1. 가상 함수 테이블을 강제로 없애기

C++에서는 가상 함수가 하나 이상 존재하는 클래스는 그렇지 않은 클래스와 좀 다른 취급을 받게 된다. 자기가 새로 선언한 것뿐만 아니라 기반 클래스로부터 상속받은 가상 함수까지 포함해서 말이다.
가상 함수가 존재하는 모든 클래스들은 각각 가상 함수 포인터 테이블(v-table)이라는 일종의 global 배열을 할당받으며, 이를 가리키는 포인터를 멤버로 갖게 되고 생성자에서 그 포인터의 값이 초기화된다.

클래스에 온갖 파생 클래스와 가상 함수들이 추가되고 상속 단계가 복잡해질수록, 이 테이블들의 개수와 크기도 무시 못 할 비중을 차지하게 된다.
A라는 클래스에 가상 함수가 5개 있으면 A의 v-table은 크기가 5이다. 그런데 A로부터 상속받은 클래스 B가 또 가상 함수를 3개 추가한다면 B의 v-table의 크기는 5+3 = 8이 된다. 그런 식이다. 다중· 가상 상속 같은 것까지 자연스럽게 지원하려면 B의 v-table에도 A의 것이 고스란히 몽땅 중복 등재돼 있어야 한다.

그런데 문제는 순수 가상 함수가 들어가 있어서 단독으로 인스턴스가 생성될 일이 전혀 없는 클래스에 대해서도 일단은 동작의 일관성을 보장하기 위해 v-table이 잉여스럽게 따로 생성된다는 것이다.
왜냐하면 B라는 클래스의 생성자는 그 정의상 기반 클래스 A의 생성자를 반드시 호출하게 돼 있고, A의 생성자가 하는 일 중 하나는 A에 대한 고유한 v-table을 참조하는 것이기 때문이다.

어차피 값이 거의 전부 다 NULL이고 실제로 쓰일 일도 없는 v-table이 쓸데없이 생성되는 일을 막기 위해, Visual C++에는 __declspec(novtable)이라는 비표준 확장 속성이 도입되었다. 특히 COM이라는 규격을 C++ 언어와 바이너리 차원에서 연계하려다 보니 이 기능이 없어서는 도저히 안 되는 지경이 되었다.

굳이 순수 가상 함수가 없더라도, 어쨌든 반드시 파생 클래스 형태로만 쓰이지 그 자체가 인스턴스 형태로 선언될 일이 없는 클래스라면 __declspec(novtable)를 지정해 주는 게 메모리 절약 측면에서 좋다. 날개셋 한글 입력기의 경우 이걸 적용해 주니 ngs3.dll의 크기가 수 KB 남짓 줄어드는 효과가 있었다.

특히 데이터 멤버 없고 순수 가상 함수밖에 없는 인터페이스라면 이거 지정이 무조건 필수이다. 이래서 후대의 객체지향 언어들은 구조체(생성자 소멸자 가상 함수 없는 POD) vs 클래스뿐만 아니라, 일반 클래스 vs interface(추상 클래스)도 언어 차원에서 구분한다는 게 느껴졌다. 이게 단순히 외형이나 기분상의 구분만을 의미하지 않는다.

파생 클래스 쪽의 초기화가 덜 된 오브젝트에 대해서 순수 가상 함수를 호출해 버리면 보통은 pure virtual function call이라는 C++ 예외가 발생한다. 그런데 __declspec(novtable)가 지정된 오브젝트에 대해서 가상 함수를 호출해 버리면 저런 high-level 예외가 아니라 그냥 NULL 포인터 접근에 준하는 평범한 access violation 에러가 나면서 프로그램이 죽게 된다.

2. 가상 함수 테이블의 메모리 오버헤드

가상 함수 테이블 얘기를 계속하겠다.
B가 가상 함수가 100개 있는 A라는 클래스를 상속받아서 자신만의 가상 함수를 새로 만드는 것 없이, A의 함수 중 딱 한두 개만 override를 했더라도.. 컴파일러는 내용이 한두 개밖에 차이가 나지 않고 거의 동일한 원소 100개짜리 함수 포인터 배열을 또 하나 만들게 된다. B의 모든 인스턴스들이 한데 공유하는 가상 함수 포인터 테이블 말이다. 일종의 copy-on-modify와 비슷한 메커니즘이다.

그렇게 해야만 A건 B건 오브젝트 종류를 불문하고 가상 함수의 주소를 배열 오프셋만으로 O(1) 시간 만에 곧장 얻어 와서 호출을 할 수 있기 때문이다.
가상 함수 호출은 그렇잖아도 오버헤드가 일반 함수 호출보다 훨씬 더 큰데, 메모리를 아낀답시고 주소를 얻는 것조차 클래스 계층이나 함수 테이블을 뒤지는 방식이어서는 곤란하다.

