가연성 물질은 발화점을 넘은 온도에서 불이 활활 붙을 때 열과 빛이 나온다.
하지만 불이 붙지 않는 물질이라도 수백 도 이상의 온도로 달궈지거나 녹으면... 얼음이 녹듯이 곱게 녹지 않는다. 어느 물질이건 언제나 시뻘건 빛을 동반하는 상태가 되며 녹는다. 용암이나 쇳물을 생각해 보자.

사용자 삽입 이미지사용자 삽입 이미지

쇠는 상온에서 은백색의 고체이지만, 쇳물은 수은 같은 평범한 회색(?) 액체가 절대로 아니다.
이건 알고 보면 굉장히 신기한 면모이다. 이 빛은 분자· 원자 차원에서 무슨 에너지를 바탕으로 나오는 걸까?
다시 말하지만, 이건 연소 같은 화학 반응을 겪고 있는 상태가 아니다. 단순히 열을 잔뜩 받은 것만으로 어떻게 빛이 나올 수 있을까?

옛날에 "터미네이터 2 심판의 날" (1992) 영화를 보면 쇳물이 철철 흐르는 용광로가 나온다. 이건 진짜 쇳물이 아니고 소품이다. 물 같은 평범한 액체 안에다가 누런 조명을 켜서 쇳물처럼 보이게 했다고 한다.

사용자 삽입 이미지

(영화에서는 색감에 대한 왜곡이 굉장히 많다. 가령, 현실의 건물 지하 주차장들은 영화 '아저씨'에서 묘사된 것처럼 그렇게 시퍼런 톤으로 어두컴컴하지 않다.)

그러고 보니 백열등은 대놓고 이 원리를 이용해서 빛을 내는 물건이다. 가느다란 필라멘트를 녹지 않을 만큼만 달궈서 빛을 내니 말이다.
물론 이건 오늘날의 전자공학 기술의 관점에서 보면 효율이 매우 매우 안 좋은 원시적인 광원일 뿐이다. 이는 백열등과 얼추 비슷한 시기에 발명된 또 다른 과학 기술 산물이던 증기 기관도 오늘날의 관점에서는 너무 비효율적이어서 도태된 것과 비슷한 맥락이다.

그래도 증기 기관만으로도 그 시절엔 마차로는 상상할 수 없는 교통· 물류 혁명과 산업 혁명이 일어났다. 그와 마찬가지로 백열등도 연료를 직접 태우는 등잔불· 호롱불· 촛불· 횃불 따위로 범접할 수 없는 새로운 빛을 인류에게 선사하긴 했다.
그 단순무식하고 비효율적인 백열등조차도 처음 발명하는 과정은 결코 순탄하지 않았음이 주지의 사실이다. 필라멘트를 만들 만한 재료(텅스텐)를 그 시절 여건에서 찾는 게 만만찮았기 때문이다.

불꽃 기반의 광원들은 켜고 끄기 어렵고 질식과 화재의 위험이 크고 불필요한 열이 너무 많이 발생하는 등 불편이 이만저만이 아닌 데다.. 결정적으로 여전히 별로 밝지 않고 너무 어두웠다. 밤에 시골에서 촛불· 호롱불 켜서 책 읽고 공부해 보신 분이라면 이 말에 적극 공감 가능할 것이다.

그에 비해 지금 세대는 자그마한 스마트폰만으로 과학 완구 꼬마전구와는 비교를 불허하는 맹렬한 LED 불빛을 간단히 만들어서 어둠을 비추니.. 참으로 놀라운 과학 기술의 혜택을 입고 있는 중이다.

사용자 삽입 이미지
(1901년부터 지금까지 120년 가까이 켜져 있다고 하는 세계에서 가장 오래된 백열등 '센티니얼 전구'. 다만, 현물 보존을 위해 현재는 전류를 아주 약하게 흘려보내고 있기 때문에 불빛이 더 어둡다. 저 시절엔 전구의 껍데기 유리를 다 사람이 불어서 모양을 내고 말들었다.)

아무튼.. 형광등이나 LED등만치 밝은 건 아니지만 그래도 백열등처럼 고온만으로 불꽃이 아닌 빛을 가능케 하는 과학 원리는.. 바로 '흑체 복사'이다.
어떤 물체의 온도가 높다는 건 미시세계에서 그 물체를 구성하는 입자가 많이, 맹렬히 움직이고 있음을 뜻한다. 그 움직임 덕분에 빛이 만들어져 나오며, 그게 심해지면 가시광선뿐만 아니라 적외선과 자외선, 심지어 방사선의 범주에 드는 X선이나 감마 선까지 나온다.

흑체가 방출하는 에너지의 양은 절대온도의 무려 4제곱에 비례한다. 이른바 슈테판-볼츠만의 법칙.
본인은 학교에서 배웠던 각종 과학 과목들을 통틀어서 제곱이나 3제곱이 아닌 4제곱이 등장하는 과학 법칙이나 공식을 이것 말고는 본 기억이 없다.
평면이나 공간의 특성상 2승, 3승까지는 나올 수 있지만 4승은.. 생소하지 않은가?

사용자 삽입 이미지

흑체란 모든 전자기 복사를 흡수해서 에너지량 계산을 제일 간편하게 할 수 있는 가상의 물질이다. 화학에서 다루는 이상기체와 비슷한 개념이다. (그럼 백체는 반대로 모든 전자기 복사를 반사하는 물체일 텐데.. 이런 건 딱히 다루지 않는 듯하다.)

물질마다 어느 온도에 도달했을 때 나타내는 색깔은 언제나 일정하다. 그렇기 때문에 색깔만으로 온도를 추정하는 게 가능하며, 색깔 온도계라는 게 존재할 수 있다.
측정 센서조차 녹거나 타 버릴 정도의 높은 온도를 측정하는 방법은 이것밖에 선택의 여지가 없다. 그래도 이것만으로도 생각보다 매우 정확한 값을 얻을 수 있다. 신기하지 않은가? 심지어 별의 색깔도 이 온도에 따라 결정된다.

이건 스피드건이 굉장히 얼렁뚱땅 허술하게 동작하는 것 같은데 주변의 자동차나 야구공의 속도를 꽤 정확하게 측정해 내는 것, 그리고 요즘 체온계가 신체의 영 엉뚱한 부위만 대충 접촉하는데도 체온을 정확하게 측정하는 것과 비슷한 것 같다.

사실은 꼭 엄청난 고온이 아니어도 된다. 사람 체온만으로도, 무슨 쇳물 같은 누런 가시광선보다 급이 낮은 적외선 정도는 나온다. 깜깜한 밤에 사람을 식별할 때, 아니면 그냥 열기를 탐색할 때 쓰이는 적외선 카메라가 바로 이 원리를 이용해서 동작한다.

이 정도 온도 차이에 4제곱은 정말 폭발적인 에너지 크기 차이를 만들 텐데.. 전자기파의 파장이라는 것도 지수/로그 스케일을 찍는 동네이기 때문에 그런 차이에 대응 가능한가 보다. 사실, 가시광선은 대역폭이 주변의 적외선(IR)이나 자외선(UV)보다 훨씬 짧다.

사용자 삽입 이미지

난.. 색깔이란 건 그냥 눈에 띄는 느낌만 다른 요소일 뿐이지, 같은 온도와 같은 재질이어도 "검은 옷이 흰 옷보다 왜 덥게 느껴지는 걸까?" 이걸 이해를 오랫동안 완전히 못 했다.
저렇게 온도에 따라 다른 '빛깔'이 나오는 건 이해하겠는데, 역으로 '색깔' 자체도 열 흡수율을 결정한다?

사용자 삽입 이미지

지표면에 눈이나 심지어 비닐하우스 같은 인공 구조물 때문에 흰색이 많으면 그게 태양 복사 에너지를 반사해서 기후에까지 영향을 줄 수 있다고 한다. 이런 이유로 인해 온도계를 보관하는 백엽상의 주변은 반드시 하얗게 칠하며.. 비행기도 열 흡수를 하지 말라고 흰 도색을 선호하는 편이다.

이쪽 관련 과학 법칙은 열역학도 광학도 전자기학도 아니고 도대체 무슨 분야인 걸까..?
이게 19세기 말~20세기 초에 양자역학이라는 걸 태동시킨 전신이라고 한다. 얘는 물질 자체를 존재하게 하는 원자 차원의 힘을 규명하고, 이를 이용해서 질량과 에너지 사이의 경계를 허물어버린 발상의 전환을 선사했다.

※ 관련 여담

(1) 유리는 투명한 데다, 성냥을 갖다대면 불이 붙을 정도로 뜨겁게 달궈져도 겉으로는 하나도 티가 안 나기 때문에 위험하다고 실험실 안전 수칙에서 다뤄지곤 한다. (단골로 다뤄지는..)
물론 성냥의 발화점이 그리 높은 건 아니며, 유리도 더 뜨거워져서 흐물흐물 녹기 직전일 때는 벌겋게 변하기는 한다.

(2) 인류에게 열과 빛이라는 건 바늘과 실처럼 같이 따라다니는 형태인 게 익숙하다. 자연에서 보는 불꽃이나 달궈진 물체의 모습이 그러하기 때문이다.
그러나 기술이 발전하면서 인류는 빛이 필요한 곳에서는 발열이 거의 없이 밝은 빛만 만들어 내는 기술도 잔뜩 개발했다. 전기 에너지를 원하는 곳에만 더 효율적으로 쓸 수 있게 된 것이다.
자연에서는 반딧불이도 발열이 없이 생물학적으로 신비로운 빛을 내는 곤충이라고 한다.

(3) 불꽃 반응은 불태우는 금속 원소에 따라 서로 다른 불꽃 색깔이 나타나는 걸 말하는데, 이건 온도 자체와는 좀 다른 분야의 현상이다.;;

(4) 그러고 보니 빛을 받았다가 깜깜해진 뒤에도 잠깐이나마 빛이 나는 무려 '야광/축광',
방사능 원소인지가 어쩌구 하는 형광,
거울이 아니면서 어둠 속에서 빛을 좀 반사에서 더 밝게 빛나는 그 무언가.. 이런 것들에 대해서도 원리를 다시 공부해 보고 싶은데.. 내가 시간과 배경 지식이 부족하다. 도로의 차선도 평범한 페인트가 아니라 이런 안료가 들어가서 밤에 자동차 헤드라이트를 받았을 때 더 밝게 비치게 돼 있다.

사용자 삽입 이미지

사실, 달 표면도 말이다.
하늘은 새까만 암흑인데 지표면은 아주 하얗게 빛나고 물체 그림자도 선명하게 비쳐 보이는 거.. 지구에서는 볼 수 없는 풍경이다.
표면 전체가 이렇게 빛나고 있으니까 지구의 하늘에서는 달을 볼 수 있다.
반대로 지구는 대기가 있어서 낮에 하늘이 파란 것이고..

(5) 빛 내지 전자기파는 진행 과정에서 질량의 영향을 전혀 받지 않다 보니 꼬불꼬불한 케이블 안에서도 광속으로 진행하고, 심지어 관찰자의 상대속도 관점에서도 불변이라고 여겨진다.

그런데.. 한편으로 진공이 아닌 유체 안에서는 그래도 속도가 미세하게 줄어들고 이로 인해 굴절도 발생한다.
그게 얼마나 줄어들고 차이가 발생하는지, 얘는 도대체 어떤 존재인지 물리학이 깊게 들어가면 난 정말 이해가 안 된다. 이런 걸 컴퓨터도 없던 19세기에 처음 발견하고 공식을 만들어 낸 물리학자들은 참..

수백 년 전에 빛의 속도가 유한하다는 걸 물증 아닌 심증으로 인지하고, 나중에 실험으로 입증한 과학자들도 정말 괴수였을 것이다. 이걸 알아낸 것은 지구 구형이나 지동설만큼이나 엄청난 과학 발견이었다.
마이컬슨-몰리의 실험이 뭐였더라..?? 기억이 가물가물하다.

(6) 끝으로..
이 글에서 주로 거론된 용광로는 시뻘겋거나 누렇지만, 원자로는 시퍼런 편이다~!! 흥미로운 차이점이지 않은가?

사용자 삽입 이미지

이건 체렌코프 효과라고 불리는 방사선 관련 현상 때문에 시퍼런 빛이 나와서 그렇다. 이건 흑체복사보다 더 이해하기 어렵고 20세기가 돼서야 발견된 현상이다. 이걸 발견하고 규명한 과학자들은 죄다 노벨 상을 받았다.

방사능은 원자력이라는 너무 근원적이고 강한 힘에서 유래됐다 보니.. 인간이 주변에서 흔히 보는 물리· 화학적 조작의 영향을 전혀 받지 않는다. 이게 더욱 대단하고 무서운 면모이다.
방사능 폐기물은 아무리 깨부수고 전기 충격을 가하고 물· 불에 쳐넣어도 방사능이 없어지지 않는다. 찬송가 가사를 빌리자면 말 그대로 "물불이 두렵잖고 창검이 겁없네"이다.;;;;

Posted by 사무엘

2022/11/28 08:35 2022/11/28 08:35
, , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/2095

미래의 과학 기술 전망

1. 미래의 떡밥

  • 수소를 가솔린이나 여느 천연가스만큼이라도 안전하게 많이 저장하고, 싸게 생산하고 효율적으로 동력 얻기
  • 핵융합 발전
  • 무선 송전/충전, 직류 고압 송전
  • 양자 컴퓨터
  • 획기적인 반도체 소자(규소) 내지 배터리 재료(리튬이온)
  • 휘발유 압축 착화 엔진 (디조토)

이런 게 하나 제대로 개발되면 21세기는 20세기의 연장이 아니라 인간의 생활이 또 획기적으로 바뀔 수 있겠는데.. 과연 실현 가능할지, 아니면 저건 SF의 영역에만 머문 채로 인간 세상이 끝날지 모르겠다.

다음은 세계 대전 종전 후, 1940년대 말에 등장했던 과학 기술이다. 하긴, 일본에서 최초의 노벨 상 수상자도 이때쯤 배출됐었다.

  • 가스 터빈, 제트 엔진
  • 전자레인지, 트랜지스터, 전자식 컴퓨터

다음은 옛날에 개발된 적이 있었지만 실용성이 부족해서 사장된 기술이다. 전기 자동차처럼 미래에 재조명을 받게 될지는 모르겠다.

  • 초음속 여객기 (연료 효율과 소닉 붐 문제)
  • 무탄피총 (탄피가 없으면 편하긴 하지만.. 탄약값이 너무 비싸진..)
  • 반켈 엔진 (왕복 엔진이 반쯤 터빈 엔진처럼 되는 듯.. 성능과 효율과 제작 난이도가 다같이..)

다음 아이템들은 현실에서는 존재 불가능, 실현 불가능이고 진짜로 SF의 영역이다.

