏 수집한다고 해도 무슨 태양 복사열처럼 간편하게 전해서 활용 가능한 게 아니다. 열이 담긴 물을 수송할 수 있는 거리에 큰 한계가 있다. 쟤들은 대류, 전도, 복사가 아니라 송유관처럼 '열배관'이라고 극한의 보온 시설이 갖춰진 비싼 특수 수도관에다가 온수를 공급하는 형태로 열을 전한다.

그러니 열병합 발전은 온수를 곧장 중앙 집중 난방용으로 활용할 수 있는 대도시 위주로 소규모 화력 발전+열병합 시설을 갖춘 '지역 난방 공사'의 형태로 운영된다.
2018년 현재 경의선 곡산 역 근처에는 전국에서 유일하게 열병합 발전소의 자체 구비가 아니라 정식 화력 발전소와(한국 동서 발전 소속) 연계하는 대규모 열병합 발전소가 있다. 전국 유일의 인서울 화력 발전소인 당인리 발전소와 비슷한 격의 명물인 듯한데, 얘들도 얼마 못 가 더 외곽으로 이전하지 싶다.

그나저나 원자력 발전소에서도 폐열이 담긴 온수(원자로 냉각용)가 나오긴 한다. 그렇다고 해서 원자로를 소형화해서 대도시 근처의 지역 난방 공사를 운용할 수는 없으니(..; ) 이런 온수는 양식 같은 다른 용도로 활용되는 편이다. 원자력 발전소는 우주 기지와 마찬가지로 육지에서 최대한 떨어진 바닷가에 건설된다는 공통점이 있으니 말이다.

6. 차든지 뜨겁든지

"나는 네가 차든지 뜨겁든지 하기를 원하노라." 이건 성경에서 예수님 말씀의 직접 인용일 정도로 유명한 문구(계 3:15)이다.
물론 성경의 저 문맥에서 제일 좁은 뜻은 양자택일하라고 해서 진짜로 '차가운 극단'으로 나가지 말고 "영이 뜨거운 가운데"(롬 12:11) 주님을 섬기라는 책망 내지 독려이다. "그럴 거면 차라리 나가 죽어!" / "학교 때려치우고 공장이나 가!" 이런 부모나 선생의 막말 꾸중이 진짜로 애더러 공장 가거나 나가 죽으라고 하는 말이 아니듯이 말이다.

하지만 뭐, 좀 더 넓게 비유적으로는 "인간이라면 모름지기 이거 아니면 저거, 모 아니면 도 진영을 확실하게 골라서 화끈하게 살아라, 박쥐 같은 밍숭맹숭 회색분자 기회주의자가 되지 마라"라는 뜻으로 볼 수도 있다.

앞서 비유를 들었던 것처럼.. 폐열만 어중간하게 담긴 미지근한 물은 아예 펄펄 끓을 정도로 뜨거운 물이나, 얼음이 껴 있을 정도로 차가운 물에 비해서 효용이 낮다. 찬물과 더운물을 섞어서 미지근한 물을 만들기는 쉽지만, 미지근한 물이 저절로 찬물+더운물로 분리되지는 않기 때문이다. 열을 가하든 냉각을 시키든 에너지를 써야 한다. 이건 물이 위에서 아래로 흐른다는 것만큼이나 절대적인 사실이다.

그러니 "차든지 뜨겁든지 하길 원한다"란, "정체되거나 뒤쳐지지 말고 늘 전진하길 바란다", "아래로 떨어지지 말고 위를 향해 오르길 바란다" 같은 말을 "열역학적 엔트로피가 감소하는 쪽으로 나아가길 바란다"라는 비유를 동원해서 한 것이라 볼 수 있다.

그 밖에..

  • 학창 시절에 열역학을 더 열심히 공부했으면, 비빔면을 끓여 먹을 때 이 정도 양은 물을 몇 번 헹궜을 때 면을 완전히 식힐 수 있을지를 숫자와 수식으로 모델링할 수 있겠다는 생각이 든다..;;
  • 물에 대해서는 "10리터를 한꺼번에 끓이는 것보다 5리터부터 먼저 데운 뒤 나머지 5리터를 추가로 부으면 10리터 전체를 더 빨리 끓게 할 수 있다.", 심지어 "뜨거운 물이 더 빨리 언다" 같은 믿기 힘든 말도 존재한다. 물에다 날씬한 돌을 잘 던지면 수면에 몇 번 통통 튀는 것도 가능한데, 그것만큼이나 본인은 저런 현상은 어떻게 과학적으로 가능한지 입증할 만한 지식이 부족하다.

  • 한국어는 '덥다'와 '뜨겁다', '춥다'와 '차갑다'의 차이가 존재하는 게 꽤 절묘한 것 같다. '덥다/춥다'는 사람이 느끼는 관점이고, '뜨겁다/차갑다'는 온도를 내는 해당 객체의 관점이다. "난 지금 덥다" / "난 뜨거운 남자다"처럼 말이다.
  • 물리라는 학문은 계속 미시적으로 파고들다 보면 결국은 역시 '파동과 입자'로 귀착된다. 그리고 직선이나 포물선이나 갖고 노는 게 아니라 결국은 삼각함수의 형태로 표현되는 진동을 논하게 된다. 중력의 영향을 받지 않는 듯한 미시세계 입자들의 끊임없는 불규칙한 운동.. 일명 '브라운 운동'은 어떻게 벌어지는지, 걔네들은 무슨 원동력으로 계속 운동하는지, 텔레비전의 백색잡음 같은 움직임도 왜 발생하는지.. 따지고 보면 참 궁금한 게 많다. 이런 것도 열역학과 전혀 무관한 게 아니다.

Posted by 사무엘

2018/03/19 08:36 2018/03/19 08:36
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1469

Trackback URL : http://moogi.new21.org/tc/trackback/1469

Leave a comment

1.
10여 년 전, 본인이 MMORPG 게임을 개발하던 회사에서 병특 복무를 하던 시절에는 주된 업무 주문이 기존 제품을 WOW와 더 비슷하게 고치는 것이었다. 그 당시에 WOW가 인기가 장난이 아니었기 때문에..
지금은 회사에서 어쩌다 보니 안드로이드 앱을 개발하게 됐는데, 주된 작업이 기존 제품을 다른 유명 SNS 앱과 더 비슷하게 고치는 것이다.

세상은 유행이 변하고 이런 식으로 돌고 도는 것 같다. 20년쯤 전에 Codeguru 같은 사이트에서 MFC CWnd 클래스를 상속받아서 온갖 기발한 UI 컨트롤 내지 MS Office 스타일의 도구모음줄을 만들어 올리고 테크닉을 공유하는 게 유행이었다면.. 지금은 안드로이드에서 더 현란하고 기가 막힌 화면 전환, GUI 컨트롤을 만드는 게 유행의 뒤를 물려받아 있다. 또한 소스포지라든가 다른 사이트들은 다 망하고 개발자 관련해서는 오로지 스택 오버플로우와 github만이 본좌이다..