하지만 이런 내부 디테일과 오버헤드를 생각하면 클래스를 아무 부담 없이 막 상속받기가 좀 부담스러워진다. 뭐, 요즘처럼 컴퓨터에 메모리가 풍족한 시대에 무슨 198, 90년대 같은 메모리 구두쇠 쫌생이처럼 코딩을 할 필요는 없지만, 그래도 같은 값이면 컴퓨터의 자원을 아껴 쓰는 게 프로그래머의 미덕 아니겠는가?

그렇다고 언어의 스펙을 바꿔 버릴 수는 없으니, Windows용 C++ 라이브러리인 MFC는 저런 가상 함수 테이블 오버헤드를 줄이기 위해, CWnd 클래스의 Windows 메시지 handler 함수는 가상 함수 대신 pointer-to-member 기반의 message map으로 구현한 것으로 잘 알려져 있다.

얘는 사용자가 실제로 overriding을 한 함수의 개수만큼만 테이블의 크기가 커지니 공간 사용은 효율적이다. 그러나 메시지에 대응하는 함수를 찾는 일은 매번 테이블을 선형 검색을 해야 하기 때문에 시간 복잡도가 O(n)으로 커진다.
이 부분은 정말 밥 먹듯이 자주 호출되는 부분이고 목숨 걸고 성능을 최적화해야 하는지라, MFC 소스에서도 극히 이례적으로 인라인 어셈블리가 사용되어 있다~! (wincore.cpp의 AfxFindMessageEntry 함수)

객체지향을 구현하기 위해서 이런 시간-공간 tradeoff를 따져 봐야 하니, C++보다 더 유연한 디자인을 추구한 Objective C 같은 언어는 메시지를 아예 문자열로 식별하게 했다(selector). 이름으로부터 실제 주소 매핑은 물론 hash 기반이고..

C++은 배열 오프셋 기반이어서 당장 성능 자체는 제일 좋으나, 클래스에서 뭐가 바뀌었다 싶으면 몽땅 재컴파일 해야 한다. 그리고 그런 경직된 체계에서 다중/가상 상속과 멤버 함수 포인터까지 구현하려다 보니 디자인에 무리수가 많이 들어갔고, 그 뒷감당은 결국 컴파일러 제조사들이 비표준 확장을 도입해서 땜빵하는 촌극이 벌어졌다.

그에 비해 Objective C는 신호등 교차로 대신 회전 교차로, 수동 변속기 대신 아예 자동 변속기 같은 접근을 한 셈인데.. C++ 같은 C의 이념 적당히 절충이 아니라 객체지향 언어라는 이론만 생각해 보면 저런 접근 방식도 충분히 가능은 하겠다는 생각이 든다.

3. 캐사기 auto

람다 함수가 최초로 도입된 C++0x 시절에 곧장 가능했던 것 같지는 않다만..
요즘 람다는 인자와 리턴값의 타입으로 auto를 지정할 수 있다.. >_<
auto에서 또 auto가 가능하다니? 그것도 C++ 같은 언어에서.. 이건 좀 꽤 사악한 기능인 것 같다.

auto Func = [](auto x) -> auto { return x * 2; };
printf("%f\n", Func(1.4));
printf("%d\n", Func(25));

람다가 일반 C++ 함수 같은 오버로딩이나 템플릿을 지원하지는 않으나, 저기서는 auto가 템플릿 인자 역할을 하는 거나 마찬가지이다.
생긴 건 함수와 비슷하지만 캡처가 지원되고 호출 규약 제약 없고 저런 것까지 가능하니.. 기존의 함수와는 형태가 얼마나 다른지 알 수 있다.

그나저나 람다 함수는 함수 자기 자신을 지칭해서 재귀 호출을 하는 방법은 여전히 없는지? this처럼 자기 함수 자신을 가리키는 예약어가 필요하지 않을까 싶다. __self??
그리고 사실은 C++도 기반 클래스를 지칭하는 __super 같은 키워드도 있어야 할 듯하다.

4. export의 재탄생

C++에서 완전 존재감 없는 잉여로 전락했던 auto가 10여 년 전 2010년대부터는 잘 알다시피 언어의 패러다임의 변화를 주도하는 거물로 환골탈태했다.
그것처럼.. 지난 2000년대에 비현실적인 흑역사 키워드로 전락하고 봉인됐던 키워드 export가.. 2020년대부터는 모듈 선언이라는 완전히 다른 용도로 다시 쓰이게 될 것으로 보인다. 하긴 import, export는 그 대상이 무엇이 됐건 프로그래밍에서는 굉장히 즐겨 쓰일 만한 의미의 동사이긴 하다.