  • 대기권 여객기와 우주 발사체를 겸하는 단일 비행체(!!!)
  • 포유류 수준의 고등 동물이 무슨 곤충처럼, 히드라/럴커나 뮤탈/가디언처럼 변이

2. 자원 고갈, 환경 문제

한때 인류의 미래에 애로사항을 꽃피울 거라고 여겨졌던 문제들 중.. 석유는 여전히 많이 잘 산출되고 있어서 공급에 문제가 없다.
쓰레기는 재활용 기술이, 각종 수질· 대기 오염도 정화 기술이 눈부시게 발전해서 많이 해결됐다. 자동차도 석유가 아닌 천연가스나 전기로 가는 놈이 제법 많이 늘었다.

말이 나왔으니 말인데, 석유의 경우, "지구에 석유 자체는 엄청 많이 있습니다. 지금과 같은 소비 속도로도 10만 년은 족히 쓸 수 있습니다. 화석 연료가 다 고갈되기 전에 지구 대기 중의 산소가 먼저 고갈될 겁니다" 이렇게 전망하는 학자도 있다.;; 이거 레알인가..??? ㄷㄷㄷㄷ

단지, 지금과 같은 채산성을 지닌 석유는 현재로서는 앞으로 30~50년치 남짓만 있는 게 맞다. 그게 팩트다. 무슨 타이타닉 호가 가라앉아 있는 급의 해저에서 석유를 퍼올리기는 건 아직은 곤란할 테니 말이다.
무슨 "노병은 죽지 않는다. 다만 사라질 뿐이다."처럼 "석유는 고갈되지 않는다. 다만 채산성이 떨어질 뿐이다"인 셈이다.

인구도.. 1987년대 말에 세계 인구가 50억(추정)을 넘었을 때 UN에서 '인구의 날'까지 제정하면서 설레발 내지 우려를 내비쳤다. 그러나 지금은 80억이 다 되도록 지구엔 아무 일이 없으며, 선진국들은 오히려 극심한 저출산을 걱정하는 지경이다.

고래는 그린피스 운동꾼이 아니라, 고래기름의 값싼 대체제를 개발해서 고래를 잡을 필요를 없게 만든 과학기술이 보호해 줬다. 나무도 무식한 벌목 금지법이 아니라 화석 연료와 원자력 에너지 같은 대체제가 보호해 줬다. 이러니 탈원전 재생 에너지가 무식한 사기꾼 소리를 듣는 것이다.

3. 전기차의 전망

말만 들어서는 앞으로 15~20년 안으로 내연기관 자동차가 자취를 감추기라도 할 것 같고 테슬라 차도 마냥 우려하던 수준의 베이퍼웨어는 아니었던 것 같다.
하지만 과연..??

(1) 배터리는 용량뿐만 아니라 온도 문제도 심각한 한계다.
한겨울 혹한에서는 스마트폰이나 놋붉 같은 가볍디가벼운 물건의 배터리조차 퍼지고, 엔진이 아니라 시동 모터만 돌리는 것도 힘들어지는데 이런 건 잘 극복됐는지??

  • 축이 3개 이상 달린 대형 트레일러, 덤프트럭, 건설기계 (닥치고 디젤.. 아니면 휸다이처럼 수소연료가 아쉬운 대로 파고드는 중)
  • 군용차, 장갑차, 탱크(가스터빈) (!!!)
  • F1 레이싱 머신 (일반 자동차와는 특성이 완전히 다른 세계임)
  • 초 럭셔리 기함급 승용차나 스포츠카(휘발유), 아니면 대통령 의전 차량 (오히려 디젤)

이런 차들이 설마 내연기관 말고 다른 동력원으로 바뀔 수 있을까??
버스조차도 시내나 광역 말고 장거리 고속버스가 전기는커녕 천연가스로라도 바뀌었다는 얘기를 난 들어 보지 못했다.
충전소 문제도 있지만 주행거리, 그리고 짐칸 공간 확보 문제에서 기존 디젤 엔진을 넘어서지 못한 것이다. 배터리나 가스 탱크가 모두 말이다. 2층 버스도 비슷한 이유로 인해 그냥 다 디젤 기반이다.

승용차 수준에서야 전기차가 많이 보급될 수 있겠지만, 여러 연료가 공존하는 거지 내연기관 자동차가 완전히 없어진다거나 하지는 않을 것 같다.

(2) "내연기관(기름)차 : 배터리 전기차"는 컴퓨터 하드디스크에서 "재래식(자기 디스크) 하드 : SSD"와 비슷한 구석이 있는 것 같다. 물론 재래식 하드가 무슨 기름값이나 환경 문제에 연루돼 있는 건 아니지만 그래도 좀 다른 차원에서 말이다.

SSD가 비슷한 가격으로 수 테라바이트 이상 재래식 하드와 대등한 용량을 구현하지 못하는 것처럼, 배터리 기반 전기차는 현재 기술로는 대형 버스나 트레일러를 대체하지는 못한다. 하다못해 수소 연료 전지의 도움이라도 받아야 한다.

SSD는 입출력 속도가 빠르고 조각 모음을 안 해도 되고 물리적인 충격에 재래식 하드보다 강한 대신, 전기 신호 차원에서의 오류나 이상 환경에 매우 취약하다.
재래식 하드는 그래도 데이터가 어떤 형태로든 물리적인 형태로 기록되는 물건이지만, SSD는 근본 출신이 휘발성 메모리이다. 데이터가 순식간에 그냥 훅갈 수 있다. 날아간 데이터에 대한 복구 가능성이 재래식 하드에 비하면 그냥 없다.

그것처럼 전기차는..
평소에는 공해 없고 잘 나아가고 좋은데.. 사고가 나서 쾅 박았을 때 배터리가 무슨 백린탄처럼 될 수 있는가 보다.
당연히 재래식 황산-납 축전지가 그렇게 될 일은 없고, 리튬 이온 배터리 말이다. 에너지 축적량이 많은 대신, 화학적으로 훨씬 더 불안정하기도 한 녀석..

내연기관 차도 부서져서 연료가 새면 얼마든지 불이 날 수 있지만 이 정도는 아니다. 자동차의 화재 가능성을 넘어서 비행기의 화재 가능성에 더 가까운 듯하다. 비행기는 같은 무게/크기 대비 자동차보다야 연료를 더 많이 넣어야 하고, 추락/충돌할 때의 속도도 더 빠르니 말이다.

더 편리한 대신에 기존 재래식 솔루션에는 없는 치명적인 단점과 취약점이 있는 듯하다.
여담이지만, SSD는 고온에도 취약하다. 노트북 컴터 내부의 발열에 너무 오래 노출되고 냉각이 잘 안 되면 그것만으로도 손상을 입고 데이터가 날아갈 수 있다.

4. 여담

  • 리튬 이온 배터리라는 게 없던 시절, 100년 전의 전기차는 내연기관 자동차와 동일하게 황산-납 배터리를 달고 다녔다고 한다.;;; 당연히 충전 시간이나 항속거리가 절대로 쨉이 안 되니 기름차에 밀려 도태할 수밖에 없었다.

  • 테슬라가 배터리까지 직접 생산하려 하는 건 애플이 CPU까지 직접 개발하고 생산하려 하는 것과 비슷한 이치이다. 자기 제품에 들어가는 워낙 중요한 부품이니 자체 기술을 보유하려 애쓸 수밖에 없겠다.

  • 일본은 25년 이상 전부터 '도요타 프리우스'처럼 하이브리드 자동차의 본좌였는데, 정작 순수 전기차 쪽은 시들시들한 것 같다. 그 반면, 요즘 중국이 배터리 기술을 육성하고 전기차를 왕창 많이 만들고 있는 것 같다. 국내에서도 BYD 시내버스가 많이 눈에 띈다.

  • 동력원 다음으로 자동차 업계에서 뜨거운 감자인 기술은 자율 주행인데.. 자율주행 자동차가 100% 전자동 자율주행이 가능하려면.. 현재의 기계번역 소프트웨어가 기계 보조 수준이 아니라 완전 자동으로 바뀌는 정도의 기술 혁신과 격변이 필요할 것 같다. 즉, 컴터가 인간의 자연어를 자연스럽게 알아듣고 구사하는 것과 같은 급의 기술이 동원돼야 할 듯하다.

Posted by 사무엘

2022/09/03 08:35 2022/09/03 08:35
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/2062

동력 기관의 기술 동향

1. 내연 기관과 외연 기관

열기관, 엔진이라는 건 오늘날 지구상의 수많은 기계들을 돌아가게 하는 원동력인데.. 크게 내연기관과 외연기관으로 나뉜다. 연료의 연소가 기관의 안에서 이뤄지냐, 밖에서 이뤄지냐의 차이가 있다고는 하지만, 그렇게만 말을 해서는 차이점이 쉽게 와 닿지 않는다.

내연은 연료 자체의 폭발 팽창력으로 힘을 내고, 외연은 연료로 다른 매개물질을 끓여서 기화 팽창력으로 힘을 낸다고 말하는 게 더 나을 듯하다.
전자에서 말하는 폭발력이란 건 찰나의 순간에 ‘펑’ 강하게 발생했다가 바로 사라진다. 후자의 팽창력보다 더 제어하기 힘들다.

이걸 축적해서 큰 힘을 지속적으로 만들려면 내연기관은 연료를 끊임없이 아주 찔끔찔끔 연소· 폭발시키면서 일정 회전수 이상 빠르게 계속 돌고 있어야 한다.
그리고 이런 이산적인 출력을 연속적인 형태로 취합하는 플라이휠 같은 장치가 필요하며, 밖의 바퀴가 원하는 저속/고토크 비율로 변환하는 변속기도 반드시 있어야 한다. 전기 시설로 치면 이게 변압기나 마찬가지이다.

그 반면, 증기기관 같은 외연기관에서 물 같은 비열 높은 물질이 한번 끓어 수증기가 되면, 얘는 열을 간직하고 있는 동안 내연보다야 꽤 가늘고 부드럽고 길게.. 저속으로도 큰 힘을 낼 수 있다.
물론 열역학적으로 매우 비효율적이며, 처음에 물을 끓이는 데 시간이 너무 오래 걸리고 속도 조절 같은 반응이 늦다는 건 매우 큰 단점이다. 하지만 외연기관은 내연기관보다 기계 구조가 훨씬 더 단순하고 제작 난이도가 낮으며, 연료도 훨씬 덜 가리고 신뢰성이 높다는 결정적인 장점이 있다.

외연기관은 공간이 많이 필요해서 소형화가 어려운 반면, 내연기관은 복잡하고 제작 난이도가 높아서 고출력 대형 버전을 만드는 것이 오랫동안 난감했다. 괜히 20세기 이후에 실용화된 게 아니다.

또한, 증기라는 유체는 불을 때는 기관과 분리된 덕분에 그 자체가 자연스럽게 변속기 오일 같은 역할도 한다는 게 인상적이다. 즉, 외연기관은 엔진도 구조가 단순하지만 변속 계층도 더욱 단순하다.

2. 폭발

자동차가 부드럽게 잘 굴러가려면 연소실에 들어가는 공기와 연료의 양, 그리고 이 회전수를 너무 작지도 크지도 않은 적절한 부하로 바퀴에다 전달하는 변속비가 잘 결합해야 한다. 공기와 연료의 배합 문제는 어느 엔진에서나 매우 중요한 문제일 것이며, 굳이 폭발이 아니라 열만 왕창 뜨겁게 만드는 물건인 용광로에서도 동일하게 적용 가능할 것이다.

좀 뜬금없는 얘기이다만, 이건 세탁기에서 빨래의 양 대비 물과 세제가 잘 맞물려야 하는 것과 같은 이치이다.
세제 찌꺼기가 빨래에 남은 건 연료가 너무 많이 들어가고 불완전 연소해서 매연과 검댕이 나오는 것과 동일하다.
적정 비율을 계산하는 게 쉬운 문제가 아니기 때문에 오죽했으면 세탁기에도 컴퓨터(콤퓨타 세탁)가 들어갔고, 엔진엔 진작부터 전자 제어 기술이 동원돼 있다.

수소는 맹렬히 반응하고 잘 폭발해서 단독(액체 수소) 또는 탄화수소 형태로 동력기관의 연료로 쓰이는데, 질소는 화합물이 화약· 폭약의 재료로 쓰인다는 차이가 있다.

3. 무연 휘발유외 유연 휘발유

21세기엔 자동차의 동력원 중 디젤 엔진만이 더티하다는 오명을 잔뜩 뒤집어쓰고 환경 규제가 강화되는 구석이 있었다. 특히 유로 규제는 6단계까지 올라가서 DPF에다 SCR까지 도입되고, 연료뿐만 아니라 요소수도 주기적으로 번거롭게 넣어야 하게 됐다.

하지만 휘발유 엔진도 아무 조치 없이 저절로 깨끗해진 건 아니었다.
고온 고압으로 인해 공기 중의 질소가 질소산화물로 합성되며, 불완전 연소로 인해 일산화탄소와 각종 탄화수소가 배출되는데, 이걸 고온(300~500도)에서의 화학 반응을 통해 물· 질소· 이산화탄소로 환원시키는 삼원촉매 정화 장치가 개발되었다.

얘는 모든 자동차에 장착이 의무화됐다. 이것 덕분에 세계 각국의 대도시에 자동차가 이렇게 많이 다녀도 사람들이 그럭저럭 숨 쉬고 지낼 수 있게 됐다.
단, 이 촉매 장치는 백금이나 팔라듐 같은 비싼 귀금속을 써서 제조되기 때문에 자동차의 가격을 올리는 요인으로도 작용했다.
백금은 수소 연료 전지에도 촉매로 쓰이는걸? 몇 그램 남짓한 미량이지만 이거라도 건지려고 폐차장을 뒤지는 귀금속 도둑도 나돌았다고 한다.

그리고 참 운명의 장난인지..
이 촉매 장치는 휘발유 엔진의 노킹 오동작을 방지해 주는 효자 첨가제이던 '납' 성분과는 어울릴 수 없는 캐상극이었다.
얘는 탄화수소· 일산화탄소· 질소산화물은 잘 반응시켜 주지만, 납이 들어가면 그게 촉매 장치에 달라붙으면서 촉매를 망가뜨렸다.

삼원촉매 정화 장치를 사용하기 위해서는 납이 아닌 다른 대체제가 들어간 무연 휘발유의 개발이 필수였다. 대체제는 아무래도 납보다는 더 비싼 물질이었다.
환경 규제 때문에 기름값도 비싸지고 차값도 더 비싸지고.. 하지만 어쩔 수 없었다.

유연 휘발유는 공기 중에 미세하게나마 납을 내뿜으니 그것만으로도 인체에 해로운데, 촉매 변환이 되지 않아서 다른 배기가스의 정화조차 못 하게 만드니 "이중으로 해로웠다". 환경과 건강에 백해무익이니 빨리 퇴출시킬 수밖에 없었다.