요즘은 소프트웨어로 엔드 유저로부터 수익을 내는 방식이 "특정 기술과 기능, 컨텐츠 자체에 대한 접근성" 자체는 아니어 보인다. 기술과 기능, 컨텐츠는 이제 너무 넘쳐나고 저렴해진지라, 정말 획기적이고 새로운 게 아니면 그닥 변별이 안 되는 것 같다. id 소프트웨어가 1990년대 옛날처럼 없던 그래픽 기술을 새로 개발하고 선보이면서 주목받지는 않고 있는 것을 생각하면 된다.
그 대신 요즘은 다들 모바일에서 다들 내 자신의 정체성을 표현하는 데 드는 대가로 수익을 내는가 보다. 이모티콘, 아바타 같은 것 말이다.

2.
카카오톡에서 그냥 있으니까 정말 아무 생각 없이 기본 이모티콘들을 지금까지 써 왔다.
라이언인지 뭔지 알 게 뭐야? 난 그냥 개그만화 보기 좋은 날의 '쿠마키치'=_=;; 짝퉁이라고 생각해 왔는데.. 알고 보니 사자였구나. 갈기 없는 숫사자랜다~ ㅋㅋ

카카오프렌즈 이게 사이버 공간을 떠나서 봉제인형과 각종 캐릭터로 로얄티 받으면서 그야말로 돈을 빗자루로 쓸어담고 있다고 한다. 우리나라는 둘리· 호돌이처럼 옛날에 히트 쳤던 걸 제외하면 캐릭터 지지리도 못 만드는 나라인 걸로 본인은 알고 있는데..-_-;; 어째 이걸로도 돈줄을 성공적으로 텄구나.

영화나 만화처럼 뭔가 스토리가 있는 매체에서 유래된 캐릭터가 아니고,
앵그리버드의 동그랗고 눈썹 짙은 빨간 새처럼 인기 게임에서 유래된 것도 아니고..
그저 채팅 앱의 이모티콘에서 유래된 캐릭터가 이렇게 초대박을 치리라고는 난 절대로 예상할 수 없었다.

한낱 아스키 아트에 불과하던 이모티콘이란 게 그 다음으로는 찐빵 얼굴에 기하학적이고 추상적인 기호, 픽토그램 수준이었다가 이제는 거의 움짤 수준으로 변모하고 있다.
그리고 이게 말을 직접 하기 난감할 때, 얼굴 표정과 므흣한 감정을 대신 전달하는 용도로 생각보다 유용하기도 하다.

그리고 유튜브 동영상의 썸네일 이미지도 있다. 그냥 동영상의 임의 구간 스틸 영상을 썸네일로 지정하는 게 너무 당연하다고 생각해 왔고 문제 의식을 하나도 느끼지 않고 지냈는데.. 이것도 글자와 그림을 넣어서 귀신 같이 꾸며 주는 앱이 있다...;;

난 그냥 날개셋이나 우직하게 만들고 논문 써야지, 미래의 시장 판도를 예측하고 유행을 읽고 돈 벌 아이템 찾는 사업가 기질은 정말 아닌 것 같다.. ㅠㅠ

그나저나 애니메이션 이모티콘들은 gif도(꼴랑 256색) 아니고 플래시도 아니고(모바일에서 망함..) 도대체 무슨 기술을 써서 표현하는지 궁금해진다. 애니메이션 png 규격이 완성되기라도 했나..?

3.
프로그래밍 환경 내지 플랫폼을 처음부터 오랫동안 접하면 API나 방법론이 수시로 바뀌는 것 때문에 귀찮고 지저분한 일을 많이 겪게 된다. 안드로이드 내지 Cocoa API에서 숱하게 나오는 deprecated 경고들을 보니 그런 생각이 더욱 절실히 든다. 이러니 인터넷에 굴러다니는 코드들을 아무거나 선뜻 믿고 쓸 수가 없다.

그런 시절을 몽땅 건너뛰고 모든 게 그럭저럭 갖춰지고 안정화된 뒤에 프로그래밍을 시작하면 지저분한 일을 겪지는 않는다.. 하지만 이젠 모든 게 다 갖춰진 너무 방대하고 복잡한 프로그래밍 시스템 속에서 방황하게 된다. 오늘날의 웹 내지 앱 개발 환경과 30여 년 전 GWBASIC 내지 끽해야 도스 API 인터럽트 프로그래밍 환경은 얼마나 극과 극으로 다른가?
Windows는 그나마 초딩 시절부터 내가 오랫동안 써 왔으니까 익숙해진 것이지, 내가 2, 30년쯤 뒤에 늦게 태어났으면 프로그래밍을 진로로 정하지 않았을 가능성이 높아 보인다.

옛날에는 컴퓨터 성능이 빈약하고 각종 소프트웨어 시스템도 지금보다 훨씬 더 단순했겠지만.. 그게 아무 이유 없이 단순한 건 아니었다. 성능 대비 기계값이 지금보다 훨씬 더 비싸고 프로그래밍 관련 정보를 구하기도 더 어려웠다. 금수저 내지 최소한 중산층 집안이 아니면 아무나 컴퓨터를 접할 수 없었으며, 프로그래밍 저변이 지금처럼 널리 확대될 수 없었다. 그때나 지금이나 프로그래밍 여건에 관한 한 일장일단이 있다.

그 최첨단 문명의 이기인 컴퓨터가 그래도 기업· 연구소· 군대· 정부 기관의 전유물이 되지 않고, Google 같은 엄청난 검색 엔진이 부자들의 전유물이 되지 않고, 만민에게 정보 접근성이 주어지고 차별이 사실상 없어진 것은 매우 다행이고 축복이어 보인다. 비록, 그 반대급부로 어린애들에게 음란물과 폭력물에 대한 접근성까지 너무 올라간 것은 좀 심각한 문제이지만 말이다.

이건 컴퓨터가 진지하고 심각한 일뿐만 아니라 엔터테인먼트 도구로도 활용해도 돈벌이가 되니까 자본주의 내지 시장 경제 논리에 의해 대중화가 된 것일 뿐이다. 돈줄을 따라 자연스럽게 이뤄진 현상에 대해서 너무 지나치게 염세주의 음모론적으로 해석할 필요는 없을 것이다.

컴퓨터가 워낙 비싼 기계이니까 소수의 엘리트에게만 기회를 주는 게 아니라, 일단 컴퓨터 자체는 팍팍 뿌린다. 대량생산으로 가격을 낮추고 온갖 교묘한 우회 결제 수단으로(= 일시불로 기계값을 몽땅 내지 않아도 되게 오랫동안 찔끔찔끔..) 소비자 부담을 줄여서 말이다. 그 뒤 온갖 컨텐츠들로 더 많은 수익을 내는 게 소비자에게도 좋고 생산자에게도 좋은 것이다.