지난 수십 년을 C처럼 원시적인 텍스트 include와 라이브러리 링킹에 의존했던 C++에 파스칼이나 D처럼 신속하게 빌드 가능한 모듈, 유닛이 도입되려는가 궁금하다.
그럼 이제 C/C++에서 제일 존재감 없는 잉여 키워드로는 signed만 남는 건지?

C++이 이 정도까지 변하고 있는데 #pragma once는 좀 언어 차원에서 정식으로 표준으로 수용할 생각이 없는지 궁금하다.
이제 플랫폼을 불문하고 지원하지 않는 컴파일러가 거의 없는 사실상의 표준이며, 실용적으로도 꼭 필요한 기능인데 말이다.

5. 템플릿의 prtial specialization

C++ 템플릿에는 template<typename X> class A처럼 말 그대로 템플릿을 선언하는 게 있는가 하면, template<> class A<XXX> 처럼 특정 타입에 대해 specialization을 하는 문법이 있다. 둘의 형태를 주목하기 바란다.
그런데 C++03즈음에서는 partial specialization이라고 해서 단일 타입이 아니라 일정 조건을 만족하는 템플릿 인자에 대해서는 몽땅 이 specialization을 사용하도록 하는 기능이 추가되었다. 가령 X가 포인터 타입이라든가, 템플릿 인자 A,B를 받는데 B가 A 내부의 pointer-to-member 타입이라거나 할 때 말이다.

이런 specialization에서는 template<typename X> class A<X*> 내지 A<X, X::*> 같은 식으로 template과 A에 템플릿 인자가 모두 들어온다.
개인적으로 이런 기능을 사용해 본 적은 없다. 특정 상황에서 편리한 기능이 될 수는 있겠지만.. 컴파일러를 만드는 건 더욱 어려워질 것 같다..;; 저 시절에 이런 기능과 함께 export까지 제안됐었다니 참 가관이다.

6. C++ 코딩 중에 주의해야 할 점

예전 글에서 언급했던 것들이지만 다시 한데 정리해 보았다.
참고로, 클래스의 상속 관계에서 부모/자식(parent/child), 기반/파생(base/derived)은 서로 기능적으로 아무 차이 없이 기분 따라 섞여서 쓰인다.
인자와 매개변수도(argument/parameter) 그냥 섞여 쓰이는 것 같다.

(1) C++에서는 오버로딩과 오버라이딩이 동시에 같이 자동 지원되지는 않는다.
가령, 한 클래스에서 foo라는 같은 이름으로 void foo()와 void foo(int x)를 모두 정의하는 건 당연히 가능하다(오버로딩).
하지만 둘 중 하나를(가령, 후자) 가상 함수로 지정해서 파생 클래스에서 그놈을 오버라이딩 했다면.. 파생 클래스에서는 오버라이딩 되지 않은 다른 '오버로드' 버전은 자동 지정이 되지 않는다. 이건 혼동을 피하기 위해 C++ 언어의 스펙 차원에서 일부러 그렇게 설계된 것이다.

파생 클래스에서 전자를 사용하려면 기반 클래스의 이름을 거명해서 기반::foo() 이런 식으로 언급하거나..
아니면 파생 클래스의 선언부에서 using 기반::foo; 라고 명시적으로 선언을 해 주면 된다. 그러면 foo만으로 기반 클래스의 두 함수를 곧장 접근할 수 있게 된다. using에 이런 활용 가능성도 있었다니~!

(2) 클래스 객체의 생성 단계에서 멤버들이 초기화되는 순서는 헤더에서 선언된 순서이지, 생성자 함수의 이니셜라이저 목록에 등장하는 순서가 아니다. 그렇기 때문에..

class Bar {
    int x,y;
public:
    Bar(int n): y(n), x(y+1) {}
};

위의 코드에서 x는 제대로 초기화되지 않는다. x(y+1)이 y(n)보다 먼저 실행되기 때문이다.
이건 방대하고 복잡한 클래스를 구현할 때 정말 쉽게 간과하고 실수할 수 있는 특성인데 컴파일러가 경고라도 해 줘야 되지 않나 싶다. 함수 안의 지역변수에서 "초기화되지 않은 변수 거시기를 사용했습니다" 경고를 띄우는 것과 비슷한 로직으로 별로 어렵지 않게 구현할 수 있을 텐데..??

(3) 생성자와 소멸자 함수에서는 자기 객체에 대한 가상 함수를 호출하지 말아야 한다. 비록 기반 클래스의 생성자 및 소멸자가 파생 클래스의 생성자 및 소멸자의 실행 과정에서 같이 호출되겠지만.. 기반 클래스는 자기 객체가 진짜로 기반인지 아니면 상속된 파생 클래스로부터 호출된 것인지를 전혀 알 수 없으며, 알려고 하지도 말아야 한다. 그냥 기반 클래스 자신의 일만 하면 된다.