그래서 우리나라는 1980년대 중반부터 무연 휘발유 도입이 논의되었고, 1987년 7월부터는 무연 휘발유 차량만 생산 가능하게 바뀌었다.
그렇게 과도기를 거쳐서 1993년 1월부로 유연 휘발유는 국내에서 유통이 전면 금지되었다.

요컨대.. 무연과 유연 휘발유 문제는 납이 있고 없고만의 문제가 아니라 촉매 변환 장치의 사용 가능 여부도 같이 딸린 문제였다는 것이다.
그리고 휘발유도 경유처럼 환경 규제로 인한 규격 변화를 거쳤다는 것..
유연 휘발유는 작년 여름에 마지막 생산 시설이 폐쇄되고 전세계에서 완전히 퇴출됐다고 한다. (☞ 보도 자료)

4. 독특한 기술들

자동차 업계엔 통상적인 가솔린/디젤 왕복 엔진 말고 자신만의 독특한 엔진 기술을 육성한 걸로 유명한 기업이 좀 있다.

(1) 마쓰다: 반켈 엔진. 거기에다 휘발유 자연착화 디조토 엔진도 선구자인 듯?
둘 다 제대로 동작만 한다면 굉장히 획기적인 기술이다. 하지만 아직까지는 실용화에 갈 길이 먼 상태인 걸로 내가 알고 있다. 그리고 내연기관 자체가 마이너 퇴물로 전락한다면.. 대형차용 디젤도 아닌 이런 엔진 기술은 사장될 가능성이 높다.
반켈(로터리?) 엔진은 그 특성상 2행정 엔진과 비슷한 구석이 있는 것 같다. 배기량 대비 고출력, 하지만 내구성 메롱, 엔진오일도 같이 연소 등...

(2) 도요타: 가솔린-전기 하이브리드
거의 1990년대 말부터 육성했기 때문에 이 바닥 기술은 도요타가 완전 본좌라고 들었다.
하지만 그 반대급부 때문에 일본 전체가 순 배터리 전기차는 보급이 굉장히 더디고, 오히려 그건 요즘 중국이 더 많이 연구하고 팔아먹고 있다. 우리나라에까지 중국산 BYD 배터리 전기 시내버스가 다닐 정도이니..
순 내연기관도, 순 배터리 전기도 아닌 하이브리드 차가 과연 얼마나 더 상품성이 있을지 궁금하다.

(3) 현대: 수소 연료전지
현대는 이례적으로 저 분야에다가 사운을 걸고 집중 연구 개발을 해 왔다.
충전 인프라가 열악한 게 큰 약점이다만.. 배터리 전기가 영 들어가기 곤란한 대형차 상용차 쪽으로 승산이 있어 보인다.

이러니 21세기의 초-중반은 자동차 엔진의 주 동력원이 다양해지는 매우 흥미로운 시기로 역사에 기록될 듯하다.

옛날엔 증기와 전기가 자동차의 동력원에서 퇴출되고 철도에서만 살아남았다. 당연히 전자는 대형화에 유리해서, 후자는 길 따라 전깃줄을 부설할 수 있기 때문이었다.
그 뒤 증기는.. 왕복 엔진이 아닌 터빈 형태로 발전소나 선박에서만 현역이다. 내연기관으로는 저렴한 석탄을 이용한 화력 발전이 가능하지 않을 테니 말이다.
전기는 눈부신 전기공학과 배터리 기술의 발달에 힘입어 100여 년 뒤에 다시 자동차 시장을 공략하는 중이다.

5. 가스 터빈

외연기관인 증기 터빈이 저런 대형 기계에서 쓰인다면, 내연기관인 가스 터빈은 비행기에서 주로 쓰인다. 왕복 엔진과 덩치를 어떻게 비교해야 할지는 모르겠지만.. 어쨌든 다른 조건이 유사할 때 터보샤프트(회전익) 및 터보프롭(고정익) 같은 엔진이 왕복 엔진보다 고회전 고출력이 더 잘 나오고, 엔진 자체도 구조가 덜 복잡하고 정비성이 좋다고 한다.
그래서 프로펠러 비행기라도 아주 아담한 경비행기 급이 아닌 한, 조금만 덩치가 커지면 왕복 엔진 대신 이런 가스 터빈 기반 엔진이 쓰인다.

다만, 이런 가스 터빈 엔진이 왕복 엔진보다 더 비싸고, 연료 소모도 더 심하다는 건 감안할 점이다. 터보샤프트 엔진은 헬리콥터뿐만 아니라 탱크 같은 일부 특수한 육상 기계/교통수단(?)에도 쓰인다.
가스 터빈을 더욱 발전시켜서 배기 가스를 적극적으로 뒤로 내뿜으면 '제트' 엔진이 된다. 오늘날 크고 빠르게 날아가는 비행기들은 모두 이런 제트 엔진 기반이다. 프로펠러만 돌려 갖고는 피스톤이든 터빈이든 초음속 비행이 무리이며, 소음도 감당하기 어려울 지경이 되기 때문이다.

하긴, 비행기뿐만 아니라 기록 수립만이 목적인 초음속 초고속 자동차도 이런 제트 엔진이 탑재된다고 들었다.
공기를 빨아들이지 않고 산화제를 내장한 채, 이런 분출에만 특화된 엔진은 로켓 엔진이 된다.

Posted by 사무엘

2022/08/31 08:35 2022/08/31 08:35
, , , , , , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/2061

1. 수증기와 물방울

물이라는 건 일상적으로는 액체이지만 섭씨 0도 이하에서부터 고체 얼음으로 바뀌고, 섭씨 100도 이상에서부터 기체 수증기로 바뀌는 물질임이 주지의 사실이다(지표면 1기압 기준). 하지만 현실의 물은 상태가 이보다 훨씬 더 다양하고 복잡하게 자유자재로 바뀌는 물질이기도 하다.

  • 물은 공기와 접촉하다 보면 굳이 100도 이상이 아닌 온도에서도 느리게나마 슬슬 증발해서 수증기가 된다. 일반적으로 물이 공기 중의 다른 기체를 녹여서 품지만, 반대로 자기가 공기 중에 끼여 들어가서 둥실둥실 떠 다니기도 한다는 것이다. 우리는 이것을 습기라고 부른다.
  • 수증기가 아니라 아예 미세한 물방울이 그대로 중력을 쌈싸먹고 공기 중에 뿌옇게 섞여 있기도 한다. 이것이 바로 구름 내지 안개이며, 둘은 생긴 곳의 고도만 다를 뿐 본질적으로 완전히 동일한 존재이다. 수증기는 깔끔하게 시야에서 사라져서 눈에 보이지 않는 반면.. 저런 뿌연 물 입자는 주변 시야를 좁히고 가시거리를 떨어뜨리는 효과를 낸다.

수증기나 물방울이나 완전 별개의 존재는 아니다. 상대 습도가 100%에 근접할 정도로 매우 높아지면 안개도 잘 끼게 된다는 인과관계가 있다.
이런 공기 중의 습기나 수분이 주변의 차가운 물질과 부딪혀서 액화하면 이슬이나 성에가 된다. 액화로 모자라서 얼어붙으면 서리가 되기도 한다.

그런데 이런 일이 어떻게 가능한 걸까? 물론 어떤 건 물만의 특징이 아니라 액체라면 대체로 다 갖는 특성이기도 하다. 하지만 이런 상변화 원리를 화학적으로 저수준에서 완전히 규명하는 건 상당히 복잡하고 까다로운 일이다.

2. 가습과 제습

세상에는 모터와 발전기, 터빈과 프로펠러라는 상반된 기계가 있는 것처럼, 가습기와 제습기라는 물건도 동시에 존재한다.
물이 공기 중에 섞이는 방법과 조건이 저렇게 다양하다 보니, 가습기도 분무기마냥 아주 미세하게 쪼개진 물 입자를 분사하는 놈이 있는가 하면, 가열 증발이나 자연 증발을 유발하는 놈도 있다.

(1) 물 자체를 쏘는 놈은 가습 성능이 좋지만 물에 섞여 있는 세균· 불순물까지 같이 공개 중에 분사될 위험이 있다.
(2) 증발식은 불순물 걱정은 상대적으로 덜하지만, 비싸고 가동 비용이 많이 들거나(물을 끓이려면..) 가습 성능이 떨어진다(세월아 네월아 자연 증발 유도)는 흠이 있다.

다음으로 제습은 가습과 반대로 공기 중의 눅눅한 물기를 온전한 액체 물의 형태로 도로 한데 수집하는 과정인데, 가습보다는 아무래도 더 어려워 보인다.

(1) 증발의 역순으로 아주 차가운 부위를 만들어서 습기를 액화· 응결시키는 제습기가 있는데, 얘는 개념적으로 에어컨의 완벽한 하위 호환이다. 에어컨이 사이다라면 제습기는 그냥 탄산수 정도라 하겠다. (송풍기는 맹물.. -_-)
얘는 다른 방식보다 제습 성능이 뛰어나지만, 에어컨의 공기 압축기가 그대로 들어간 형태이기 때문에 무겁고 전기를 많이 먹는다. 가동 중에 웅웅 소음도 감수해야 한다.

(2) 이런 기계 장치 말고 화학 반응으로 습기를 제거하는 물건도 있다. 넓은 실내보다는 옷장 안의 '물 먹는 하마', 김 봉지 안의 실리카 겔, 심지어 화학 실험 때 쓰이는 진한 황산 같은 부류 말이다. 습기를 한계치까지 머금어서 제습 능력이 고갈된 매체는 버리거나 아니면 따로 건조시켜서 재활용할 수 있다.

제습기 기계와 제습제의 차이는 마치 발전기와 전지/배터리의 차이와 비슷하다고 하겠다.
에어컨을 돌리면 제습도 자동으로 같이 되는 굳이 제습기만 왜 필요한지 의구심이 들 수도 있다. 하지만 에어컨은 열기를 밖으로 빼내는 설비를 갖춰야 하는 반면, 제습기는 그런 게 없으니 설비가 에어컨보다는 조금이나마 더 단순하다.
또한, 도시에서는 빨래를 간편하게 밖에다 널어서 말릴 환경(미세먼지..)이나 여건(옥상???)도 갖추기 열악한 만큼, 제습기가 건조기 역할도 분담· 보조할 수 있을 것이다.

습도가 너무 낮으면 호흡기와 피부 건강에 안 좋고(그놈의 트고 갈라짐) 정전기가 잘 생긴다. 날씨는 일교차가 커진다.
습도가 너무 높으면 곰팡이· 세균이 번식하기 쉬워서 위생 여건이 안 좋아진다. 빨래가 잘 안 마르고 불쾌지수가 커진다.

그러고 보니 바이러스는 습도가 낮은 곳이 유리하고, 세균은 습도가 높은 곳이 유리하다는 게 참 흥미로운 차이점이다. 똑같이 인체에 병을 일으켜도 둘은 그만치 서로 완전히 다른 존재라는 것이다. 그리고 바이러스와 세균이 다른 것처럼.. 세균하고 곰팡이· 버섯을 가리키는 균류는 또 서로 다른 존재이다.
폐렴은 곰팡이, 세균, 바이러스.. 세 병원체들로부터 모두 발생할 수 있으며, 치료법이 제각기 모두 다르다.

또한, 정전기는 건조해야 찌릿찌릿 잘 생기는 반면, 본격적인 전기 감전은 물이 흥건하게 젖은 환경에서 더 잘 발생하니 이것도 참 아이러니한 면모이다.

3. 물에 녹은 유기물과 무기물

우리가 일상적으로 물의 맑고 더러움을 판별하는 기준은 마실 수 있느냐, 씻는 물이나 농업 용수로 쓸 수 있느냐 같은 생리적 관점이다. 그래서 n급수라든가 화학적/생물학적 산소 요구량 같은 잣대를 만들어서 수질을 측정하곤 한다. 이런 건 물에 녹아 있는 유기물, 즉 부패하고 분해되는 물질의 양이 관심사이다.

그런데 음용 가능할 정도로 깨끗한 물이라고 해도, 그 물이 순도 100% H2O 순물질임을 의미하지는 않는다. 자잘한 무기물 불순물.. 고상하게 표현하자면 각종 ‘미네랄’ 성분이 여전히 극미량 녹아 있다.

이건 인체에 해롭지 않고 평소에는 더욱 문제될 게 없다. 그런데 뜨거운 물을 상시 취급하는 보일러나 온수 매트, 자동차 엔진(냉각수..), 증발식 가습기 같은 기계를 오래 가동하고 나면.. 물만 흐르거나 증발한 뒤에 이런 불순물이 앙금 형태로 조금씩 쌓이고 굳을 수 있다.
이건 당연히 기계 내부의 물의 흐름을 방해하고 탈을 일으키게 된다. 한번 부은 물이 계속 순환만 하는 게 아니라 새 물이 지속적으로 들어온다면 상황은 더욱 심각해진다.

마치 신체 내부에 결석/담석이 쌓이는 것처럼, 혈관에 콜레스테롤이 쌓이는 것처럼, 치아 사이에 치석이 끼는 것처럼.. 이런 앙금을 일컫는 말이 '관석'이라고 따로 있다. 이건 물통 안에 끼는 평범한 물때 같은 것과는 차원이 다른 물질이다.

열 증발식 가습기는 초음파 진동식 가습기처럼 물 내부의 세균이 같이 분무되는 문제가 없는 대신, 물통의 관석을 주기적으로 청소해 줘야 한다. 일장일단이 있는 셈이다.
또한, 이런 이유로 인해 자동차 냉각수도 평범한 수돗물 맹물을 덥석 넣어서 오래 굴리는 건 엔진에 좋지 않다. 겨울에 꽁꽁 얼어서 터지는 것도 문제이지만, 물에 원래 녹아 있던 무기물 불순물이 엔진에 낄 수도 있기 때문이다.

자동차 엔진은 사람이 당장 화상을 입는 90도대의 뜨거운 물이 냉각수로 아주 유용히 쓰이는 곳이라는 걸 생각해 보자. 그리고 요즘 엔진은 연료와 엔진 내부 상태에 대한 민감도가 갈수록 올라가고 있다는 점도 말이다. (불순물을 조금도 용납하지 못함)
그러니 이런 기계들은 1급수니, 생물학적 산소 요구량이니 하는 것과는 완전히 다른 차원, 다른 의미에서 깨끗한 물을 필요로 하는 셈이다.

자동차는 냉각 계통에 문제가 생기면 겨울에도 엔진이 과열되어 퍼질 수 있다. 그게 이상이 없으면 한여름 기온이 40~50도에 달하더라도 굴러가는 데 지장이 없다. 시동 걸린 엔진은 애초에 거기보다 훨씬 더 뜨거운 곳이니까.. 그리고 이 열이 바로 히터의 원천이다.
한여름에는 엔진 냉각에 덧붙여 타이어 공기압만 더 신경 쓰면 된다.