4.
미국이나 이스라엘, 인도 같은 나라 말고 유럽에서 나름 세계구급 IT 강국을 꼽자면 노키아와 리누스 토르발스를 배출한 핀란드가 떠오르는 편인데.. 옛날에는 불가리아도 한 끗발 했었다.
우리나라에서는 비슷한 이름의 요구르트 때문에 "생명 연장이라는 게 요구르트만 딥다 쳐먹는다고 되는 게 아닙니다" 같은 개드립의 원산지라는 이미지가 강한 편이다.;;

하지만 저 나라는 요구르트만 개발한 게 아니라, 1980년대에 국가적으로 컴퓨터 교육을 실시하고 나름 고급 IT 엔지니어 육성을 했다.
1989년 5월에 제 1회, 국제 정보 올림피아드라는 게 최초로 개최된 곳도 미국이나 다른 유명한 나라가 아니라 바로 '불가리아'였다. 이 역시 생각할 점이다.

그런데 문제는 그렇게 양성된 컴퓨터 똘똘이들이 자국에서 자기 재능을 좋은 방향으로 쓰면서 돈과 명예를 얻는 인프라가 없었다는 거다.
그래서 불가리아에서 컴퓨터와 관련해서 세계구 급으로 선한 게 개발되어 나온 게 없었다. 그 대신 불가리아 산 컴퓨터 바이러스들이 악명을 떨쳤다.
당장 떠오르는 건 DIR-II, 어둠의 복수자(dark avenger) 바이러스. 이들의 원산지가 바로 저 나라였다. 그러고 나서 1990년대 이후부터 불가리아의 존재감은.. 지금 다들 알려진 바와 같다.

그 먼 옛날에 컴퓨터 바이러스를 만들 정도의 사람이라면 그 비싸고 귀하던 IBM PC의 내부 구조와 도스 API, x86 어셈블리를 다 마스터 했고 컴공이 얼마나 대단했겠는가? 그랬는데 만들어 낸 건 고작 남에게 해를 끼치는 물건뿐이었던 거다.
지금도 북괴에서는 아무리 컴퓨터 똘똘이가 돼 봤자 하는 일은 당의 명령대로 오픈소스들 다 무단으로 베껴서 이상한 프로그램 만들거나, 중국으로 외화벌이 정보전사로 파견 나가서 사이버 범죄, 남조선 종북 여론몰이 같은 지저분한 짓밖에 없다. 그런 것과 비슷한 맥락의 안타까운 상황이다.

5.
전에 얘기한 적이 있던가?
본인은 초딩 저학년 때 8비트 컴, 중· 고학년 때 16비트 IBM 호환 PC, 중학교 때 Windows와 PC통신, 고등학교 때 인터넷, 대학교 때 휴대전화, 대학원 때 스마트폰을 순서대로 접했다.
대학교 때 기숙사에서 10Mbps 유선 랜을 처음으로 접했고, 2003년쯤에 무선 인터넷과 USB 메모리라는 걸 처음으로 접했다.

내가 대학을 졸업할 즈음부터 대학원 연구실을 시작으로 유선 랜의 속도가 100Mbps로 올랐으며, 그로부터 얼마 안 가 교내 네트워크 주소들이 공인 고정 class B ip 대신, 가변 사설 ip로 바뀌었지 싶다.
이제는 그냥 무선 인터넷으로도 신호가 좋은 곳에서는 늘 100Mbps까지는 아니어도 수십 Mbps의 속도가 나오고, 유튜브로 HD급 동영상을 실시간 스트리밍으로 보는 시대가 됐다. 개인적으로는 정말 충격적이다. PC통신으로 사진 한 장 받던 시절의 전송 속도와 지금 속도를 비교하면 말이다.

지금이 우주 정거장 관광 단가가 1억 원 근처까지 내려갔다거나, 스페이스 오딧세이 2001 영화가 묘사하는 세상이 오지는 않았다. 컴퓨터의 클럭 속도가 싱글 코어로 10GHz를 넘어간다거나 하지도 않았다. 하지만 과거에 상상하지 못했던 SNS 미디어, 고화질 동영상과 더 새끈해진 글꼴, 각진 게 아니라 날렵한 외형의 자동차들이 시대의 변화를 대신 말해 주고 있다. 이것 말고도..

  • 휴대전화가 없던 시절엔 오지에서 운전을 하다가 차가 퍼지거나 사고가 나면 보험사 연락을 어떻게 했을까?
  • CCTV와 블랙박스가 없던 시절엔 교통사고 과실 비율 산정이 얼마나 주먹구구식으로 진행됐을 것이며(바퀴가 굴러가는 이상 절대적인 100:0이란 존재하지 않는다.. -_-), 가해자와 피해자가 뒤바뀐 억울한 경우도 얼마나 많았을까?
  • 구글과 riss.kr, dbpia가 없던 시절에 도대체 학술 문헌 검색을 어떻게 하고 논문이란 걸 어떻게 썼을까? (일일이 도서관 찾아다니면서 실물을..)
  • msdn이야 그렇다 치더라도, 스택 오버플로우와 검색 엔진이 없던 시절에는 도대체 생소한 플랫폼에 대한 프로그래밍 자료 검색을 어떻게 하면서 코딩을 어떻게 했을까?
  • 15년 전이나 지금이나 그냥 이더넷 랜선을 꽂는 건 동일한데 랜 카드와 내부 기술 기반이 뭐가 바뀌었길래 인터넷 속도가 옛날보다 10배 이상으로 뻥튀기될 수 있었을까??
  • 전자기파의 물리적인 특성이 100년 전이나 지금이나 바뀐 건 없을 텐데 텔레비전의 화질은 어쩜 이렇게 좋아졌을까?

이런 걸 생각하면 과학 기술, 특히 정보 통신 분야의 기술이 세상을 얼마나 드라마틱하게 바꿔 놓았는지를 알 수 있다.

그 전까지 몇몇 얼리어답터들이나 쓰던 PDA, 휴대용 MP3 플레이어가 휴대전화와 결합해서 스마트폰으로 탄생한 건 정말 2000년대의 혁신 중의 혁신이 아닐 수 없었다. 그냥 크기도 작고 기능도 열악한 특수 목적 컴퓨터의 범주인 '임베디드'로부터 '모바일'이라는 완전히 새로운 범주가 파생돼 나왔다. Windows CE가 Phone, Mobile 등 갖가지 브랜드로 재탄생해야 한 것을 보면 이해하기 쉽다. 지금이야 그냥 10이라는 브랜드로 통합됐고, 스마트폰 OS로는 안드로이드가 지구를 평정했다만 말이다.

물론 냉동 기술이나 플라스틱, 의학· 생명 공학처럼 굳이 IT에 속하지 않는 획기적인 기술도 있다.
기술의 발달 덕분에 쿼츠 시계는 기계식 태엽 시계를 가격과 성능 모든 면에서 쳐발랐고, LED는 백열등은 말할 것도 없고 형광등까지 쳐발라서 인류가 발명한 가장 고효율 광원을 달성했다. 핵 무기는 같은 무게의 재래식 폭탄에 비해 위력 계수에 0을 몇 개 더 붙였다.