이는 프로그래머에게 불편을 끼치는 규제가 아니라 언어의 컨셉이 그러하기 때문이다. 생성자와 소멸자는 Windows 메시지로 치면 그냥 WM_CREATE/DESTROY가 아니라 NC 버전이다. (WM_NCDESTROY는 자식 창들이 몽땅 다 사라지고 없는 상태에서 호출) 그리고 복잡한 처리를 절대로 해서는 안 되는 DllMain 함수와도 같다.

기반 생성자는 이 객체가 파생 클래스로서의 초기화가 되기 전에 먼저 호출되고, 기반 소멸자는 파생 클래스 부분이 소멸된 뒤에 맨 나중에 호출된다. 그러니 파생 클래스가 어떠한지를 따지는 것은 전혀 무의미한 것이다.
이건 위의 2번과 마찬가지로 초기화의 순서와 관련해서 저지르기 쉬운 실수이다. 2번은 멤버들의 초기화 순서이고(수평??) 3번은 상속 계층에서의 초기화 순서이다(수직??).

소멸자 자체는 반드시 가상 함수 형태로 선언해야 하지만 소멸자 내부에서 또 다형성을 기대하지는 말아야 한다는 것이 아이러니이다.

(4) 멤버 함수 포인터로 가상 함수의 오버라이딩을 제어할 수는 없다.
한 함수 포인터로 기반 클래스의 함수 내지 파생 클래스의 오버라이딩 함수 중 원하는 것의 주소를 저장하고, ptr의 값(정확히는 ptr이 가리키는 vtbl의 값)과 무관하게 ptr에 대해 원하는 함수를 강제 호출하는 것은 가능하지 않다.

그런 시도를 했을 때 함수 포인터에 저장되는 것은, 그저 ptr->vtbl에 매핑된 버전의 함수를 따로 호출하는 역할을 수행하는 thunk뿐이다.
그러니 멤버 함수 포인터를 동원한다 하더라도 vtbl을 거친 가상 함수 본연의 동작을 변형할 수는 없다.

Posted by 사무엘

2020/07/17 08:35 2020/07/17 08:35
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1774

1. 코드의 입체적 배치

C/C++에는 여느 프로그래밍 언어들과 마찬가지로 if else 조건문이란 게 있고 이게 여러 단계로 중첩될 수 있다. 단계가 깊어질수록 코드에서 들여쓰는 왼쪽 여백이 증가한다.

그런데 C/C++에는 전처리기 지시라는 것도 있어서 컴파일되는 실제 코드와는 완전히 별개의 다른 문맥과 차원에서 해석된다. 희곡에서 다른 코드들이 연극 대사라면 전처리기 지시는 괄호 안의 상황 설명지시와 비슷한 존재 같다. 결정적으로는 전처리기에도 조건부 컴파일을 지시하는 #if #else #endif 같은 물건이 있다.

전처리기의 #if도 여러 단계로 중첩되면 알아보기가 상당히 힘들어진다.
그러니 문득 드는 생각은.. 소스 코드의 들여쓰기도 3차원 입체로 표현 가능하면 어떨까 싶다. 통상적인 if else 등의 들여쓰기는 지금처럼 왼쪽 여백으로 표현하고, #if의 단계가 증가하면 그 부분의 코드가 몽땅 X, Y가 아닌 Z축으로.. 전방으로 한 단계 돌출되는 것이다. 해당 부분이 끝나면 다시 쑥 들어가고..
그러고 보니 전처리기 중에는 #if 말고도 #pragma pack처럼 스택 기반으로 설정을 저장하는 것들이 더 있기도 하다.

컴퓨터야 1차원적인 메모리 셀에서 코드와 데이터를 죽어라고 읽고 쓰고 계산하는 기계이겠지만, 그걸 기술하는 프로그램 코드라는 건 색깔(syntax coloring)과 XYZ 축 공간을 모두 이용해서 인간이 최대한 알아보기 편하게 시각화를 할 수 있다. 하지만 이런 수단을 몽땅 동원해도 남이 만든 코드는 선뜻 읽기가 어렵다.;;.

2. 컴파일러의 경고

C/C++ 코딩을 하다 보면 컴파일러가 뱉어 주는 경고 메시지의 도움을 종종 받곤 한다.
제일 자주 보는 건 아무래도 선언만 해 놓고 사용되지 않은 변수, 초기화하지 않고 사용한 변수, void형 함수가 아닌데 return으로 실행이 종료되는 구간 따위이다. 이런 건 에러로 치면 단순 스펠링 오타나 {}() 호응 미스, type mismatch만큼이나 흔하다. 아 하긴 type mismatch는 가벼운 건 warning 형태도 있긴 하다.