4. 물의 기묘한 특성

(1) 물은 사람의 온도만 낮춰 주지, 자외선은 전혀 차폐하지 않는다. 그렇기 때문에 물놀이를 하면 발도 슬리퍼로 가려지지 않은 발가락 부위는 검게 탈 정도이다.
그런데 내가 알기로 해가 구름에 가려져서 하늘이 흐릴 때는 피부가 타지 않는다.
구름도 한낱 물방울 알갱이일 뿐인데 걔는 무슨 원리로 자외선을 차폐하는 거지? 게다가 구름은 무슨 수로 전기 에너지까지 품고서 천둥 번개를 일으킬 수 있을까..? 이건 내 과학 지식으로는 잘 모르겠다.

(2) 공기가 너무 건조하면 찌릿찌릿 정전기가 잘 생긴다. 하지만 아예 감전 사고는 신체가 젖었을 때 잘 난다.
세균이나 곰팡이는 공기가 습할 때 잘 번식한다. 그러나 바이러스는 건조한 환경에서 더 잘 퍼진다.
이런 것처럼 물기라는 것도 미세하게 있을 때와 흠뻑 넘쳐날 때의 특성이 좀 달라지는 듯하다.

Posted by 사무엘

2022/06/22 08:35 2022/06/22 08:35
, , , , , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/2034

우리 주변의 자연 세계가 성경이 말하는 죄로 인한 저주를 받지 않았다면.. 우리가 인지하는 생화학이라는 분야의 과학 관찰 결과는 지금과 많이 달라졌을 것이다.
인간의 수명이 지금보다 훨씬 더 길고(창5, 사 65:20) 육식동물들도 초식을 했을 거(사 65:25)라는 건 좀 고전적인 이야기이다. 더 생각해 보면...

(1) 식물이 더 빨리 쑥쑥 큼직하게 잘 자랐을 것이다.
힘들게 밭 갈고 잡초 뽑고 약 치지 않아도, 유전자 다양성과 면역력을 몽땅 삼싸먹으며 마개조 학대에 가깝게 품종개량을 하지 않아도.. 식용 열매가 큼직하게 많이 잘 맺혔을 것이다.
개인적으론 호박이 자라는 걸 가까이에서 관찰해 보니 이 생각이 절실히 들더라.

(2) 동식물에 지금 같은 원인 모를/악질적인 병충해가 없었을 것이다.
식물의 적은 식물이고 서로 견제하고 말려 죽이고 독을 만들어서 내뿜고.. 우한 괴질 같은 이상한 바이러스가 생긴 걸로도 모자라서 자꾸 이상한 변이가 생겨나는 거 말이다.
이런 메커니즘의 과학적 디테일을 다 알 수는 없지만, 이런 것도 성경적으로는 응당 죄의 저주가 야기한 결과이다.

(3) 모기가 흡혈을 하지는 않았을 것이다.
개인적으로는 난 예수님은 성육신했던 당시에 더운 여름에도 모기에 물려서 피를 빨리지는 않았을 거라고 생각한다.

(4) 인간 포함 동물의 배설물이 지금 같은 끔찍한 외형과 악취를 내뿜지 않고, 시종일관 그냥 태변과 비슷한 형태였을 것이다.

(5) 인간 포함 동물의 사체가 지금 같은 끔찍한 외형과 악취를 내뿜지 않고, 그냥 죽은 식물이 말라 비틀어져 분해되는 것과 별 차이 없이 분해됐을 것이다.

그래서 만해 한 용운은.. "세상에서 제일 더러운 것은 똥, 그보다 더 더러운 건 시체.. (+ 그보다 더 더러운 건 네놈들의 마음)"라고 그랬었다. 이건 자연과학과 인문과학을 모두 굉장히 잘 통찰한 발언이다!

이 정도면 혈액도 그렇고.. 뭔가 단백질의 분자/원자 구조 차원의 왜곡이 발생하지 않았나 싶은 생각이 들 정도이다.
하나님이 3천여 년 전의 옛날 사람인 욥이 아니라 양자역학과 DNA 분자생물학을 아는 현대의 물리학자 생물학자 등등에게 다시 나타나셔서 욥기 38~41장 사이의 배틀을 뜬다면 어떤 질문을 하실지 개인적으로 굉장히 궁금하다..!!!

"내가 태초에 공간의 중심을 중성자로 채웠을 때 넌 어디에 있었느냐? 알고 있다면 말해보아라. 중성자의 붕괴는 전자와 양성자를 낳고 원소를 생성시키는데 그 중성자 붕괴의 반감기는 누가 정했느냐?" 아마 이런 식으로 얘기가 나올 테니까.. =_=;;

신의 창조를 믿는 사람들은 진화론을 막 하나님을 부정하는 사탄적인 생각 이런 식으로 매도하고 공격하는 경향이 있다. 하지만 내가 보기엔 그 정도까지 적대시할 필요는 없다고 여겨진다.
진화론은 무신론보다는 죄의 저주를 받은 이 자연 세계에서 존재하는 약육강식과 적자생존과 죽음을 관찰하면서 만들어진 이론이고, 그 관찰 자체는 과학적으로 명백히 사실이기 때문이다. 생명의 기원 말고 생명의 "분화" 말이다.

지금 자연에 다~ 아름답고 조화로운 지적설계의 산물 "만" 있는 건 절대 아니기는 마찬가지이다.
모기의 흡혈은 말할 것도 없고.. 뻐꾸기가 남의 둥지에다 남의 알을 밀어내고 자기 알 슬쩍 낳는 습성도 그럼 하나님이 처음부터 일부러 그렇게 만든 것일까?
마냥 적대시하고 대립할 게 아니라, 그림이 그게 전부가 아니라고 얘기하는 게 바람직한 문제 접근 방식이라 여겨진다.

그럼 다음으로, 위의 (1)에서 논했던 식물의 생산력에 대해서 좀 더 생각해 보도록 하겠다.
인간은 4000년 전이나 지금이나 농사를 지어서 식물의 몸체나 과육을 주식으로 먹으며 살고 있다. 그렇기 때문에 산업· 공업을 위한 석유, 물, 희소 화학 원소뿐만 아니라 저런 농작물 종자도 전략 안보 물자인 게 주지의 사실이다.

오늘날은 과학 기술이 발달해서 식량 생산이 획기적으로 늘었으며, 지구에서 50억을 넘어 80억 인구를 부양 중이라고 그런다. 질소 합성법을 개발하고 오랫동안 어마어마한 품종 개량까지 한 덕분이다. 지금 굶주리는 사람들이 있는 건 인간의 욕심이나 정치· 경제적인 문제 때문이지, 절대적인 식량 생산이 부족하기 때문이 아니다.

난 도시 촌놈 농알못이다 보니, "그럼 열매 먹고 남은 씨 중에 큼직하고 소금물 아래로 가라앉는 걸 아무거나 심으면 되지 않나?"라고 생각했는데.. 그게 아니더라. 일부 곡물은 종자 회사가 특단의 생산력 마개조 최적화를 한 종자를 매년 구입해야 된댄다.
그 최적화는 당대에만 유효할 뿐, 후대로 유전되지는 않기 때문이다. 걔가 맺은 과육 안에 들어있는 씨를 또 뿌려 갖고는.. 원래 종자와 동등한 양과 질을 지닌 열매가 절대로 맺히지 않는다.

인간들이 도대체 식물에다가도 무슨 짓을 하길래..???? 그냥 비료 주고 약만 치는 게 아닌가 보다.
그렇다고 종자 회사가 악의적으로 종자에다가 터미네이터 락을 건 것은 아니고.. 단순히 유전적인 특성이 계속 유지되지 못하기 때문에 생산력이 떨어지는 거라고 한다.

군견이나 경주마 같은 건 체력 좋은 우수한 놈이 대대로 계속 나오도록 혈통을 특별히 보존한다고 하는데 옥수수 종자는 어떻게 관리되나 모르겠다.
이 품종 개량이라는 게 죄로 인한 땅의 저주를 근본적으로 완전히 풀어 버린 것은 아님을 알 수 있다. 그저 조건부로 일사적으로 우회· 회피만 했을 뿐이다.

각종 산기슭이나 강변의 공원 공터에 '무단 경작 금지'라는 팻말이 붙은 이유도 이런 맥락에서이다.
남의 사유지라면 당연히 무단 경작을 해서는 안 되겠지만, 어차피 누구의 땅도 아니고 야생 자연을 재현해 놓은 곳에다가 인간에게 도움이 되는 식물을 좀 심어서 가꾸는 게 왜 문제이고 금지인 걸까?

사용자 삽입 이미지

이조차도 현재 세상의 자연이 에덴 동산 같은 곳이 아니기 때문이다. 평범하게 관상용 꽃, 풀, 나무 따위를 심는 게 아니라 먹을 만한 열매를 얻기 위한 작물을 심으려면, 주변 환경을 있는 자연 그대로 놔두는 게 아니라 인위적으로 조절과 변형을 많이 가하고 물과 온도, 영양분 튜닝을 많이 해야 한다.

냄새 나는 퇴비를 잔뜩 뿌려야 하고, 쓰레기가 될 가능성이 높은 비닐 등 각종 구조물을 설치해야 하고, 병충해 대비를 하느라 심지어 독한 농약도 쳐야 한다. 게다가 작정하고 이런 식용 작물을 재배하는데 겨우 한두 그루만 심지는 않을 테고..
결국은 작은 텃밭이라도 농작물이 자라는 곳은 천연 자연과는 다른 장소가 되어 버린다. 이는 공원의 설립 취지를 망치므로 금지되어야 할 것이다.

이렇게 과육을 많이 내는 쪽으로 품종개량된 작물은 야생에서는 제대로 자라지 못한다. 집돼지가 멧돼지에 비해 야생에서 제대로 생존하기 어려운 것과 같은 이치이다.
또한 온통 시퍼런 식물들로 가득한 동남아시아 열대우림 정글이 정작 '녹색 사막'이라고 불리며 광합성 산소 공급 이외에 실질적인 인구 부양은 못 하는 것도 이런 맥락에서 생각할 수 있다. 땅에 임한 천연 자연에 대한 저주의 증거인 셈이다.

사용자 삽입 이미지

자, 농사의 특성이 자연의 특성과 어떤 차이가 있는지 감을 잡았다면..
강가나 공원 등, 적당히 흙 밟을 수 있고 수풀 우거진 곳이라고 해서 각종 음식물 쓰레기--그것도 축축하고 냄새 나는 것--를 함부로 버리거나 파묻고, 심지어 방뇨까지 하면서 “어차피 다 거름이 될 거니까 괜찮다” 이러는 게 그리 바람직하지 못한 사고방식임을 알 수 있을 것이다.

음쓰나 배설물이 썩고 분해되면 물론 거름이 되기야 할 것이다. 그러나 그건 하루 아침 한두 시간 만에 뚝딱 되는 일이 아니다. 그렇게 되기까지 흉측한 비주얼과 악취, 벌레, 위생 문제 뒷감당은 어찌 하려고?
거름을 만들 거면 자기 텃밭이나 뒷간, 아니면 정말 사람이 아무도 없는 첩첩산중에서나 만들어야 한다. 사람이 수시로 지나다니는 공공장소에서는 자제해야 한다.

심지어 천연 퇴비 말고 화학 비료도 마찬가지다. 화학 비료는 당장 공기 중에서 악취를 풍기거나 세균과 벌레를 꼬이게 하지 않는다. 분해가 잘 되지 않는 플라스틱 같은 물질이 아니며, 중금속이나 농약 같은 유독성 물질도 아니다.

얘는 흔한 편견과 달리, 성분 자체가 식물이나 인체나 환경에 해로운 게 아니다. 단지, 식물에게 필요한 영양 성분이 일부만 '너무 많이' 들어있어서 문제이다. 그래서 잉여 분량이 토양을 산성화시키고, 물에 씻겨 들어갔을 때 부영양화를 야기해서 수중 생물을 공멸시킨다.

다시 말해 얘는 환경에 문제를 끼치는 방식이 다른 여느 인공 화학 물질과는 좀 다르다. 어찌 보면 식물계의 정크푸드 인스턴트 식품인 건지도 모르겠다. 당장은 싼 가격에 풍부한 영양을 공급하고 효과도 있지만.. 영양 불균형을 초래하고 건강이나 환경을 해칠 위험이 크다는 공통점이 있으니 말이다. 식물계의 도핑 약물까지는 아니고 가공식품에 가까운 듯.. ㄲㄲㄲ

이런 이유로 인해 농지가 아닌 공원이나 텃밭 수준에서는 농약과 마찬가지로 화학 비료의 사용도 금지된다. 허나, 현실에서는 이런 걸로 영양을 팍팍 주입하지 않으면.. 농사에 들인 노력 대비 상품으로 내놓을 수 있는 과육이 풍부하게 많이 맺히질 않는다. 병충해를 생각하지 않더라도 말이다. 그러니 식량을 생산하는 논밭은 평범한 자연과는 형태가 좀 다른 곳이 될 수밖에 없다.

이상이다.
잡초 및 병충해와 싸우며 힘겹게 자라고 있는 텃밭의 호박이나, 새끼들 데리고 산을 뒤지며 먹을 것을 찾아 다니는 멧돼지들이나.. 다 "창조 세계가 지금까지 함께 신음하며 고통 중에 산고를 치르는"(롬 8:22) 사례에 속하는 것 같다.
그에 비해 인간들이 너무 먹고 살기 힘들어서 결혼도 출산도 기피하는 건 성격이 약간은 다르다.

Posted by 사무엘

2022/06/05 08:35 2022/06/05 08:35
, , , , , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/2028

신기한 자연 현상

1. 극도로 맑고 조용할 때만 보이고 들리는 것

주변이 너무 조용하면 설마 사람 눈알 돌아가는 소리까지 들린다거나(..;;) 하지는 않겠지만..
그래도 파리 날아다니는 소리가 들리고, 특히 평소에 존재감이 전혀 없던 벽시계에서 주기적으로 째깍 째깍 하는 소리가 들리게 된다. 그 정도면 컴퓨터의 냉각팬 돌아가는 소리도 크게 느껴질 수 있다.

청각이 아닌 시각 버전을 생각해 보면.. 온갖 잡다한 광공해 없이 칠흑같이 어두운 깜깜한 밤 하늘에는 일단 별이 잘 보일 것이다.
하늘이 미세먼지 없이 엄청 맑고 밝고 청명할 때 높은 곳에 올라가면.. 성남시 언덕에서 63빌딩까지 보이고, 북한산 정상에서 어디 인천까지 보이고 북한 개성 송악산이 보인댄다(맞나..?).
쓰시마 섬의 전망대에서 부산 광안대교가 보이고, 배가 수평선 아래로 서서히 넘어가는 게 보여서 지구가 한없는 평면이 아니라 둥글다는 것도 인지할 수 있다.