이런 정도의 혁신이 앞으로 어느 분야에서건 또 나올 게 있으려나 모르겠다.
무탄피총, 실리콘 반도체를 능가하는 컴퓨터 소자, 자동차에서 현행 기계들의 한계를 극복하는 무단 변속기나 반켈 엔진, 혁신적인 무선 송전이나 2차 전지, 핵융합 발전 같은 것 말이다.

6.
정보 통신 쪽 얘기를 계속하자면..
자동차의 번호를 자동으로 인식하는 무인 단속 카메라와 무인 주차 시스템도 지금이야 너무나 당연하게 여겨지고 있지만, 국내에 본격적으로 도입된 건 1990년대 중후반부터이다. 지금으로부터 20년이 채 되지 않았다. 이런 게 없던 시절에는 과속· 신호 위반 같은 건 경찰관이 숨어 있다가 위반 차량을 강제로 불러다 세우는 식으로 단속을 할 수밖에 없었다.

차량 번호판을 인식하는 기술은 길거리에서 도난· 수배 차량이나 세금· 통행료 상습 체납 차량을 즉시 잡아내는 데에도 아주 요긴하게 쓰이고 있다. 이게 없었으면 컴퓨터와 행정 전산망이 있더라도 사람이 일일이 차 번호를 입력해서 조회해야 했으니 일이 얼마나 불편했을지 모른다. 스피드건이 생각보다 속도를 굉장히 정확히 측정해 주는 것만큼이나 신기한 일이다.

단순히 편해진 것뿐만 아니라 세상 돌아가는 시스템이 더 객관적이고 공정하게 바뀐 것은 얼마나 축복인지 모른다. 모든 것이 전산화되고 컴퓨터가 통제하는 세상에 대해 무슨 666 짐승의 표인 것처럼 공포심만 가질 필요는 없을 것이다.

Posted by 사무엘

2018/03/07 08:26 2018/03/07 08:26
, ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1465

Trackback URL : http://moogi.new21.org/tc/trackback/1465

Comments List

  1. 재호 2018/03/07 13:23 # M/D Reply Permalink

    애니메이션 이모티콘은 WebP 라는 기술로 구현했을거에요.
    DIR 2 바이러스의 기억이 덕분에 오랜만에 생각 났습니다. ㅎㅎ

    1. 사무엘 2018/03/07 13:52 # M/D Permalink

      아하~ 새로운 이미지 겸 동영상 포맷이 있군요. 정보에 감사드립니다.
      그에 반해 Windows의 애니메이션 컨트롤은 아직도 RLE 기반 avi만 지원하는지.. 좀 변모해야 하지 않나 하는 생각이 드네요.
      재호 님, 정말 오랜만이고 반갑습니다. ^_^

  2. 덧붙임 2018/03/07 17:46 # M/D Reply Permalink

    애니메이션 PNG를 지원하는 확장자로 파이어폭스나 크롬, 사파리 등에서 APNG하는 형식도 있습니다.

    1. 사무엘 2018/03/07 20:59 # M/D Permalink

      예, apng라는 게 있다는 건 압니다만 완전히 표준화가 안 됐는지 지원하는 프로그램이 적고 인지도가 부족하다고 들었습니다.
      언제까지나 구닥다리 gif에 머무를 수는 없을 텐데, 실사가 아닌 애니메이션 영역도 좀 기술이 발전해야지요~ ^^

Leave a comment

1. 수태와 고통

성경에서 창 3:16을 보면.. "(하나님께서) 여자에게 이르시되, 내가 네 고통과 수태를 크게 늘리리니..."라고 나온다.
본문을 주의해서 똑바로 봐야 된다. 저건 고통을 늘리고 수태도 별개로 따로 늘린다는 뜻이다. "수태의 고통"을 늘린다는 게 아니다.

물론, 인간만 타 동물과는 달리 산통이 커져서 "고통 중에 자식을 낳게" 된 게 그 늘어난 고통 중에 포함은 돼 있다. 하지만 본문이 말하는 바는 그것보다 더 포괄적이라는 얘기이다. 고통과 수태의 교집합이 아니라 합집합을 말한다.
수태도 늘었다고 했으니 인간의 배란 주기 같은 게 이때 더 짧아졌다거나 가임 기간이 더 길어졌을 수 있다. 생물학적 디테일은 그 이상은 뭐 불명.

2. 가인과 아벨

창 4:8을 보면.. "가인이 자기 동생 아벨과 이야기를 하니라. 그 뒤에 그들이 들에 있을 때에 가인이 자기 동생 아벨을 치려고 일어나 그를 죽이니라."라고 나온다.
그런데 이 두 사건의 인과관계를 필요 이상으로 연결한 나머지, 가인이 아벨보고 "우리 같이 들에 나가서 바람이나 쐴까?" 이렇게 작정하고 꾀었다고 '각색을 해 놓은' 성경 역본이 일부 있다. 각색은 성경을 배경으로 한 영화· 소설에서나 할 것이지, 성경 본문에다가 있지도 않은 말을 그렇게 써 놓으면 안 된다.

얘기를 했다는 게 그 얘기를 한 게 아니다. 오히려 가인과 아벨은 종교적으로 진지한 얘기를 나눴으며, 어쩌면 다투기까지 했다. 그 일이 있고 나서 한참 뒤에, 둘만 우연히 황량한 들판에 있게 됐을 때.. 가인이 갑자기 악마가 각성해서 아벨을 죽인 것에 가깝다는 게 내 개인적인 견해이다. 성경에서 아벨을 단순히 폭행치사· 살인 사건의 가련한 희생자가 아니라, 믿음의 영웅이고 의인이고 순교자였다고 신약에서 굉장히 치켜세운다는 점이 단서를 제공한다. (마 23:35, 눅 11:51, 히 11:4)

3. 너비와 길이와 깊이

엡 3:18을 보면 "모든 성도들과 함께 너비와 길이와 깊이와 높이가 어떠함을 능히 깨닫고"라고 나와 있다.
앞뒤 문맥을 보고는 많은 성경 역본이나 주석이 저 구절을.. '하나님의 사랑이 x y z축 어디로나 얼마나 방대하고 위대한지 깨닫고"라고 편하게 번역하거나 해석하는 경향이 있다.
그러나 해당 본문 문장은 통사론적으로 그렇게 연결되는 구조가 아니다. 추상적인 게 아니라 그냥 말 그대로 물리적인 너비와 길이와 깊이와 높이이다. 이거 정체가 뭘까?

단서가 될 만한 관련 참고 구절은 롬 8:39이다. 같은 바울이 "높이, 깊이, 그 어떤 창조물이라도 우리를 하나님의 사랑에서 떼어놓지 못할 것이다"라고 말했기 때문이다. 이는 우주의 어마어마한 높이와 깊이를 가리키며, 하나님의 사랑이나 지식은 그런 것조차 아득히 초월한다는 걸 말한다. 저 높이와 깊이란 우리를 하나님으로부터 단절시켜 버릴 법해 보이는 물리적인 장벽일 뿐이지, 최소한 사랑 같은 훈훈한 추상명사는 아님이 명백하다.