경고의 민감도를 상향 조정하면 if문에서 괄호 없이 대입(=) 연산자가 쓰인 것(혹시 비교 연산 ==이랑 헷갈린 거 아니냐?), 우선순위가 아리까리 한 << 나 & 같은 연산자가 괄호 없이 마구 섞여 쓰인 것, 심지어 for이나 if문이 뒷부분 없이 그냥 세미콜론으로 종결된 것까지도 실수가 아닌지 의심스럽다고 일단 지적해 주기도 한다.
글쎄, 컴파일러가 그 정도로 민감하다면.. 본인이 예전에도 언급한 적이 있지만 a=a++이나 a>>-2처럼 이식성이 없는(즉, 컴파일러마다 결과가 다를 수 있는 undefined behavior) 수식이야말로 안 쓰는 게 좋다고 경고를 띄워 줘야 하지 않나 싶다.

요즘 컴파일러는 printf/scanf에서 %문자와 실제 인지의 대응이 맞는지까지도 체크한다. printf 출력일 때는 float건 double이건 %f만 써도 충분하지만(float도 어차피 double로 값이 promote되므로), scanf 입력일 때는 둘은 %f와 %lf로 정확하게 구분돼야 한다.
가변 인자는 그야말로 type-safety의 완벽한 사각지대인데 이런 실수를 컴파일러가 잡아 준다면 프로그래머에게 굉장히 도움이 된다. 원래 전문적인 '정적 분석'용으로 쓰이는 함수의 인자별 annotation 정보까지 컴파일러가 활용하는 것 같다.

그런데 내가 지금까지 본 컴파일러 경고들 중 제일 계륵 같은 건 코드를 32비트에서 64비트로 포팅 하면서 생겨난 수많은.. type mismatch이지 싶다. 이제 int의 크기와 포인터의 크기가 일치하지 않게 되고, 덕분에 int와 INT_PTR의 구분이 생겼기 때문이다.
일단, 이 경고는 레거시 코드에서 발생하는 양이 어마어마하게 많은 편이다. 그리고 (1) 치명적인 것하고 (2) 그다지 치명적이지 않은 것이라는 분명한 구분이 존재한다.

int에다가 포인터를 곧장 대입하는 부분은 전자에 속한다. 이건 번거롭더라도 int를 당연히 INT_PTR로 바꿔 줘야 한다.
그러나 두 포인터의 차이를 대입하는 부분은 상대적으로 덜 치명적인 부분에 속한다. 왜냐 하면 64비트 환경이라 해도 작정하고 프로 연구자가 컴퓨터를 굴리는 게 아닌 한, 단순 end-user급에서 대놓고 2GB, 4GB를 넘는 데이터를 취급할 일은 거의 없다시피하기 때문이다.

특히 문자열의 길이를 구하는 strlen, wcslen 같은 함수 말이다. 리턴 타입이 size_t이지만.. 난 경고를 없애기 위해 그냥 대놓고 #define _strlen32(x) static_cast<int>(strlen(x)) 이런 것도 만들어서 썼다.
주변의 int 변수를 몽땅 확장하기에는 내 함수의 인자와 리턴값, 구조체 멤버 등 영향 받는 게 너무 많고 귀찮고, 그 반면 세상에 문자열 길이가 4GB를 넘어갈 일은 없기 때문이다.

대부분의 경우 무시해도 상관은 없지만 그래도 경고가 뜨는 게 마음에 걸리고, 그렇다고 기계적이고 무의미한 typecast 땜빵을 하고 싶지도 않으니.. 이건 64비트 컴퓨팅이 선사한 계륵 같은 경험이었다.

3. #include 절대경로 표시

요즘 개발툴 IDE, 에디터들은 코드에서 각종 명칭을 마우스로 가리키기만 하면 그게 선언된 곳이 어딘지를 친절하게 알려 준다. #define 매크로도 다 파악해서 이게 전개된 결과가 무엇인지도 툴팁 형태로 표시해 준다.
이와 관련해서 개인적으로는.. #include 다음에 이어지는 토큰을 마우스로 가리키고 있으면 얘가 무슨 파일을 가리키는지도 절대경로를 알려 주는 기능이 있으면 좋겠다. 이 파일을 여는 기능은 Visual Studio건 xcode건 이미 다 제공되고 있으니, 그렇게 알아낸 파일명을 가만히 표시만 해 주면 된다.