저런 거시적인 것 말고도,
한겨울 밤... 춥고 건조하고 칠흑같이 깜깜할 때 텐트 안에서 담요와 옷이 쓰윽 접촉하면 정전기 때문에 그 뽀도독~ 소리가 나면서 아주 작게나마 스파크라고 해야 하나 불꽃이라고 해야 하나.. 그런 게 반짝거리는 걸 볼 수 있다. 신기신기~
이런 것도 평소에는 볼 수 없는데 특정 조건이 충족됐을 때만 제한적으로 보이는 것의 범주에 들 수 있을지도 모르겠다.;;

2. 불을 비파괴적인 방법으로 끄기

촛불이나 그에 준하는 작고 약한 불은 훅 불어서 연소 가스를 날려 버리는 것만으로도 끌 수 있다. 그러나 알코올 램프 정도만 돼도 불어서 끄는 건 할 짓이 못 되며, 큰 장작불은 후후 불면 공기 공급이 잘돼서 오히려 더 강해진다.

다음으로 적당한 규모의 불은 다른 물건을 덮어서 짓눌러서(?) 공기를 차단함으로써 끌 수 있다. 가령, 알코올 램프는 불이 붙어 있어도 생까고 뚜껑을 덮어서 끄면 된다. 그리고 물에 적신 담요 같은 걸 덮어서 불을 끄는 방법도 있다.
하지만 이것도 불을 덮는 속도가 충분히 빠르지 못하거나 불길이 너무 크고 거세다면 역효과가 발생할 수 있다. 불이 꺼지기는커녕 덮으려고 투입된 물건이 먼저 타 버리기 때문이다.

훅 불어서 끄는 게 가능한 불의 상태, 그리고 물보다 비열이 낮은 다른 고체를 덮어서 불을 끄는 게 가능한 조건 같은 걸 물리/화학적으로 고찰해서 수식으로 표현 가능한지 모르겠다. 이런 건 물을 끼얹거나 소화기를 분사하는 것보다 덜 과격하고 비파괴적인 소화 방법이라 하겠다. (불을 껐던 자리에서 곧바로 다시 불을 켤 수 있는..)

연소의 특성을 생각해 보면, 손쉽게 불을 켜고 화력을 조절하고, 원하는 때에 연료의 공급을 차단해서 불을 바로 끌 수도 있는 가스레인지가 얼마나 대단하고 편리한 물건인지 알 수 있다. 연료가 처음부터 유체 형태이기 때문에 이런 조절이 가능한 것이다. 오죽하면 로켓 엔진은 액체 연료 기반이냐 고체 연료 기반이냐에 따라서 특성과 개발 난이도가 크게 달라질 정도이다.

3. 벽이나 천장을 오르는 곤충

소금쟁이가 물에 뜨는 이유나 새가 전깃줄에 앉아도 감전되지 않는 이유 이상으로 굉장히 신기한 게 있는데..
바로 개미, 파리, 모기 같은 곤충이 중력을 거슬러 벽은 물론이고 심지어 천장에서도 떨어지지 않고 발을 디디는 비결이다.;; 이놈들은 그 상태로 휴식까지 취한다~!

과거에는 다리에 거친 털이 나 있어서 천장이나 벽의 울퉁불퉁한 면과 결박(?) 고정을 해서 안 떨어지는 것으로 여겨졌는데.. 더 정밀하게 관찰을 해 보니 휘발성 강한 극미량의 접착액을 분사하기도 한다는 게 상당히 최근에 밝혀진 것 같다.

이 흔해 빠진 현상조차도 공짜로 저절로 발생하지는 않는다는 것이다. 곤충이 죽어서까지 벽이나 천장에 영원히 붙어 있지는 않는다는 것도 생각해 보자. (압살 당해서 파편이 눌러붙은 건 논외.. -_-) 살충제를 뿌리면 땅으로 우수수 떨어진다.
그럼, 곤충의 그 접착액을 무력화시켜서 벽이나 천장에 착지하지 못하게 하는 약품이 개발되면 곤충을 잡기가 훨씬 더 수월해지지 않을까 싶다.

상상을 초월하게 가벼운 곤충한테는 인간 급의 동물이 상상조차 하기 어려운 고유한 역학이 적용된다는 걸 알 수 있다. 물에도 부력이 아니라 표면장력으로 뜨는 것처럼 말이다.
벼룩이 자기 키 대비 수십 배를 점프할 수 있고 개미가 자기 체중보다 몇백 배 더 무거운 물건을 들고 나른다고는 하는데.. 그건 곤충만의 미시세계 역학 하에 있으니 가능한 일이다. 인간 스케일의 생물에게 적용 가능한 건 아니다.

여담이지만, 곤충은 죽는 모습도 남다르다. 압살 당하지 않고 살충제 같은 걸로 곱게(..) 죽는다면 어김없이, 약속이나 한 듯 99.9%에 가까운 확률로 언제나 배를 위로 드러내고 180도 벌렁 자빠진 채로 죽는다. 그 이유도 생각보다 깔끔하게 밝혀져 있지 않다.

4. 식물 뿌리와 물

대다수의 육상 식물은 아무래도 씨앗이 흙 속에 파묻힌 채 있다가 싹이 난다. 잎과 줄기는 땅 위로 올라가지만 뿌리는 더 아래의 깊은 흙 속으로 내려간다.
그렇기 때문에 흙 속에 파묻힌 뿌리 쪽에 무슨 일이 일어나는지를 인간 같은 지상 동물이 알기는 쉽지 않다. 식물의 뿌리는 도대체 어떤 원리로 물과 양분을 흡수하며, 뿌리 주변의 흙은 성분이 어떻게 바뀌는 걸까? 심지어 무게가 어떻게 달라질까?

건물만 해도 위로 올라가는 높이에 비례해서 아래로 터를 엄청 깊게 다져야 하듯, 지상에서 큰 덩치를 자랑하는 식물들은 지하의 뿌리도 왕창 깊고 넓게 내려 있다. 뿌리가 그야말로 땅 속을 몽땅 접수해서 무슨 돌덩이도 아닌 것이 흙을 꽉 붙잡고 있는다.;; 세포 분열이 만들어 낸 진정한 프랙탈을 보고 싶으면 가지가 아니라 뿌리를 보면 될 정도이다.

그러니 이런 식물은 조금만 커지고 나면 일반적인 완력으로 뿌리째 뽑아내는 게 불가능해지며, 손상 없이 딴 데 옮겨 심는 것도 극도로 어려워진다.
식물들을 다 베어내고 뽑아냈더라도 뿌리 밑동이 남아 있으면 잡초 같은 건 또 끈질기게 살아난다. 이런 게 많이 심긴 흙은 삽질을 해도 잘 파지지 않고, 또 빗물이 쏟아져도 흙이 잘 씻겨 내려가지 않는다.

흙을 붙잡아서 식물을 지지한 다음에 식물의 뿌리가 수행하는 역할은 다들 잘 알다시피 물과 양분을 흡수하는 것이다.
식물을 잘 키우려면.. 특히 품질 좋은 열매를 많이 얻으려면 햇볕을 많이 쬐어 주고 물과 비료를 적절히 잘 줘야 된다.

단순히 잎이나 줄기가 아니라 열매를 만드는 건 식물의 입장에서 굉장히 힘들고 영양과 에너지 소모가 큰 일이다. 자기 자신이 살기 위한 일이 아니라, 열매를 먹는 동물을 이롭게 하면서 자기 후세 번식을 겸하는 이타적이고 숭고한 일이다. 하지만 식물은 신이 내려 준 본능을 따라 이런 일을 기꺼이 한다.

그런데 이것들은 부족하면 문제이지만, 지나치게 많이 주는 것도 문제이며 식물에 큰 해를 끼친다. 여기서 ‘많이’란 절대적인 양이랑, 단위 면적/시간당 투여하는 양을 모두 포함한다.

물이 제대로 빠지지도 않는 곳에다 물을 너무 많이 주면.. 흙 속의 뿌리가 24시간 내내 수분에 쩔어서 축축하다 못해 뿌리가 숨을 못 쉬어 죽고 썩는 참사가 발생한다. 그러면 식물이 물과 영양 흡수를 못 해서 깡그리 시들고 죽어 버린다. 선의로 물을 많이 줬는데 도리어 식물을 잡게 된다.

그리고 물을 바가지로 무식하게 흙바닥에다 끼얹는 건 매우 안 좋은 방법이랜다. 샤워기/물뿌리개로 아주 살살 지속적으로 주는 게 적극 권장된다. 하늘에서 땅으로 떨어지는 빗방울처럼 말이다. 우리가 밥을 꼭꼭 씹어서 천천히 먹는 게 몸에 좋은 것과 정확하게 같은 이치이다.

다음으로 비료도.. 퇴비건 고농축 알비료건, 빨리 빨리 흡수되라고 뿌리에다 직타로 묻혀 줬다가는 식물이 반대로 영양분을 밖으로 털리고 말라 죽어 버린다.
며칠 쫄쫄 굶은 사람이 죽 대신 고영양 음식을 허겁지겁 흡입한 것, 목 마르다고 바닷물을 잔뜩 마신 것, 비타민이 독극물 수준으로 너무 짙게 농축된 북극곰 간을 그대로 먹은 것과 같은 일이 벌어진다.

식물은 동물과 달리 병들어 죽기 전까지는 배고프네, 목마르네 아무 반응이 없다는 게.. 키우는 관점에서는 장점이기도 하고 단점이기도 하다. 식물의 각종 내부 상태들이 계기판에 딱딱 표시됐으면 좋겠다. 자동차의 연료 경고등, 브레이크 경고등처럼 수분 부족 경고등, 양분 부족 경고등이라도 있으면 얼마나 좋을까? =_=;;

Posted by 사무엘

2022/03/01 19:34 2022/03/01 19:34
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1993

천문학자들의 잉여질

* 오~ 굉장히 오랜만에 천문 분야에 짤막한 글을 하나 올리게 됐다.

1. 지구의 자전을 따라가며 관측한 최장시간 개기 일식 (콩코드)

사용자 삽입 이미지

1973년 6월 30일, 로스 앨러모스 국립 연구소 소속의 과학자들은 그 당시 최첨단 기술의 산물이요, 운임도 상상을 초월하게 비쌌던 콩코드 초음속 여객기를 전세 냈다. 그리고 그걸 타고 공중에서 개기 일식을 관측했다. (공교롭게도 과학자들의 국적이 미· 영· 프여서 콩코드 개발사의 국적과도 일치했었음)

콩코드는 극심한 공기 저항을 뚫고 무리하게 고속을 추구하느라 연료 소모가 너무 심했으며, 비행 후에 기체의 유지보수 비용도 많이 들었다. 그런 주제에 승객은 100여 명 남짓밖에 못 태웠으니, 1인당 운임은 기존 아음속 여객기의 1등석 이상으로 비싸질 수밖에 없었다.

낮은 연비로 인해 항속거리도 짧은지라, 콩코드는 대서양은 건너도 태평양은 직항으로 횡단할 수 없었다. 우리나라에서 콩코드가 취항했다면, 1990년대 이전처럼 끽해야 괌 내지 앵커리지 정도나 가지, 뉴욕이나 LA까지 곧장 갈 수 없었다. (콩코드 여객기가 마케팅 홍보 차원에서 지난 1976년 11월 9~10일엔 우리나라도 방문해서 김포 공항에 착륙한 적이 있었음.. ㄲㄲ)

허나, 마하 2라는 속도는 압도적인 매력이기도 했다. 전투기의 속도로 비행하는 여객기라니.. 얘는 적도에서의 지구 자전 속도보다도 더 빠르게 날 수 있었다. 자전 방향을 거슬러서 동쪽에서 서쪽으로 날아가면, 서쪽으로 넘어가던 해가 도로 거슬러 올라오는 광경을 볼 수 있었다.

그러니 천문학자들이 이런 생각을 하게 됐다. 지표면에서는 지구의 자전 때문에 개기일식을 겨우 몇 분 동안밖에 볼 수 없는 반면, 저 콩코드 여객기 안에서 우리도 지구의 자전을 거슬러서 계속 같은(?) 지점에 있으면 일식을 더 오래 관측할 수 있을 거라고 말이다.

그래서 이 사람들은 콩코드 여객기를 빌려서 각종 관측 장비들을 실었다. 이 콩코드는 무슨 관광버스.. 아니, 관광기 노릇을 하면서 평소에 여객용으로 전혀 다니지 않던 적도 부근의 인도양-아프리카-대서양 구간을 날았다. 과학자들은 콩코드 특유의 그 자그마한 창문을 통해 개기일식을 무려 74분 동안 관측할 수 있었다고 한다.
이때는 석유 파동이 아직 발생하기 전이고 기름값이 아주 쌌기 때문에 이런 덕질 돈지랄도 할 수 있었다.

2. 태양계 밖에서 지구를 바라본 모습 (보이저 1호)

사용자 삽입 이미지

이건 태양계 외행성 탐사선인 보이저 1호가 무려 해왕성을 통과하고도 1년이 더 지났던 1990년 2월 14일에 찍은 사진이다.
인류가 만든 물건 중에서 지구에서 가장 멀리 떨어져 있는 놈이 바로 보이저 1호인데, 얘는 그에 걸맞게 세상 만물 중에 지구를 가장 멀리서 보고 찍은 사진을 전해 준 것이다.

1969년, 아폴로 8호가 지구를 찍은 “Earthrise(지구돋이)”라는 사진이 매우 유명하듯, 보이저 1호가 찍은 저 사진은 “The Pale Blue Dot(희미하고 푸르스름한 점)”이라는 이름으로 유명세를 탔다.
우리가 사는 지구라는 터전도 우주라는 거시세계에서는 얼마나 작고 보잘것없는 존재에 불과한지를 일깨우는 매우 의미심장한 작품이다.

이 사진은 NASA의 보이저 프로젝트에 관여하고 있던 유명 천문학자 겸 과학 저술가인 ‘칼 세이건’의 적극적인 제안 덕분에 찍힐 수 있었다고 한다.
그 당시에 지구와 보이저 호는 이미 60억 km가량이나 떨어져 있었으며, 신호를 보내는 데만 5시간이 넘는 상태였다. 지상 기지에서 실시간으로 카메라 영상을 확인하고 렌즈의 위치를 바꾸는 기동 따위는 가능하지 않았다. 사용 가능한 자원이 극도로 제한되어 있으니, 그 어떤 지시를 내리더라도 절대적으로 신중해야 했다.

그 와중에 미지의 세계인 태양계의 바깥을 하나라도 더 촬영해도 모자랄 판에, 반대로 지구가 있는 뒤쪽을 촬영하는 건 리스크가 컸다. 태양 쪽을 향해서 카메라를 잘못 구동하다가 기기를 망가뜨릴 수도 있었다. 이건 한가로운 덕질 잉여질처럼 비쳐질 수도 있었다.