바울은 서신서를 저술하면서 하나님의 영감으로 우주의 스케일을 늘 염두에 두고 있었다. 그렇기 때문에 비유를 구사할 때 그런 단어를 종종 사용한 것이다. 한국어로 번역하면서는 '-이', '-음' 이라고 접사의 종류가 달라지긴 했지만, 하나로 일치시키는 게 더 바람직할 것이다.

여담이지만, 송 명희 작사 <계신 주님>이라는 찬양 가사를 보면서도 뭔가 3차원적인 심상을 느낄 수 있다.

나의 앞에 계신 주님, 나의 눈동자에 주 있게 하소서 (roll)
나의 머리 위에 계신 주님, 나의 머리 들어 주 바라보게 하소서 (pitch)
나의 좌우 옆에 계신 주님, 나와 동행하시는 주 알게 하소서 (yaw)
나의 뒤에 계신 주님, 나를 안으시며 보호 하시는 주 의지하게 하소서


최 용덕 작사 <나의 등 뒤에서 나를 도우시는 주>와도 좋은 대조를 이루지 않는가? ^_^

4. 해산함으로 구원

딤전 2:15 "그녀가 해산함으로 구원을 받으리라" she shall be saved in childbearing 이건 무슨 말일까? 기독교인들에게 너무나 친숙한 표현인 be saved by/through faith, by grace와는 달리 저건 도대체 무슨 의미일까?
고전 15:29 baptized for the dead와 더불어 바울 서신서에서 생뚱맞은 양대 난해 구절로 일컬어진다. 이 문제를 내가 풀어 나가는 방식은 다음과 같다.

  • 성경 자체의 용례: 성경에 save(d)라고 해서 언제나 지옥에서 건짐받고 죄로부터 구원받는다는 얘기는 아님. 마 24:13 같은 여러 예가 있음.
  • 영어 표현의 용례: be saved in X에서 X는 구원· 구출을 얻는 방법이나 수단이 아니라 구원을 받는 상태나 환경· 여건이라는 용례도 있음. the spirit may be saved in the day of the Lord Jesus 고전 5:5.
  • 영어 표현의 용례 2: 일단 childbearing은 성경 전체에서 단 한 번 저기에서만 쓰임. 여기 말고 출산· 해산은 travail, be delivered 등의 표현으로 쓰이며, 중립적인 심상이 아니면 늘 수고, 고통, 괴로운 뉘앙스와 함께 쓰임.
  • 딤전 2 자체의 주변 문맥: 딤전 2의 뒷부분은 고전 14의 뒷부분과 마찬가지로 남녀 질서를 얘기하면서 페미들이 싫어할 내용으로 가득하다. "여자는 남자에게 권위를 행사하지 말고 잠잠하고 복종하고..." 최초의 인류도 남자보다 여자가 먼저 죄를 지었지 않느냐? 그럼에도 "불구하고" 여자가 맑은 정신과 믿음과 사랑과 거룩함 가운데 지내면.. 저렇게 뭔가 좋게 될 거라고 말한다.

또한, 전근대 시절에 출산은 여성의 너무 당연한 인생 통과의례였다. 애 못 낳는 건 합당한 이혼 사유이기까지 했다.
이 모든 성경 안팎의 정황과 배경을 감안했을 때, 저 구절은..
여성이 "맑은 정신으로 믿음과 사랑과 거룩함"을 계속해서 잘 유지하고 있으면.. 여성의 인생에서 큰 비중을 차지하는 이벤트인 출산과 관련된 여러 심리적인 고통으로부터도 해방될 수 있을 거라는 평이한 뜻이다.

창 3:16이 말하는 고통에도 불구하고 출산이 시 127:3이 말하는 진정한 태의 보상이고 축복이 되게 해 준다는 뜻이다.
쉽게 말해, 저렇게 딤전 2:15가 말하는 구원을 받지 못했기 때문에 요즘 산후우울증으로 산모의 자살 내지 영아 살해 같은 비극적인 일이 일어난다고 생각하면 된다. 저 구절은 바로 그런 의미이다.

남자의 의무인 군대에다 비유해서 각색하면... "니가 이렇게 공손하고 홀리하고 댄디하게 잘 살면 나중에 군대 가더라도 통제되고 억압된 환경을 잘 견디고 고참들하고도 잘 지내고 탈영· 자살의 충동으로부터 '구원'받을 수 있을 것이다" 정도 된다.
닥치고 "남자는 군대 갔다 오면(와야) 인간 된다"가 아니다. 여성의 출산· 해산 자체가 무슨 구원의 수단인 것처럼 그렇게 풀이하다가는 군대로 치면 바로 저런 꼴의 이상한 해석이 나오게 된다.

하긴 고전 3:15 '불에 의해 받는'도 불을 무슨 구원의 수단인 것처럼 이상하게 풀이하거나 번역해 놓은 성경도 있긴 하더라. 그건 연옥 교리를 정당화하는 데 쓰인다.

5. 좋은 두려움과 나쁜 두려움

성경에는 '두려움, 두려워하다' 이런 단어가 좋은 심상으로도 쓰이고 나쁜 심상으로도 쓰인다. 당연한 말이지만 무엇을 어떻게 두려워하느냐에 따라 심상이 달라진다.
먼저, 좋은 두려움의 예는 다음과 같다.

  • ... 순종하여 두려움과 떨림으로 너희 자신의 구원을 일하여 드러내라. (빌 2:12)
  • ... 이 은혜를 힘입어 우리가 공경하는 마음과 하나님께 속한 두려움을 가지고 받으실 만하게 하나님을 섬길지니 (히 12:28)
  • 두려움이 동반된 너희의 정숙한 행실... (벧전 3:2)
  • ... 너희에게 너희 속에 있는 소망의 이유를 묻는 모든 사람에게 온유함과 두려움으로 대답할 것을 항상 예비하며 (벧전 3:15)

한편, 나쁜 두려움은..

  • 하나님께서는 우리에게 두려움의 영을 주지 아니하시고 권능과 사랑과 건전한 생각의 영을 주셨느니라. (딤후 1:7)
  • 그러나 두려워하는 자들과 믿지 않는 자들과 가증한 자들과 살인자들과 ... 모든 거짓말쟁이들은 불과 유황으로 타는 호수에서 자기 몫을 받으리니 이것은 둘째 사망이니라. (계 21:8)
  • 사랑에는 결코 두려움이 없고 ... 두려워하는 자는 사랑 안에서 완전하게 되지 못하였느니라. (요일 4:18)

요약하자면, 인생은 실전이라는 걸 언제나 의식하는 것, 누가 안 보더라도 전지전능하고 공의로운 하나님이 계신 것을 늘 인지하는 것, 그에 따라 생각과 행동을 바로잡는 것은 건전하고 좋은 두려움이다.
그러나 하나님이 아닌 사람의 평판을 두려워해서 죄를 묵인하고 동참하는 것, 하나님의 성품을 오해해서 전혀 두려워할 필요가 없는 면모를 쓸데없이 걱정하고 두려워하여 영적 성장이 방해받는 것은 나쁜 두려움이다.