C/C++의 include 경로 찾기 규칙은 꽤나 복잡한 구석이 있기 때문이다. #define이 정의돼 있는 줄 모르고 삽질하는 것처럼, 예상하지 않은 다른 디렉터리에 있는 동명의 파일이 잘못 인클루드 되어 착오가 발생할 가능성이 있다.
이는 마치 경로를 생략하고 파일명만 달랑 입력했을 때 실행 파일 디렉터리를 탐색하는 순서라든가 LoadLibrary 함수가 DLL의 경로를 탐색하는 순서와도 비슷한 면모이다.

#include로 지정하는 경로는 C/C++ 문법의 지배를 받는 문자열 리터럴이 아니다. ""로 둘러싸기 때문에 문자열 리터럴처럼 보이지만 <>로 둘러싸는 것도 가능하고.. 여기서는 역슬래시 탈출문자가 적용되지 않기 때문에 디렉터리 구분자를 지정할 때 \를 번거롭게 두 번 쓸 필요도 없다. 애초에 #include는 컴파일러가 전혀 아닌 전처리기의 영역이니 당연한 소리인데.. 가끔은 당연한 사실이 당연하게 와 닿지가 않는다.

그런데 #include 경로명에다가 매크로 상수를 지정할 수는 있다. 내가 지금까지 이런 기괴한 용례를 본 건 지금까지 FreeType 라이브러리의 소스가 유일하다. IDE가 이런 것까지 다~~ 파악해서 실제로 인클루드 되는 헤더 파일을 사용자에게 알려준다면 코드를 분석하는 데 큰 도움이 될 것이다.

4. 리터럴 형태의 표현

프로그래밍 언어가 표현력이 좋으려면, 함수 코드든지 재귀성을 지난 복잡한 데이터든지(리스트, 배열 테이블 등) 불문하고 하나의 리터럴 내지 값(value)로 취급 가능하며, 굳이 이름을 붙여서 변수로 할당하지 않아도 함수 인자나 리턴값으로 자유자재로 주고 받고 대입 가능해야 한다.
쉽게 말해 함수 포인터가 들어갈 곳에 이렇게 함수 몸체가 곧장 들어갈 수 있어야 하며..

qsort(pData, nElem, nSize, [](const void *a, const void *b) { return 어쩌구저쩌구 } );

데이터가 들어갈 곳에도 이렇게 배열을 즉석에서 지정할 수 있어야 한다는 얘기이다.

memcpy(prime_tbl, {2,3,5,7, 11}, sizeof(int)*5);

하지만 C/C++은 이런 쪽의 유연한 표현력이 매우 취약했다.
함수 쪽은 machine word 하나에 딱 대응하는 것 이상의 context를 담은 추상적인 포인터를 지원하지 않는 관계로 클로저나 함수 안의 함수 따위를 지원하지 않는다.

그리고 언어 차원에서 복합 자료형을 built-in type으로 직접 지원하는 게 없다. 전부 프로그래머나 라이브러리의 구현에 의존하지..
그렇기 때문에 복잡한 데이터 리터럴은 변수를 초기화하는 이니셜라이저 형태로나 아주 제한적으로 표현 가능하며 이마저도 구조체· 배열의 초기화만으로 한정이다. 리터럴 형태 표현 가능한 배열 비스무리한 건 읽기 전용 null-terminated 문자열이 고작이다.

함수를 리터럴 형태로 표현하는 건 C++에 람다와 함수형 패러다임이 도입되면서 상황이 많이 나아졌다.
그 뒤 복합 자료형을 리터럴 형태로 표현하는 것도 C++1x 이후로 하루가 다르게 새로운 문법이 도입되면서 바뀌고 있긴 하다.

이름을 일일이 붙이지 않고 아무 테이블 및 계층 자료구조, 그리고 함수를 마음대로 선언해서 함수의 인자나 리턴값으로 주고받을 수 있는 것은..
마치 메신저나 이메일로 스크린샷 그림을 주고받을 때 매번 그림을 파일로 저장하고 그 파일을 선택하는 게 아니라 간단히 print screen + 클립보드 붙여넣기만으로 그림 첨부가 되는 것과 비슷하다. 의식의 흐름을 매우 편리하고 직관적으로 코딩으로 표현 가능하게 해 준다.

디자인 근본적인 차이로 인해 C++이 무슨 파이썬 수준의 유연함을 갖는 건 무리이겠지만 저 정도만으로도 엄청난 변화이며 한편으로 컴파일러를 구현하기에는 굉장히 난감할 것이다. 저수준 성능과 고수준 추상화 범용성이라는 두 모순되는 토끼를 몽땅 잡아야 하기 때문이다. 특히 그런 문법이 템플릿 내지 캐사기 auto와 결합하면.. 복잡도가 끔찍할 수준일 것 같다.