그러나 다행히 저 사진은 별 문제 없이 찍힐 수 있었다. 칼 세이건의 제안 덕분에 인류는 지구를 저렇게 멀리서 찍은 진귀한 사진을 얻을 수 있게 되었다. 이것도 보이저 2호가 전해 준 천왕성이나 해왕성 사진 만만찮게 의미심장하지 않은가?

그리고 칼 세이건은 마냥 비현실 감상적 낭만적인 과학 덕후인 건 아니었다. 과학 분야의 행정가로서 국민 세금 아까운 줄도 알았으며, 무리한 유인 달 탐사의 반복에 대해서는 오히려 반대 소신이었다. 유인 달 탐사를 한 번 할 비용으로 무인 달 탐사는 n번씩 하면서 더 많은 발견을 할 수 있기 때문이라고..

보이저 1호에 장착되었던 카메라는 저 사진의 촬영을 끝으로 영구봉인되었다고 한다.
사실, 얘는 발사된 지 무려 40년이 넘었고, 이제 언제 교신이 끊기더라도 이상할 게 없는 노인학대 상태이긴 하다. 그나마 이렇게 오래 교신이 가능한 건 태양광이 아니라 물질 그 자체로부터 초월적인 에너지를 내는 원자력 전지 덕분이다.

3. 텅 빈 우주 공간에 찍힌 은하들의 모습 (허블 우주 망원경)

사용자 삽입 이미지
사용자 삽입 이미지

‘허블 우주 망원경’이라고.. 인공위성 형태인데 여느 첩보· 통신 위성들처럼 지구 쪽을 촬영하는 게 아니라, 우주를 촬영해서 영상을 보내 주는 ‘이동식 천문대’가 있다.
얘는 1990년 4월 말에야 발사돼서 활동을 시작했으니, 아까 그 보이저의 지구 사진과 등장 시기가 비슷하다.

지구에서 우주를 관측하는 건 낮과 밤, 구름과 날씨, 대기에 의한 산란, 주변의 각종 불빛 때문에 애로사항이 매우 많다. 오죽하면 도시에서는 이제 별도 거의 볼 수 없는 지경이 됐을 정도이다. 천문대를 도심과 최대한 떨어진 오지의 산꼭대기에다 건설해 보지만, 이것도 사진의 품질을 올리는 데 한계가 있다.

보통 이공계에서 공기가 방해물로 작용하는 건 십중팔구 운동하는 물체에 대한 ‘공기의 저항’이다. 극한의 고속을 다루는 항공 우주 공학에서는 열까지 걱정해야 할 정도로 저항이 극심해진다. 그런데 천체 관측은 물체의 운동과는 전혀 무관하면서 지구 대기의 방해를 받는 영역이라는 것이 참 흥미롭다.

하긴, 물은 아무리 티없이 맑고 투명하더라도 일정 깊이 이상이 되면 빛조차 전혀 들어오지 않게 되니.. 유체는 빛의 진행 속도를 느리게 하고 진행 방향을 바꾸고, 더 나아가 빛을 차단하는 효과가 있긴 해 보인다.

그런데 아예 지구 대기권의 밖에서.. 우주에서 우주를 관측하면 저런 한계를 전혀 받지 않으면서 지구에서는 감히 상상도 할 수 없는 고품질의 관측 사진을 얻을 수 있다.
그 반면, 단점은??? 그야말로 상상을 초월하는 비용...

이거 뭐 일반 야구장과 ‘돔 구장’의 차이가 문득 떠오른다. 후자도 날씨에 구애받지 않고 언제나 야구 경기가 안정적으로 열리게 해 주지만, 건설과 유지보수 비용이 정말 살인적이라는 점에서 약간 비슷한 관계인 것 같다.

허블 우주 망원경은 우리 돈으로 환산하면 수천억~조 단위의 예산이 투입되어 개발되고 발사됐다. 하지만 얘는 만들어 내는 결과물이 워낙 압도적이고 탁월하기 때문에 전세계의 천문학자들이 한 번쯤 사용해 보고 싶어하는 로망의 대상이 됐다. NASA에서는 세계로부터 들어온 관측 신청서들을 검토한 뒤, 1년 단위로 망원경 운영 스케줄을 짠다고 한다.

그런데 그 와중에.. 1995년에 ‘로버트 윌리엄스’라는 천문학자는 예약이 꽉 찬 그 비싸고 귀한 허블 우주 망원경을 이용해서 특정 천체나 은하가 아니라 아무것도 없는 텅 빈 우주 공간을 쭉 zoom 당겨서 찍어 보면 어떨지 제안했다.

이건 아무 성과 없이 망원경의 막대한 운영 비용만 날리는 돈지랄로 끝날 수도 있는 도박 모험이었다. 더구나 극도로 어두운 우주에서의 촬영은 무슨 지구에서 셀카 찍듯이 찰칵 한 번으로 금방 끝나는 것도 아니었다. 최하 며칠 이상씩 노출을 하며 기다려야 했다.

그래서 이 제안은 가성비가 거센 찬반 논쟁의 대상이 됐지만.. 그래도 끝내는 승인되어 촬영이 시행되었다. 그런데 결과물을 들여다보니, 성경에 나오는 “깊은 데로 그물을 던져라” 같은 이변이 벌어졌다.
사진에는 무려 3천 개에 달하는 은하들의 모습이 담겼다~! 이 사진은 “Hubble Deep Field”라는 이름이 붙어서 세계의 천문학계를 발칵 뒤집어 놓았다.

우주라는 건 저기뿐만 아니라 아무 데나 대고 촬영해도 별, 아니 은하들이 우리가 차마 상상도 하기 어려울 정도로 많이 깔린 거시세계였던 것이다.
저 사진은 인류가 까마득히 가장 먼 지점을 관측한 결과물이라는 기록을 수립했다.

참고로..
(1) 지구도 쉴 새 없이 자전과 공전을 하지만 허블 우주 망원경은 지구를 도느라 지표면보다 더 빠르게 움직인다. 얘는 이 상태로도 카메라가 같은 목표물을 꾸준히 관측할 수 있도록 렌즈의 시선을 시시각각 수정하는 시스템이 갖춰져 있다.

(2) 그리고 허블 우주 망원경은 엄청 먼 거리에서 엄청 크고 빛도 내는 별이나 은하를 촬영하는 것에 맞춰져 있다. 그럼 지구에서 관측하기 몹시 힘든 천왕성, 명왕성, 해왕성 같은 걸 이 망원경으로 볼 수는 없을까? 더구나 천왕성은 보이저 2호가 다녀가던 당시에 사진을 굉장히 흐릿하게밖에 못 찍었는데 말이다.
답을 말하자면, 그건 못 하라는 법은 없지만 가성비가 맞지 않기 때문에 안 한다.

목성의 흐릿한 고리 정도는 지구에서는 제대로 관측하기 매우 어렵지만 허블 우주 망원경을 동원하면 더 선명히 볼 수 있다. 그러나 지구의 천문대보다만 나은 결과가 나올 뿐, 천왕성· 해왕성· 명왕성 같은 건 어차피 보이저 2호나 뉴 호라이즌스의 근접 촬영을 능가하는 작품이 나오지는 못한다고 한다.
결국 탐사선과 우주 망원경은 서로 용도와 임무가 다른 셈이다. 저격 소총과 자주포가 용도가 다른 것만큼이나 다르다.

Posted by 사무엘

2021/12/31 08:36 2021/12/31 08:36
,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1970

흥미로운 과학사 에피소드

※ 세균의 발견, 비타민의 발견

1. 19세기는 인류가 미생물과 세균을 막 발견하고, 생물의 자연발생설을 완전히 떠나 보낸 시기였다.
독일에서는 로베르트 코흐가 1880년대에 탄저병, 결핵, 콜레라의 원인균을 최초로 발견해 냈는데, 같은 나라의 '막스 폰 페텐코퍼'라는 과학자는.. 위생학의 거장이었음에도 불구하고 세균설을 믿지 않았다. 더러운 물을 덮어놓고 마셔서 생물학적 세균이 아니라 화학적으로 해로운 독 때문에 탈이 나는 거라고 생각했던 것이다. 그게 아니면 유전병 또는 영양 결핍 따위..

그는 자기 주장을 입증해 보이겠다면서 콜레라 세균을 일부러 잔뜩 모아 놓은 맑은(?) 물을 공개적으로 원샷까지 했다.. =_=;; 그랬는데 그는 며칠(3~4일-_-) 설사만 약간 좀 하더니 멀쩡하게 나았다. 선천적으로 위장이 튼튼하고 면역력이 강했던가 보다.

그는 기고만장해서 자기 제자(루돌프 에머리히)한테까지 그 물을 먹였다. 불쌍한 그 제자는 죽을병을 끙끙 앓다가 간신히 살아났다.;;
그래도 페텐코퍼 아재는 죽을 때까지 자기 신념을 굽히지 않았다.
더러운 물 때문에 콜레라가 창궐한다는 것까지는 맞았다. 단지 더러운 물에 병균이 산다는 사실을 인정하지 않았을 뿐...

2. 그 다음으로 20세기에는 인류는 세균에 이어 비타민과 바이러스라는 것까지 발견해 냈다.
일본에서는 '모리 오가이'라고 문과 배경에다가 의학· 생리학을 두루 섭렵하여 일본군 육군 군의관을 역임한 꽤 똑똑한 사람이 있었는데.. 그는 군대에서 비타민 B의 결핍으로 인해 발생하는 각기병까지도 세균성 질환이라는 견해를 고집했다. 그래서 예방을 위해 식단 개선이 아니라 그저 근성으로 내무반 위생 검열만 빡세게 시켰다.

이 때문에 러일 전쟁 때 통계에 따르면 육군에서만 25만 명이나 되는 각기병 환자가 발생했으며, 이 중 약 2만 8천여 명이 사망했다. 이 환자 및 사망자는 거의 다 육군이었다. 오히려 식단이 더 열악했을 해군이 경험적으로 잡곡밥 처방을 하고 있어서 각기병 환자가 별로 없었다.
인품이 훌륭하고 자기 선에서의 능력도 뛰어났지만 실책으로 많은 병사들을 죽이는 흑역사를 남겼다는 점에서는 노기 마레스케 장군과도 비슷해 보인다. 이 사람도 죽을 때까지 비타민 B 결핍증이라는 걸 받아들이지 않았다고 한다.

* 파리와 구더기가 같은 종의 생물이라는 걸 모르고, 반드시 흐르는 물에 손을 씻어야 하는 이유를 모르던 시절, 무작정 피를 빼내기만 하다가 생사람 잡던 시절부터 시작해서 인류의 위생 보건 지식과 노하우는 비약적으로 발전해 왔다.;;

물리학에서는 19세기 말에 X선, 방사선 따위가 발견되고 양자역학이 태동하기 시작한 반면, 생물학은 비슷한 시기에 미생물과 세균의 존재가 연구되기 시작했으며 저명한 학자들 사이에서도 아직 저런 논쟁이 오갔다는 점을 생각해 보자. 바이러스도 아니고 세균은 양성자 중성자보다는 덩치가 훨씬 더 큰 놈일 텐데.. 그만치 생물은 무생물보다 연구하기 더 어렵고 까다롭기 때문일 것이다.

※ 지구의 나이, 우주의 나이

1. 미국의 클레어 패터슨이라는 과학자는 납 농도만 죽어라고 측정하다가 지구의 나이 대략 45.5억 년을 계산해 내는 업적을 남겼다. 이게 1940년대 말의 일이며, 그 이후로 지질학· 천문학에서 몇억, 몇천만 년 전 이러는 것들은(Before Present) 편의상 1950년 1월 1일로부터 그만치 전이라는 뜻으로 관행이 정착됐다. 컴퓨터의 유닉스 원년인 1970년 1월 1일보다 정확하게 20년 더 전이다.

이 사람은 실험 중에 다른 모든 변인을 통제했는데도 납 농도 측정이 정확하게 안 되고 뒤죽박죽인 이유를 캐다가.. 자동차 배기가스 때문에 공기 중의 납 농도가 미세하게 증가하고 있다는 걸 덤으로 알아내기도 했다.

납이야 인체에 매우 해로운 중금속이니.. 이 사람 덕분에 1970년대 이후부터 무연 휘발유가 따로 개발되게 되었다. 그 미세한 변화를 어떻게 감지하고 인과관계까지 파악한 걸까?
자외선(오존층 파괴), 이산화탄소만큼이나 나름 지구를 구한 셈이다.

2. 1964년, 벨 연구소에서 근무하던 연구원 둘(윌슨과 펜지어스)은 인공위성으로부터 신호를 받아야 하는데 사방팔방에서 감지되는 정체 모를 미세한 잡음 때문에 무진장 고생하고 있었다. 안테나를 아무리 닦고 광 내도 잡음은 없어지지 않았다.

그런데 알고 보니 이 잡음의 정체는 우주를 균일하게 가득 채우고 있는 아주 미약 미세한 열복사 전자기파였다. 지구의 운동, 계절 따위와 무관하게 모든 방향에서 거의 같은 세기로 도달했다. 즉, 얘는 태양계 바깥에서 온 놈이라는 뜻이다.
이것은 우주의 기원과 관련하여 대폭발설, 일명 빅뱅 이론을 입증하는 결정적인 증거로 인정받았다. 우주는 첫 시작이 있고 대폭발이 일어난 뒤 지금까지 엄청난 속도로 팽창하고 있다. 대폭발이 있었던 시점은 약 133억 년 전으로 여겨진다.

중세 때 천동설과 지동설이 대립했다면, 근현대의 천문학계에서는 정상우주설과 빅뱅이 대립하는 거나 마찬가지였다. 그랬는데 이런 상상을 초월하는 관측 덕분에 결과는 빅뱅의 KO승.. 이게 얼마나 대단한 발견이었으면, 저 두 사람은 지구를 구한 클레어 패터슨도 못 받은 노벨 상을 받았다.

* 납과 전파 잡음. 지구와 우주에서 십억 년을 넘는 연대기를 측정하는 실험엔 실험을 방해하던 외부 요인과 뭔가 ‘우연’이 있었다는 공통점이 존재한다.

Posted by 사무엘

2021/09/20 08:35 2021/09/20 08:35
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1934

화학 이야기

물리학이 작용 반작용이 어떻고 하다가 전자기력, 핵력 따위를 다룬다면, 화학은 산과 염기가 어떻고 극성과 무극성(수용성 지용성..), 유기물과 무기물이 어떻고를 논하는 꽤 오묘한 과학 분야이다.
다만, 화학과하고 화학공학과는 일반 음대와 실용음악, 물리학과와 기계/전자공학, 심지어 언어학과 문예창작(!!)이 다른 것 이상으로 공부하는 것과 지향하는 바가 매우 다르다.;;;

20세기 이래로 인류가 누리는 복 중 하나인 합성섬유와 플라스틱, 냉장 냉동 시설의 냉매, 휴대용 전자기기에서 쓰이는 고성능 배터리, 이것 말고도 각종 저렴한 인조 물질들을 존재 가능하게 한 것이 화학이다.