구원을 잃으면 어쩌나, 교회가 대환란을 겪게 되면 어떡하나 그런 걸 두려워하는 것은 대상을 잘못 설정한 나쁜 두려움에 사로잡힌 것이다. 하나님의 훨씬 더 고차원적인 성품을 두려워하면서 현실에서 당장 자기 앞에 놓인 십자가나 잘 지고 가면 될 것을, 저건 가히 엄청난 삽질이 아닐 수 없다.

심지어 계 21:8에서는 '두려워하는 자'가 살인자, 우상숭배자, 가증한 자와 완전히 동급으로 취급되어 불 호수에 던져진다는 극언이 나온다. 아니, 단순히 뭔가를 두려워하는 게 그 정도로 심각한 죄이기라도 하나? 킹 제임스 이외의 성경 역본들은 coward 겁쟁이, 비겁자로 말을 바꾸기도 했는데, 뭐 그 말이 그 말인 것 같다. 사람이 비겁해지는 것도 결국 두려움 때문이니까.

이건 영적으로 악하기까지 한 쓸데없는 두려움으로 인해 우물쭈물 하다가 복음을 거부하고, 거의 구원받았지만 결국 구원받지 못한 죄인의 말로가 그렇게 된다는 뜻이다. 당장 세상적으로 보기엔 착한 사람, 불쌍한 사람도 이것 때문에 지옥 가는 경우가 아주 많다.
그런 두려움은 정상 참작 요인이 결코 되지 못한다. 그러니 성경에 "하나님을 두려워하라"만큼이나 "두려워하지 말라"도 엄청 자주 나오는 것이다.

6. 눈과 우박의 곳간

"네가 눈이 있는 곳간에 들어간 적이 있느냐? 혹은 네가 우박이 있는 곳간을 본 적이 있느냐?" (욥 38:22)

지구과학 내지 기상학에서는 그냥 공기 중의 수증기가 먼지와 응결해서 구름이 됐다가 얼어서 눈이 내리고.. 그게 상승과 하강을 반복해서 더 큼직한 얼음덩어리가 되면 우박이 되는 것이라고 관찰하고 설명하는 게 전부이다.
그런데 성경의 묘사는 하나님이 무슨 음식에다 소금이나 후추 뿌리듯이 곳간에서 하얀 가루를 꺼내서 촥 뿌려 주면 눈이나 우박이 내리는 거랜다. 이 얼마나 대조적인가..;;

게다가 저 문맥은 그냥 애매한 서정적인 묘사가 아니라, 하나님이 욥에게 현피 요청을 하면서 하신 말씀의 직접 인용이다. "내가 땅의 기초들을 놓을 때 넌 어디서 뭐 하고 있었냐? 천사들이 노래하고 기뻐 소리 지르던 시절에 넌 뭐 하고 있었냐? 남자답게 일대일로 맞장 떠 보자."
이런 도발하는 얘기들과 함께 나오는 예시이다. 그러니 있지도 않은 걸 귀걸이 코걸이 같은 비유로 어물쩡 언급한 게 절대 아니라는 뜻이다.

이런 이유로 인해 창세기만큼이나 욥기 자체도 실화일 리가 없고 누구의 주작일 거라고 풀이하는 사람도 많은데.. 글쎄, 그 사람은 야고보 사도보다 더 똑똑한 사람일까? (약 5:11.. 욥의 인내) 무슨 윌리엄(빌헬름) 텔처럼 실존하지도 않은 인물을 우리가 굳이 존경하고 본받을 필요가 있을까?

물이라는 물질도 얼마나 특이한지는 화학을 어지간히 공부한 사람이라면 누구나 공감할 것이다. 얼음이 밀도가 더 내려가서 물에 뜨는 점이라든가, 굳이 끓는점에 달하지 않아도 일부가 혼자 증발해서 수증기도 되고, 또 심지어 물 알갱이가 그대로 공기 중에 존재하기도 하는 게 개인적으로는 굉장히 신기하기 그지없다.
수소 결합이 어떻고 하면서 분자와 원자 차원에서 물의 특성을 설명하기는 하나, 더 근본적으로 그게 어째서 그렇게 존재 가능한지 이유는 모르겠다. 뭐 그렇다고 "물은 해답을 알고 있다" 급으로 가는 건 과학의 영역을 벗어난 판타지이다만 말이다.

성경대로라면 우주의 여러 별과 행성 중에서 지구는 정말 달라도 너무 특이한 행성이어야 한다. 지구만이 유일하게 물질이 순환하고 활발한 기상 현상이 발생하는 행성이고(비록 자전 속도는 점점 느려질지언정), 지구만이 속에 이름을 밝힐 수 없는 뜨거운 장소가 있어서 지진파 결과도 타 행성과는 다르게 나오고.. 뭐 그런 게 있어야 한다.

무신론 과학자들이 외계에서 생명체 찾는 것에 열광한다면, 믿는 과학자들은 저런 지구의 넘사벽급 특성을 규명하는 연구에 더 매진하는 게 마땅할 것이다.

Posted by 사무엘

2018/03/01 08:32 2018/03/01 08:32
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1463

Trackback URL : http://moogi.new21.org/tc/trackback/1463

Leave a comment

5. 제2 경인 고속도로의 동쪽 연장

우리나라의 서울과 인천 사이에 처음에는 경인선 철도가 건설되었다. 그로부터 수십 년 뒤엔 철길의 북쪽에 경인 고속도로가 생겼고, 또 한참 뒤에 1990년대에는 철길의 남쪽으로 제2 경인 고속도로가 개통했다. 제2 경인은 동쪽이 삼성산을 앞두고 끝나면서 행정구역상 서울을 경유하지는 않는다. 그럼에도 불구하고 노선의 상징성 때문에 '경인'이라는 단어가 붙었다.

제2경인은 오리지널 경인이나 외곽순환처럼... 장거리 간선 고속도로가 아니라 그냥 수도권의 단거리 도시 고속화도로와 비슷한 위상으로 시작했다. 하지만 2000년대부터 도로의 서쪽 끝과 동쪽 끝이 연장되면서 그 위상에 큰 변화가 생겼다.

먼저, 서쪽은 인천대교와 연결되면서 사실상 공항 고속도로의 역할을 겸하게 되었다. 오리지널 경인 고속도로의 북쪽으로 공항 고속도로가 따로 지나는 것과는 매우 대조적이다.
그리고 동쪽은 삼성산과 청계산 아래를 몽땅 터널을 뚫어서 근성으로 돌파한 뒤, 안양과 의왕을 지나 성남의 여수대로까지 연장되었다! 이 민자 구간은 따로 '안양-성남 고속도로'라고 부른다. 2017년 9월에 개통했다.