5. 기타

(1) 변수나 함수를 선언할 때는 type을 지정하면서 각종 modifier나 storage class를 같이 써 주게 된다. 거기에 들어가는 단어 중에는 static과 const, 그리고 int와 __declspec(..)처럼 대충 순서가 바뀌어도 되는 것이 있다.
그런데 long unsigned a도 된다는 것은 지난 20여 년 동안 본인이 한 번도 시도해 본 적이 없었다. 영어 어순 직관과 어울리지 않으니까.. 하긴, 2[a]도 되는 언어에서 저 정도쯤이야 이상할 게 없다.

(2) void main(void) {}은 컴파일은 되지만 void가 뭔가 권장되지 않고 바람직하지 않은 형태로 쓰이는 전형적인 예시라 하겠다. main 함수의 프로토타입도 그렇고, 또 함수에 인자가 없음을 나타낼 때는 C/C++ 가리지 않고 ()만 써도 충분하기 때문이다.

(3) 잘 실감이 나지 않겠지만 요즘은 C와 C++은 서로 따로 제 갈 길 가고 있다. 특히 C99와 C++1x부터 말이다. 그렇기 때문에 세월이 흐를수록 C 코드를 C++ 컴파일러에서 곧바로 돌리기는 어려워질 것이다.

보통은 C가 C++에 있던 // 주석, inline 키워드, C++ 라이브러리에 있는 몇몇 기능들을 자기 스타일로 도입하는 형태였지만 최신 C에서 C++과 무관하게 독자적으로 도입한 기능 중 하나는 restrict 키워드이다. 얘가 가리키는 메모리 주소는 딴 데서 건드리지 않으니 마음 놓고 최적화해도 된다는 일종의 힌트이다. volatile과는 반대 의미인 듯하다.

컴파일러에 따라서는 C++에서도 얘를 __restrict 이런 형태의 비표준 확장으로 도입한 경우가 있다. 하지만 Visual C++은 내가 알기로는 그리하지 않은 것 같다. 마소 컴파일러는 C 단독은 거의 없는 자식 취급하고 C99 지원도 안 하고 있으니 말이다.

(4) 방대한 C/C++ 코드에 정적 분석을 돌려 보면, 아무 type-safety 단서 없이 무데뽀로 아무 메모리에다 임의의 바이트만치 쓰기를 허용하는 memset, memcpy 계열의 함수에 실수와 버그가 들어간 경우가 생각보다 굉장히 많다고 한다.
배열 크기만큼 써야 하는데 포인터 크기(4/8바이트!)만치만 기록해 버리는 건 약과다. 둘째 인자와 셋째 인자의 순서가 바뀌어서 0을 기록하는 게 아니라 0바이트만치만 기록한다거나..;;

sizeof(A)*b라고 써야 할 것을 실수로 sizeof(A*b)라고 써 버려서 역시 4/8바이트 고정과 같은 효과가 나기도 한다. 전체 바이트 수를 써야 하는 곳과 배열의 원소 수만 써야 하는 곳을 헷갈리는 것도 미터나 피트 같은 단위를 헷갈려서 착오를 일으킨 것과 비슷하다.
문제는 저런 건 잘못 써도 언어 문법상으로는 아무 잘못이 없고 철저하게 합법이라는 것이다. 컴파일러가 잡아 주지 못하니 더 고차원적으로 문맥을 읽는 정적 분석에 의존해야 한다.

Posted by 사무엘

2020/04/17 08:36 2020/04/17 08:36
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1741

오늘날 마이크로소프트는 운영체제와 오피스뿐만 아니라 개발툴 분야도 세계를 석권해 있다.
걔들은 과거에 운영체제 쪽은 맥 내지 IBM OS/2와 경쟁했었고, 오피스는 로터스, 워드퍼펙, 한컴(...)과 경쟁했으며.. 개발툴 쪽은 볼랜드라는 쟁쟁한 기업과 경쟁했다.

마소와 볼랜드가 내놓았던 프로그램 개발툴은.. 먼저

1. IDE까지 있는 도스용 대중 보급형의 브랜드가 있었다.
볼랜드는 터보, 마소는 퀵.. 뭔가 스피디한 단어를 썼다는 공통점이 있다.
그리고 볼랜드는 브랜드명-언어명 사이를 띄었지만, 마소는 둘을 붙여 썼다.;;

Turbo Basic, Turbo C, Turbo Pascal
QuickBasic, QuickC, QuickPascal

다음은 볼랜드 말고 '마소'에서 개발했던 QuickC와 QuickPascal IDE의 스크린샷이다. 보기에 참 생소하다. 출처는 유명한 고전 소프트웨어 라이브러리인 WinWorld이다.