사용자 삽입 이미지

위의 다이어그램에서 파랑이 아닌 주황색 화살표는 아무래도 물리보다는 화학의 비중이 더 큰 영역이라 생각된다.
그림에서 반영되지는 않았지만, 열을 효율적으로 내기 위해서 연료를 잘 정제하는 것도 응당 화학의 몫일 테고.. 그러니 화학 회사는 전지 쪽이든 석유 쪽이든 '에너지 기업'이라는 이미지가 좀 있다.

비전공 화알못이긴 하지만 개인적으로 화학에서 굉장히 의미심장 대단한 변화/발견이라고 생각하는 건 다음과 같다.

1. 산과 염기 정의의 확장

전자기학에서 + -라는 양극을 다루는 것과 비슷하게 화학에서는 산과 염기라는 상극 개념이 있다. 그런데 그걸 엄밀하게 정의하는 게 은근히 난감했다.
처음에는 물에 용해됐을 때 H+ 이온을 내놓는 물질이라고 비교적 단순하게 정의됐는데(19세기 아레니우스의 정의).. 나중에는 그것만으로는 한계가 있었다(예: 수용액이 아닌 곳에서는?).

그래서 화학에서도 산· 염기의 특성을 더 미시적으로 규정한 새로운 정의가 등장하게 되었다. 비전공자로서 본인이 기억하는 건 루이스의 정의 정도가 전부이다.
이런 게 물리로 치면 미터와 초의 정의가 더 엄밀하게 바뀌는 것과 비슷하고, 수학에서 음수의 거듭제곱이나 로그, 팩토리얼, 제타 함수 따위를 대수적으로 확장하여 정의하는 것과 비슷해 보인다.

스타에서 디바우러가 뱉어내는 독성 물질이 설정상으로는 산성의 독액이다.;;
글쎄, 황산 염산에 비해 강염기가 금속을 녹인다는 말은 딱히 못 들어 본 것 같다. 하지만 생체 단백질을 녹이는 성능은 염기도 산보다 더하면 덜하지 결코 못하지는 않다.

그나저나 염기하고 '알칼리'의 차이는 뭐지..?? 단순 별칭인가?
원래는 동일한 개념인데 지질학인가 특정 분야에서는 둘을 약간 다른 용도로 구분해서 쓰지 싶다.

2. 유기물의 합성

인류는 연금술을 이용해서 구리에서 금을 '저렴하게' 인위로 만들어 내는 건 성공하지 못했다.
(오늘날은 뭐.. 입자 가속기 돌려서 원자 단위의 조작을 가해서 금을 이론적으로 만들어 낼 수는 있다..;; 하지만 실패 확률이 매우 높고 초극미량밖에 안 생기는데 비해 가속기 돌리는 비용은 가히 살인적.. 그냥 금은방에서 금 현물을 구입하는 게 더 쌀 정도로 가성비가 안 맞을 뿐이다. 물질을 원자 수준에서 본성을 유지시키는 원초적인 힘은 매우 매우 어마어마하게 강하기 때문에 현대의 과학 기술로도 제어하고 조작하기가 몹시 어렵다.)

그 반면, 인간이 금 생성 대신 다른 영역에서 성공한 것이 있는데.. 바로 요소라는 유기물을 실험실에서 자체적으로 합성해 낸 것이다.
그 전에는 고온에 노출됐을 때 곱게 녹고 달궈지고 증발하기만 하는 물질과(비등점), 불이 붙어서 에너지를 내며 활활 타고 재가 되는 물질(발화점).. 동식물 생명체로부터 유래된 물질은 근본이 서로 완전히 다르다고 여겨졌다. 그런데 그 통념이 깨지게 됐다. (플라스틱만 해도 열가소성 수지와 열경화성 수지로 나뉘는 걸 생각해 보자~!)

금을 인위로 만드는 것과 동급으로 불가능이라고 여겨졌던 유기물의 인위 합성(무기 화합물로부터)은.. 프리드리히 뵐러라는 독일 화학자가 1828년에 최초로 성공했다. 수학으로 치면 초월수임이 최초로 증명된 수, NP 완전 문제임이 자가증명된 최초의 문제와 비슷한 지위라 할 수 있겠다.

이것은 연소와 관련하여 플로지스톤설이 부정되고, 생명의 자연발생설이 부정되고, 빛의 속도가 유한하다는 것이 알려진 것과 비슷한 급의 혁신이었다. 19세기에 물리학에서 전자기학이 새로 태동한 것처럼, 화학에서는 복잡한 탄소 화합물의 분자 구조를 다루는 유기화학이라는 난해한 분야가 이때부터 시작됐다. 그리고 요소 말고 다른 유기물들도 실험실에서의 합성 성공 사례가 봇물 터지듯이 쏟아져나왔다.

3. 암모니아, 아세톤의 합성

역시 독일의 화학자인 프리츠 하버는 1909년, 공기 중의 질소로부터 암모니아를 합성하는 공법을 개발했다. 이 덕분에 질소 비료를 원하는 만치 인위로 대량 생산할 수 있게 됐고 콩이나 휴경 같은 자연 요법 없이도 지력을 유지하며 농사를 계속해서 지을 수 있게 됐다.

이건 정말 '공기로부터 빵을 만드는 기적'을 행한 거나 마찬가지였다. 식량 생산이 인구 증가를 못 따라간다는 맬서스 트랩이 이 업적 덕분에 불식되었다.
그래도 이 사람도 구리로 금을 만들지는 못했기 때문에 조국 독일의 1차 대전 패전 배상금을 갚기 위해서 바닷물을 대량으로 증발시켜서 거기 녹아 있던 금을 추출할 생각을 했었다.. 하지만 이건 가성비가 안 맞아서 곧 포기..

비슷한 시기에 '하임 바이츠만'이라는 영국계 유대인 화학자는 또 다른 유기물인 아세톤을 인위로 합성하는 방법을 개발해서 화약의 대량 생산과 1차 대전 연합국의 승전에 큰 기여를 했다.
그는 그거 보답으로 유대인들이 들어갈 팔레스타인 땅을 요구했고, 훗날 이스라엘의 초대 대통령까지 됐다. 프리츠 하버와 하임 바이츠만의 비교는 수 년 전에 이미 한 적이 있으니 여기서는 그냥 링크로 대체하겠다. (☞ 링크)

20세기 전반은 정말 화학 강세였던 시절 같다. 정확하게는 화학공학..

Posted by 사무엘

2021/06/07 08:33 2021/06/07 08:33
, , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1896

자연에 존재하는 모든 힘(= 질량을 가진 물체의 속도를 달라지게 만드는 그 무언가)이라는 것은 그 근원 내지 본질이 (1) 중력, (2) 전자기력, (3) 약한 핵력, (4) 강한 핵력이라는 넷 중 하나로 귀착된다.

1. 중력

솔직히 중력 하나를 발견하고 개념과 공식을 정립한 것만으로도 인류는 정말 위대한, 엄청난 발상의 전환을 경험했다. "사람이 땅으로 떨어진다"가 "지구가 사람을 끌어당기는 것이다, 아니 지구와 사람이 서로 끌어당기기는 하는데, 그 힘의 차이가 한쪽이 너무 넘사벽이기 때문에 일방적인 것처럼 보일 뿐이다."로 바뀐 것이기 때문이다.

이를 계기로 인류는 질량과 무게라는 걸 구분해서 생각할 수 있게 되었고, "지구가 둥글다면 지구의 아래쪽에 있는 사람은 어떻게 떨어지지 않을 수 있는데?" 같은 걸 궁금해할 필요가 없게 됐다. 우주는 이차곡선, 일명 원뿔곡선 궤적 운동이 만연한 공간이라는 것이 수학적으로 깔끔하게 규명됐다. 천동설이 완전히 확인사살 당한 건 덤..

그리고 물체의 운동을 수학적으로 엄밀하게 기술하는 과정에서 지금까지 떡밥 수준으로나 나돌고 학자마다 표기 방법도 제각각이던 '미적분학'이라는 것이 학문으로서 체계적으로 정립됐다. 여러 물체 중 진자의 운동은 정확하게 움직이는 괘종시계를 만드는 것과 관계가 있었다는 게 흥미롭다.

뉴턴으로 대표되는 이 고전역학은 부력이나 양력을 다루는 유체역학으로 이어지며, 공학으로 넘어가서는 기계공학을 정립시켰다. 중등 수준의 시험 문제에서는 "단, 공기의 저항은 무시한다, 마찰은 무시한다" 같은 단서가 붙지만, 현실의 문제를 풀 때는 그런 것까지 다 고려해야 할 것이다.

열역학은 보이는 힘과 보이지 않는 에너지의 변환 관계를 열과 결부지어서 꽤 심오하게 다루는 분야라 하겠다. 이론 자체는 새로운 게 나올 게 거의 없이 다 완성됐기 때문에 이것도 동력 기관이나 에어컨처럼 기계공학과의 응용이 차지하는 비중이 크다.

오죽했으면 100여 년 전에 이 분야의 대가이던 켈빈 경이 "이제 물리학은 나올 거 다 나왔고 측정값의 소수점을 바로잡는 일밖에 안 남았다"라고 내뱉었을 정도였다.;; 양자역학의 출현을 예상하지 못했기 때문이다. 뭐, 이 사람은 비행기도 존재 불가능하다고 예견했었지만, 다행히 비행기가 실제로 발명되는 건 간발의 차이로 보지 못하고 19세기 말에 먼저 세상을 떠났다.

끝으로, 기계공학과의 접점이 없이 고전역학이 물 만난 고기 역할을 하는 분야로는 천문학을 빼놓을 수 없다. 애초에 뉴턴, 케플러, 갈릴레이도 다 천체의 운동 연구에 일가견이 있던 사람이었다(진자가 아니라;;). 중력이란 건 앞으로 다룰 전자기력이나 원자력하고는 0의 개수가 수십 개씩 차이가 날 정도로 약하며, 천체 급으로 거대하고 거시적인 계로 나가야만 그 효과를 제대로 관찰할 수 있다.

물론, 천문학에서도

  • 우주 전체가 그런 식으로 돌아가고 있다면 궁극적으로는 모든 천체들이 서로 끌어당기다가 다시 한데 도로 붙어 버리지 않겠는가? 어떻게 유지 가능한가?
  • 우주의 모든 공간 아무 방향으로나 무한히 많은 별들이 놓여 있으면.. 지구도 그 별빛 때문에 궁극적으로는 어디서나 낮과 밤 구분이 없이 24시간 내내 밝아지지 않겠는가?

같은 논리 궤변이나 역설이 이미 몇백 년 전부터 제기되어 왔다.
어떤 건 그 시절의 과학 지식과 관측 기술만으로는 정확한 답을 구할 길이 없었다. 그래서 뉴턴조차도 "좋은 질문인데, 거기까지는 나도 잘 모르겠다. 아마 신이 알아서 인위로 조절하시지 않을까?"라고 넘겼을 정도였다.

오늘날 우주 생성의 유력 시나리오로 여겨지는 대폭발설은 저런 역설들을 말끔하게 해결해 준다. 우주가 계속 팽창하고 천체간의 거리가 멀어지고 있으니 한데 도로 붙을 일도 없고, 별빛도 지구에 영원히 도달하지 못하는 게 있다. 우주가 그렇게 되고 있다는 게 관측을 통해 확인도 됐다.

그런데 그럼 우주가 팽창하는 원동력은 무엇인지, 태양계 전체조차도 우리 은하의 중심부를 초속 수백 km로 공전한다는데 그럼 그 공전을 가능하게 하는 중심의 거대한 중력은 정체가 무엇인지.. 난 천체물리학을 딱히 전공하지도 않았으니 그런 건 잘 모르겠다.

2. 전자기력

중력 얘기가 좀 길어졌다만.. 자연에는 중력과는 완전히 다르고 중력보다 더 강한 다른 힘의 원천도 있다.
중력이 아니고 원자력도 아니면서 자연에서 발견되는 다른 힘들은 근원이 몽땅 전자기력으로 귀착된다. 이 역시 정말 놀라운 일이 아닐 수 없다. 게다가 전자기력은 서로 관계가 전혀 없어 보이는 힘까지도 한데 연결하고 있는 것이 많다.

제일 간단하게는 자석이 철을 끌어당기는 것.. 왜 이런 일이 가능한지 중력만으로는 알 길이 없다. 더구나 자석에는 당기는 것뿐만 아니라 미는 힘도 있다.
더 나아가 찌릿찌릿 정전기와 마찰 전기를 포함한 전기 현상, 전자석과 교류 발전기, 전동 모터.
그리고 생물의 근육이 힘을 내는 원천도 전자기력이다. 생체는 전기로 움직이는 각종 금속 기계와 전혀 다른 단백질 덩어리일 뿐인데.. 그래도 생각해 보니 생물 중에도 아예 전기 뱀장어나 전기 가오리 같은 동물도 있긴 하다.;;

소금쟁이가 물에 뜨고, 물이 컵의 용량보다 미묘하게 많이 담겨도 곧바로 넘치지 않게 하는 표면장력도 전자기력으로 가능한 일이다.
더 나아가 마찰력, 팽팽한 줄이나 스프링의 장력, 원자 레벨의 각종 화학 반응.. 이를테면 폭발(내연기관, 총기)도 배후에는 모두 전자기력이 있다! 원자조차 방사선을 내뿜으면서 더 작은 구성요소 입자 단위로 붕괴되고 엄청난 에너지를 내는 정도는 돼야, 그건 전자기력을 넘어서는 다른 힘의 영역으로 넘어간다.

그러니 전자기력부터는 화학하고도 어느 정도 관련이 생긴다. 그리고 이놈의 전자기력만 정복하면 자연의 이치를 어지간한 건 다 깨달았다고 생각해도 될 것 같다. 물론 그걸 미주알고주알 제일 저수준에서 통합적으로 기술하는 공식은 정말 상상을 초월하게 복잡하고 어렵다.. -_-;; 맥스웰 방정식이라고 이름은 들어 보셨는가? 그리고 전기도 직류가 아닌 교류로 가면 얼마나 살인적으로 복잡하고 어려워지는지~!

수학에서 미분과 적분은 서로 다른 목적과 방법론으로 출발했다가 합쳐져서 미적분학이 됐다. 하긴 지수와 로그도 서로 따로 출발했다가 한데 만났다고 하던데..
어쨌든 이건 물리학에서 전기와 자기가 합쳐져서 전자기학이 된 것과도 비슷해 보인다.