의왕과 성남 사이에는 이 고속도로가 기존의 외곽순환 고속도로와 매우 가까이 나란히 달리지만 새 길은 대부분 터널이기 때문에 서로 지상에서 마주볼 수는 없다. 지도를 보면 판교 운종동에서 아주 잠깐 지상으로 나올 뿐이다.
나중에 판교 분기점을 지나지만 지하로 통과하며, 기존 경부 내지 외곽순환 고속도로로 갈아탈 수는 없다.
용인-서울 고속도로(171)와도 갈아타는 거 없다. 단지, 종점을 앞두고 분당-내곡 고속화도로와는 갈아타는 연결로가 생기는 듯하다.

이 고속도로는 성남 시청 바로 근처에서 국도 3호선으로 바뀌면서 끝난다. 여기서 한참을 동남쪽으로 진행하면 광주시 초월읍에 도달하는데, 여기서는 중부 고속도로(35)와 만남과 동시에 광주-원주 고속도로(52)를 타고 계속 동쪽으로 갈 수 있다.

여기 사이 거리가 20km에 달하니 짧지는 않지만.. 수틀리면 고속도로 110과 52가 한데 만나서 이어지지 말라는 법은 없어 보인다. 흥미로운 일이다.
철도 분당선이 겨우 분당-서울 전철이 아니라 이제 경기도를 두루 아우르는 거대한 순환형 광역전철이 됐듯, 110번 고속도로는 겨우 서울-인천이 아니라 경기도를 두루 아우르는 장거리 간선 고속도로로 확장되어 가고 있다.

6. 하이패스 차단기, 코레일 개집표기

오늘날 전국의 고속도로 IC들의 하이패스 진입로에 딱히 차단봉 같은 건 존재하지 않는다. 이를 악용하여 통행료를 상습적으로 안 내고 튀는 악질 운전자 때문에 도로 공사가 골머리를 썩는 중이라고 한다.
과거에 하이패스라는 게 처음 도입됐던 시절에는 진입로에 여느 건물 주차장 입구처럼 차단봉이 있었다. 평소에는 내려가 있다가 차량의 하이패스 단말기가 본부와 통신이 정상 처리됐을 때에만 올라가곤 했다.

그런데 건물 주차장 출입구야 차들이 워낙 느리게 움직이니 그런 식으로 차량 진입을 통제하면 되지만, 고속도로는 그렇게 하기에는 차량이 너무 빠르게 달리는 중이라는 게 문제였다. 정말 악의 없이 기계 오류 때문에 인식이 안 된 건데도 차단봉이 안 올라가면 차가 차단봉과 부딪치는 사고가 날 수 있었다.
그리고 이렇게 차단봉만 부수고 차량 앞부분만 좀 긁히면 차라리 다행인데, 운전자가 당황해서 차단봉을 피하느라 핸들을 옆으로 꺾으면 주변 시설물까지 다 부수는 더 큰 사고로 도지기 쉬웠다.

그렇기 때문에 도로 공사에서 1차로 취한 조치는 부딪치더라도 차량에 상처를 주지 않고, 휠지언정 부서지지 않는 부드러운 훼이크 재질로 차단봉을 교체하는 것이었다. 이것도 마치 도로에 색만 칠해진 훼이크 과속방지턱만큼이나 초행 운전자에게 심리적인 압박은 여전히 준다. 오동작+회피 사고의 가능성도 여전히 남아 있다.

결국, 관계 당국의 오랜 고민 끝에 하이패스 진출입로에서 차단봉은 모두 철거되고 사라지게 됐다. 설치하는 데도 돈 들고, 철거하는 데도 돈 들고.. 결국 예산 낭비라고 언론에서 까였다. 전국에 고속도로 나들목이 한두 개 있는 것도 아닌데..
얌체 운전자를 어떻게 잡아낼지는 따로 생각할 일이고, 일단은 안전을 우선적으로 생각하기로 했다. 고속도로에서 사고가 나면 현장 보존, 증거 확보, 과실 비율보다도 당장 차를 갓길로 옮기고 2차 사고를 예방하는 게 절대적으로 더 중요하듯이 말이다.

하이패스 차단봉 같은 지위와 운명을 지녔던 물건이 과거에 철도계에도 있었다. 바로 고속철 개통과 함께 주요역에 도입했던 지하철 스타일의 자동 개집표기이다.
이것도 나름 적지 않은 비용을 들여 도입한 것이었지만, 알고 보니 그다지 유용하지 않았다. 집어넣은 승차권이 제대로 튀어나오지 않는 걸림 현상이 잦았고, 또 승차권 자체도 항공권 같은 영수증 모양 내지 SMS· 홈티켓 등으로 형태가 다양화되면서 저런 자동 개집표기가 무의미한 형태로 바뀌었다.

결국 자동 개집표기는 개집표 기능을 사용하지 않고 봉인되거나 아예 철거되기에 이르렀다. 이것도 언론에 보도되어 많아 까였었다.
고속도로의 하이패스 차단봉과 정말 비슷한 처지로 보이지 않는가?

7. 버스 전용 차선 등~

경부 고속도로는 극심한 정체로 인해 1990년대 중반에 국내 최초로 버스 전용 차선이 시행된 것으로 유명하다. 난 신탄진 IC 이북이라고만 알고 있었는데 그게 팩트의 전부는 아니다. 평일에는 오산 IC부터이고, 주말과 공휴일에만 신탄진 IC부터이다. 그래서 신탄진과 오산 사이에는 파란색 버스 전용 차선이 실선이 아닌 점선으로 그어져 있다. 2017년 7월 말부터는 영동 고속도로도 신갈-여주 사이에 버스 전용 차선이 주말 한정으로 시행되었다. 시행 시간대는 여러 차례 변경을 거친 끝에 현재는 아침 7시부터 저녁 9시까지로, 남산 터널들의 혼잡 통행료 징수 시간대와 동일하다.

비슷한 시기인 1996년 초에는 서울 시내의 천호대로에도 중앙 버스 전용 차선이 첫 시행되었다. 하지만 고속도로의 버스 전용 차선과 시내의 버스 전용 차선은 중앙 1차로를 버스 전용으로 떼어 줬다는 점 외에 취지와 이념은 서로 차이가 있다.
고속도로의 버스 전용 차선은 보다시피 심야에는 시행되지 않으며, 9인승 이상 소형 승합차라도 6명 이상이 타면 통행이 허용될 정도로 유도리가 있고 관대하다. 그러나 시내의 버스 전용 차선은 노선 버스들만 통행 가능하며, 심지어 그런 버스들이 끊긴 심야까지 포함해서 365일 24시간 시행이다. 긴급자동차 정도가 아닌 한, 일반 차량 운전자들은 저 차선을 꿈에도 넘볼 생각 하지 말라는 뜻이다.

마이크로버스라도 정규 노선 버스라면 버스 전용 차선을 이용할 수 있다. 하지만 그런 작은 마을버스들이 버스 전용 차선이 있을 정도의 큰 도로를 다니는 일은 없기 때문에 이 차선은 사실상 대형 버스들의 독무대나 마찬가지이다.
그런데 도로교통법을 보면 이 전용 차선을 다닐 수 있는 버스는 그냥 버스가 아니라 '노선버스'이다. 그러니 단순 학원· 교회 버스나 관광· 전세 버스, 사기업의 통근 버스는 들어가서는 안 될 것 같은데.. 현실적으로는 소· 중형이 아닌 대형 버스라면 다 들어가는 것 같다.

경부 고속도로의 경우, 경기도 구간부터는 차들이 워낙 많고 혼잡하니 평소에는 갓길까지도 차량 통행용으로 개방해 주고 그 대신 대피소를 일정 간격으로 추가로 설치하곤 한다. 지금이 갓길 주행이 가능한지 여부는 마치 상하행 가변 차선 도로의 O X 표시 램프처럼 전광판이 별도로 해 준다.

옛날에는 고속도로의 일부 지점에도 버스 정류장이 있어서 고속· 시외버스가 정차하곤 했다. 지금은 휴게소 환승이 있지 그런 관행은 없어진 지 오래다. 고속도로 일부 구간을 비상용 활주로로 사용하던 관행이 없어지는 것과 비슷하다.
그래서 옛날에 쓰이던 버스 정류장이 개조되어 졸음 쉼터 내지 비상 대피소로 탈바꿈하곤 한다. 고속도로의 내부 구조가 이런 식으로 바뀌기도 한다.

8. 그 밖에 고속도로 주행하면서 들었던 생각들

(1) 하이패스는 버스· 전철에서 환승 할인 교통 카드만큼이나 정말 거스를 수 없는 대세이고 필수가 됐다. 고속도로는 폐쇄식과 개방식, 도로공사 구간과 민자 구간이 뒤섞이면서 요금 체계가 하루가 다르게 복잡해지고 있으니 하이패스 같은 거 없이는 이제 버틸 수가 없다. 이제는 하이패스 전용 IC도 등장하고 있으며, 현금 통행료 무인 징수기는 통과 시간이 정말 길고 불편하다.

돈 거래에 관한 한 현금은 동전이든 지폐든 절대로 기계 친화적인 매체가 아니다. 이건 동물의 다리는 바퀴와 달리 기계로 구현하기 아주 어려운 파트인 것과 같으며, 페이지를 넘기도록 제본된 책이 사람에게는 읽기 편한 형태이지만 스캔 뜨는 데는 아주 안 좋은 형태인 것과도 비슷한 맥락이다.
현금 수납이 기계로 대체되고 나면 사람은 시간이 굉장히 많이 걸리고 불편해진다. 패스트푸드점에서든, 고속도로 톨게이트든, 지하철역 1회용 승차권 구입이든.. 예외가 없다.

(2) 난 옛날에는 차선을 이리저리 바꾸면서 칼치기 추월을 하는 스피드광 폭주족들만 미친놈 나쁜놈이라고 생각했는데, 시간이 흐르면 흐를수록 1차로를 떡 버티고 정속· 저속 주행하면서 우측 추월을 강요하는 애들이 그보다 더 무개념 나쁜놈이라는 생각이 든다. 정체 상황이 아닌 이상, 추월 차로는 필요할 때 잠시만 이용하도록 하자~!
추월 차선을 딱 비워 놓고 언제나 좌측으로 예측 가능하게만 추월하면 독일 아우토반처럼 시속 200을 넘게 달려도 사고 잘 안 난다. 요즘 차들은 성능도 좋은데, 괜히 비현실적인 과속 단속 감시나 하지 말고 차로 분리를 더 적극적으로 계도· 계몽했으면 좋겠다.

(3) 휴게소의 주유소가 기름값이 생각보다 저렴한 게 놀랍고 인상적이었다. 미리 환전을 안 하고 공항에 가서야 환전하면 바가지를 잔뜩 쓰며, 열차 안이나 산 같은 현장에서 구매한 도시락은 비싸고 가성비가 안 맞게 마련이다. 군 입대를 앞두고도 준비물을 미리 챙겨야지 거기 가서 잡상인을 이용하면 역시 바가지 쓴다.
이런 맥락에서 살펴보면 기름도 시내에서 미리 넣어 가야 저렴할 텐데, 고속도로 휴게소의 기름은 그렇지 않았다. 도로공사가 ex-oil이라고 자체적으로 거품 없는 석유 유통망을 갖추고 있는 덕분에 그렇다고 한다.

(4) 고속도로는 그러고 보니 유조차· 특대형 트레일러 같은 크고 아름다운 차, 위험물을 실은 차가 주행 가능하구나! 강변북로· 올림픽대로 같은 시내의 여느 자동차 전용 도로와 비교했을 때 큰 차이점인데 이를 지금까지 별로 의식 안 하고 있었다. 하긴, 고속도로는 그렇게 나라 먹여 살리는 자동차들을 당연히 통행시켜 줘야 할 것이다.

그런데 4.5톤을 초과하는 대형 트럭들은 2010년대 초까지만 해도 하이패스 단말기 장착이 허용되지 않았다는 걸 본인은 지금까지 몰랐다. 고속버스가 하이패스 달고 잘만 달리고 있는데 의외다. 그러니 이런 트럭 운전자는 하이패스 카드를 제시해서 현금 취급 없는 통행료 결제까지만 가능하지, 톨게이트 무정차 통과는 할 수 없었다.
지금도 하이패스를 달더라도 톨게이트는 거의 기다시피 통과해야 한다고 한다. 이유는 다른 기술적인 제약 때문은 아니고, 과적 단속을 위해서라고 함..

(5) 그나저나 영천-경주 구간 확장은 언제쯤 끝나려나.. 공사 때문에 갓길도 없고 하도 위험하고 사고가 나서 그런지 최고 속도 한계가 100에서 80으로 낮춰졌으며, 아예 예전에 없던 구간 속도 단속이 시행되고 "시속 80으로 달리는 당신이 아름답습니다" 이런 오글거리는 표어까지 붙었다. "이렇게 빌 테니 제발 과속하지 말고 천천히 가세요" 거의 이런 급이다..;;
고속도로의 상태가 주변의 국도(20, 4)보다도 못해진 상태이니 공사가 어서 끝나기만을 기다려야겠다.

Posted by 사무엘

2018/01/27 19:37 2018/01/27 19:37
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1452

Trackback URL : http://moogi.new21.org/tc/trackback/1452

Leave a comment
« Previous : 1 : 2 : 3 : 4 : 5 : ... 33 : Next »

블로그 이미지

철도를 명절 때에나 떠오르는 4대 교통수단 중 하나로만 아는 것은, 예수님을 사대성인· 성인군자 중 하나로만 아는 것과 같다.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2018/05   »
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    

Site Stats

Total hits:
960095
Today:
208
Yesterday:
526