고전 물리학은 중력 위주의 고전역학에다가 이 전자기학 정도까지가 포함된다. 뉴턴과 아인슈타인에 비해 패러데이, 맥스웰 같은 사람은 인지도가 지나치게 낮은 감이 있다.
고전역학의 곁가지로 열역학, 유체역학 등이 있는 것처럼, 전자기학의 곁가지 범주에 드는 게 전자기파의 특성을 좀 다른 관점에서 세밀하게 연구하는 광학이다. 각종 렌즈라든가 그 이름도 유명한 레이저가 이 바닥을 연구하면서 개발된 물건이다. 광학은 고전 물리학의 영역에서 연구되는 것도 있고, 양자역학 수준의 현대 물리학의 관점에서 연구되는 것도 있다.

빛도 전자기파의 일종이긴 한데 이놈은 도대체 파동(전자기파)일까 입자(광자..??)일까 하는 고민이 진지하게 논의되기 시작했다. 이거 뭐 예수님이 하나님인 동시에 완전한 인간인 것처럼 빛도 이중성을 지닌 것이다.

빛의 속도가 무한이 아니라 유한하다는 것, 그리고 매질에 따라 변하기도 한다는 사실 역시 지구가 둥글다는 사실에 필적하는 엄청난 발견이며 인류에게 발상의 전환을 선사했지 싶다. 실제로 진공에서의 빛의 속력은 매우 중요한 물리 상수이며, 오죽했으면 오늘날 1m라는 길이의 단위가 광속에 근거하여 정의돼 있기도 하다.

전자기파는 파동인 주제에 음파와 달리 매질이 없어도 퍼져나갈 수 있으며, 덕분에 열을 '복사'라는 방법으로 전할 수도 있다.
전기로 빛을 내기도 하고 반대로 빛으로부터 전기를 얻을 수도 있다. 전기로 동력을 얻을 수도 있고, 전파 형태로 바꿔서 정보를 주고 받을 수도 있다. 이걸로도 얼마나 할 게 많으면, 공학과 접목한 분야가 전기공학과 전자공학으로 나뉜다.

아울러, 말이 나왔으니 말인데 물리학에는 광학 말고 음파나 물결, 지진파처럼 전자기파가 아닌 다른 일반적인 파동, 진동을 연구하는 분야도 있다. 도플러 효과니 뭐니 하면서.. 얘들은 관찰되는 현상의 규모가 전자기만치 미시적이지는 않으니 고전 역학과도 접점이 있는 분야일 듯하다. 지금까지 수학 시간에만 접하던 삼각함수 그래프를 현실에서 보게 된다.

3. 원자력

고전 물리학을 통해 인간은 우주 만물이 돌아가는 현상을 차원이 다르게 정확하고 세밀· 엄밀하게 기술하고 이해할 수 있게 되었으며, 이로부터 엄청난 양의 기술을 개발하고 수많은 문명의 이기들을 만들 수 있게 됐다. 그런데 20세기부터는 유럽의 천재 물리학자들에 의해 '양자 역학'과 '상대성 이론'이라는 그야말로 차원이 다른 분야가 새로 개척되었다.

돌턴의 생각과 달리, 원자는 더 쪼개지지 않는 물질의 최종 근원· 본질이 아니었다. 이것도 양성자니 중성자니 전자니 하면서 더 쪼개질 수 있었다.
그리고 이런 더 미세한 입자들은 일반적으로는 중력이나 전자기력보다도 더 강한 힘으로 굳게 붙들려 있어서 마치 한데 뭉친 것처럼 보이지만.. 어떤 특이한 원소는 이런 상태를 비교적(?) 쉽게 바꿀 수 있으며 원자력이라는 가히 상상을 초월하는 힘을 얻는 용도로 사용할 수 있다. 또한 이런 원소에서는 방사선이라는 아주 위험한 에너지가 뿜어져 나온다.

이 분야도 상대성 이론을 발견한 아인슈타인 외에 다른 양자 역학 선구자들은 해당 분야 전공자가 아니면 잘 모르는 경우가 대부분이다. 막스 플랑크, 조세프 톰슨, 어니스트 러더퍼드, 닐스 보어 이런 사람들 말이다.
그나마 뢴트겐은 X선을 발견했고 세계 최초의 노벨 물리학상 수상자이기도 하니 그럭저럭 인지도가 있는 듯하다. 인류 역사상 최초로 살아 있는 사람의 뼈를 해부하지 않고 라이브로 촬영할 수 있게 됐다니, 얼마나 충격적이었을까? 이건 의료에도 영상 의학이라는 완전히 새로운 장르를 창조해 냈다.

비슷한 시기에 러더퍼드는 우라늄의 방사선을 연구하면서 방사선 중에 알파 선과 베타 선을 최초로 구분해 냈다. 그리고 원자핵 내부의 양성자들이 전자기력의 반발을 이겨내고 안정적으로 핵을 구성하기 위해서는 그보다 더 강한 힘이 필요하다고 추론함으로써 강한 핵력이라는 것을 발견했다.
그에 비해 약한 핵력은.. 원자력 중에서 전자기력보다는 약한 힘인데, 이게 있어서 탄소 동위원소 붕괴라는 게 발생하며 연대기 측정이 가능하다는 것 정도까지만 개인적으로 알고 있다.

다음으로 보어는.. 우리가 지금 당연히 알고 있는 원자 구조 모형--원자핵 주변에 전자들이 마치 태양계에서 행성들이 태양을 도는 것처럼 도는 형태--을 최초로 제안했다. 이것은 선배 러더퍼드가 제안했던 모형을 더 개선한 형태였다.
여담이지만 보어는 full name의 앞부분이 '닐스 헨리크'라는 단어로 시작하는데, 이것은 5차 방정식을 연구했던 노르웨이의 수학자 '닐스 헨리크 아벨'의 앞부분과 완전히 일치한다.;; 신기한 노릇이다. 보어는 덴마크 사람이었다.

전자기학만 해도 돌아 버리겠는데 하물며 양자 역학부터는 관찰하고 다루고 계산하는 것들이 현실과 너무 동떨어져 있으니 어지간한 기계· 전자 공대생들도 접점이 없어지는 듯하다. 그냥 학부 1학년의 기초필수 과목 수준에서 잠깐 다루고 넘어가 버린다.
사실, 원자력이라는 건 물질 자체를 원자 차원에서 존재 가능하게 하는 힘이다. 힘이 적용되는 범위는 상상을 초월하게 짧지만, 반대로 그 어떤 힘보다도 압도적으로 강해야만 한다고 생각하면 좀 쉽게 이해할 수 있다.

그러니 물질이 다른 물질로 호락호락 바뀌지 않으며, 물리적 변화와 화학적 변화에는 분명한 경계가 존재한다. 과거의 연금술은 몽땅 실패했다. 어떤 금속이 물리적(?)으로 엄청난 열이나 충격을 받았다고 해서 갑자기 원자 차원에서 물질이 붕괴해서 다른 금속으로 바뀌었다거나 하지는 않는다.

전기 분해만 해도 꽤 힘들고 에너지가 많이 드는 과정인데, 하물며 극도로 불안정한 방사성 원소를 합성하는 입자 가속기는 가동에 드는 동력 비용이 억소리 난다. 오죽했으면 원소의 무게당 생성 비용이 금보다 훨씬 더 비싸질 정도이다.
마치 생물에도 종과 종 사이의 경계가 존재하며 종간 잡종은 자연적으로 더 번식을 할 수 없듯이, 원소 간에도 뭔가 이런 경계가 존재하는 것 같다.

그러고 보니 생물학도 20세기에 분자 생물학이 태동하고 DNA라는 물건의 내부 구조가 밝혀지면서 그야말로 상상을 초월하는 급격한 발전을 하게 됐다. 그 전 19세기까지만 해도 생물학은 파브르 곤충기, 맨델의 초파리 유전 이러면서 그냥 이미 있는 생물을 잔뜩 관찰하거나 해부하는 수준을 벗어나지 못했었기 때문이다. 러더퍼드가 "물리 이외의 다른 과학은 그냥 우표 수집과 별반 다르지 않음"이라고 괜히 말했던 게 아니다.

양자 역학이 등장하면서 물리학은 화학하고 굉장히 가까워졌다. 심지어 저 러더퍼드는 톰슨, 보어, 아인슈타인 등과는 달리, 노벨 화학상을 받았다. 하긴, 저 때는 원소 주기율표라는 게 완성된 지도 얼마 안 됐던 시절이었다.
이런 지식들이 차근차근 쌓이고 공학과도 손을 잡으면서 결국은 원자 폭탄을 만들고 원자력 발전을 하는 것도 가능해졌다. 인류는 태양에서 유래되지 않은 폭발적인 에너지를 얻을 수 있게 된 것이다.

한편, 상대성 이론은 그 자체가 양성자 중성자가 어떻고 전자가 어떻고 하는 양자 역학과 관계가 있지는 않고, 뭔가 다른 관점에서 기존 고전 물리학(역학+전자기학)의 한계를 보완했다. 미세 세계가 아니라 오히려 광속을 논하는 천체 운동에서 기존 물리 법칙으로 설명되지 않는 오차 문제도 여럿 해결했기 때문이다.

e=mc^2이라든가 "물체의 속도가 광속에 가까워질수록 시계가 더 느리게 가게 된다"는 문과 출신 일반인이라도 알 법한 너무 유명한 공식인데.. 저걸 어떻게 관찰과 증명을 할 수 있을까..? 그저 신기할 따름이다.
뉴턴과 갈릴레이 시절에는 정확한 진자 운동을 기술하는 게 목표였는데, 그로부터 300여 년 뒤엔 국제선 열차와 비행기가 등장하면서 세계 각국의 시계를 정확하게 똑같이 동기화시키는 게 매우 중요한 임무가 됐다. 상대성 이론은 이런 데서 오차를 줄이는 데에도 기여했다.

4. 맺는 말

이상이다.
지금까지 정말 맛만 보는 수준으로 간략하게 늘어놓은 바와 같이, 고전 물리학이 고전 역학과 전자기학으로 구성된다면, 현대 물리학은 양자 역학과 상대성 이론이 뼈대를 구성한다고 보면 되겠다. 고전에서 현대로 갈수록 관찰하는 스케일은 말도 안 되게 작아진다. 천문학적인 거대한 우주만 있는 게 아니라 각 물질의 입자 내부에도 작은 우주가 펼쳐져 있는 거나 마찬가지이다.

물론, 쿼크니 글루온이니 하면서 도대체 얼마나 더 쪼개야 이제는 진짜로 원천적인 물질의 본질이 도출될지, 아직 존재가 확인되지 않은 가상의 힘의 근원은 실존하는 건지, 4대 상호 작용을 더 근본적인 힘으로 통합할 수 있을지는 알 수 없다. 뉴턴 역학에서 시작했던 물리가 어째 이 정도로 추상적인 수준까지 갔는지 놀라울 따름이다.

교통수단 내지 군대의 작전 장소를 육해공으로 나누는 것만큼이나, 자연 과학을 물리-화학-생물로 나누는 것은 상당히 그럴싸한 구분법이다. 화생방은 이 개념이 그대로 담긴 명칭이며, 사람이 다치는 방법도 물리적인 외상, 화학적 독극물, 아니면 생물학적 질병이라는 세 양상으로 정확히 나뉘는 편이기 때문이다. (지구 과학/천문은 잠시 논외로 하고..)

요즘은 자연 과학이 아닌 학문에다가도 개나 소나 과학이라는 말을 붙이는 편이다(예: 사회 과학). 하지만 물리는 다른 어떤 과학보다도 수학이 도구로 동원되는 비중이 높고, 뭔가 아주 fundamental하다는 느낌이 난다.
그래서 요즘도 그러는지는 모르겠지만, 물리 전공자들은 자기 학문에 대한 부심이 있는 편이고 화학 같은 다른 과학이나 심지어 공학 쪽은 순수하지 못하다고(!!) 까는 경우도 있는 것 같다.

뭐, 아까 저 러더퍼드의 어록도.. 화학이나 생물은 우표 수집하듯이 그저 실험 결과 데이터 수집하면서 끙끙대는 수준을 벗어나지 못한 반면, 물리는 뭔가 깔끔한 이론과 법칙이 나와 있어서 더 근본적으로 우월하다는 요지로 한 말이었다.
그렇다고 화학이 완전히 물리의 하위 호환 시다바리로 전락한 것도 아니고 그쪽은 또 그쪽만의 관심사와 방법론, 연구 분야가 있다. 화학하고 화학 공학은 또 보기보다 굉장히 다르다. 아울러, 화학-화학 공학, 생물-생명 공학은 있지만 물리에 대응하는 공학은 기계, 전자, 항공우주, 원자력 등으로 굉장히 세분화돼 있다는 것도 생각할 점이다.

이렇게 인류의 과학 기술은 눈부시게 발전했으며, 우리는 자연 만물의 내부 구조를 과거에 정말 상상조차 할 수 없었을 정도로 미시적인 수준까지 관찰하고 파악할 수 있게 됐다. 하지만 과학의 힘으로 설명할 수 없는 영역은 마치 석유가 아직 고갈되지 않고 있는 것처럼 파도 파도 계속 나오고 있으며, 본질적인 한계는 여전히 넘지 못할 것 같다는 게 본인의 개인적인 생각이다.;;

마치 생명의 기원, 언어의 기원 자체를 설명하지는 못하듯이 "그럼 질량이라는 건 도대체 무슨 존재이길래 그렇게 뜬금없이 끌어당기는 힘을 내는 걸까?" 같은 의문을 떠올릴 수 있는데, 그런 것까지 따지자면 무슨 종교 논쟁처럼 답이 안 나오게 된다.

수혈이 전혀 필요하지 않을 정도로 피를 똑같이 인공적으로 만들지는 못하고 있고, 식물을 대신해서 광합성을 하는 기계를 직접 만들지는 못할 것 같다. 아무리 양자 역학이 발달해도 구리로 금을 값싸게 인위로 합성하지는 못할 것이고, 인간이 저렴한 가격으로 비행기 타듯이 지구를 떠나 아예 다른 행성으로 건너가는 세상이 올 것 같지는 않다.
그리고 성경이 말하는 몸, 혼, 영의 위상이 물리학으로 치면 각각 중력, 전자기력, 핵력과 비슷하게 느껴진다. 다시 말하지만 이건 그냥 내 감과 뇌피셜이다. ^^

Posted by 사무엘

2021/03/02 08:36 2021/03/02 08:36
, , , , , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1860

« Previous : 1 : 2 : 3 : 4 : 5 : ... 7 : Next »

블로그 이미지

철도를 명절 때에나 떠오르는 4대 교통수단 중 하나로만 아는 것은, 예수님을 사대성인· 성인군자 중 하나로만 아는 것과 같다.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2022/11   »
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30      

Site Stats

Total hits:
1954735
Today:
273
Yesterday:
1469