사용자 삽입 이미지

사용자 삽입 이미지

마소는 QuickBasic만 건지고 나머지는 다 망했다. QuickBasic이야.. 뭐 무료 축소판 QBasic을 MS-DOS와 Windows에다 포함시키기까지 했을 정도이고 말이다. 빌 게이츠가 베이식 언어를 아주 좋아했다.
그 반면 볼랜드는 Turbo Basic만 망하고 C와 Pascal을 건졌다. Turbo Basic의 개발진은 볼랜드를 퇴사하고 따로 회사를 차려 PowerBasic을 만들게 됐다.

2. 다음으로, 본가에 속하는 최상위 플래그십 제품군에는 그냥 자기 회사명을 붙였다.

Borland Pascal, C++
Microsoft Basic, C/C++

1990년대에 C에 이어 C++ 컴파일러가 개발되면서 자기 제품의 공식 명칭을 아예 C++이라고 바꿔 붙이는 곳이 있는가 하면, C와 겸용임을 내세우면서 C/C++이라고 붙이는 곳도 있었다.

볼랜드의 경우 C++을 C와는 완전 별개로 취급했는지 버전까지 1.0으로 도로 리셋하면서 Turbo C++ 내지 Borland C++이라고 작명했지만.. 마소는 C++을 기존 C 컴파일러의 연장선으로 보고 MS C 6.0 다음으로 7.0을 MS C/C++ 7.0이라고 작명했다. 사실, 연장선이라고 보는 게 더 일반적인 관행이었다.

참고로 왓콤 역시 Watcom C 9.0의 다음 버전이 Watcom C/C++ 9.5가 돼서 마소와 비슷하게 작명과 버전 넘버링을 했다. 왓콤은 제품이 짬이 길다는 인상을 주기 위해 첫 버전을 일부러 1이 아닌 6.0부터 시작하는 기행을 벌였었다! 볼랜드의 버전 넘버링과 비교하면 극과 극 그 자체였다.

터보 C++이랑 볼랜드 C++의 차이는.. 더 덩치 큰 상업용 프로그램 개발을 위한 OWL/Turbo Vision 같은 자체 프레임워크 라이브러리를 제공하느냐 여부 정도였지 싶다. 프로페셔널 에디션이냐 엔터프라이즈 에디션이냐의 차이처럼 말이다. 그리고 이때쯤 Windows용 지원도 시작됐다.

3. 그랬는데, 1990년대 이후부터는 그 플래그십 제품군도 Windows 전용의 더 고급 브랜드로 대체됐다.

볼랜드는 90년대 중반의 Delphi와 C++Builder로,
마소는 그 이름도 유명한 비주얼 브랜드로 말이다. Visual Basic, Visual C++.
그리고 마소도 Visual C++부터는 C/C++ 대신 C++만 내걸기 시작했으며,

관계가 이렇게 된다.
Visual C++이 과거 MS C/C++을 계승한 거라는 흔적은 _MSC_VER 매크로 값이 Visual Studio 자체의 버전보다 더 크다는 점을 통해서나 유추할 수 있다.

1이 2를 거쳐 3으로 바뀌는 동안 주변에서는 C 대신 C++이 대세가 되고, 주류 운영체제가 도스에서 Windows로 완전히 넘어가고 거대한 프레임워크 라이브러리가 등장하는 등의 큰 변화가 있었다. 개발 환경도 단순히 코딩용 텍스트 에디터와 디버거 수준을 넘어서 RAD까지 추구하는 수준으로 발전했다.

또한, 이 3단계가 주류가 될 즈음부터 마소의 Visual 툴들이 볼랜드를 완전히 꺾고 제압해 버렸다.
마소가 운영체제 홈그라운드라는 이점을 갖고 있기도 했거니와, 또 근본적으로는 파스칼이라는 언어 자체가 볼랜드의 창업자인 필립 칸이 선호하거나 예상한 것만치 프로그래밍계의 주류가 되지 못하고 마이너로 밀려난 것이 크게 작용했다. 네이티브 코드 생성이 가능하면서 빌드 속도가 왕창 빠른 건 개인적으로 무척 마음에 들었는데 말이다..;;

그에 반해 마소의 베이식은 파스칼보다 그리 나은 구석이 없는 언어임에도 불구하고 자사 운영체제의 닷넷빨 있지, 레거시 베이식도 자사 오피스의 VBA 매크로 언어가 있으니 망할 일이 없는 지위에 올라 있다.

한때(1990년대 후반??)는 파스칼이 언어 구조가 더 깔끔하고 좋다면서 정보 올림피아드 같은 데서라도 각광 받았지만.. 지금은 그런 것도 없다. 그 바닥조차도 닥치고 그냥 C/C++이다.
델파이를 기반으로 이미 만들어진 유틸리티나 각종 DB 연계 프로그램들(상점 매출 관리 등등..), SI 쪽 솔루션을 제외하면 파스칼은 마치 아래아한글만큼이나 입지가 좁아져 있지 않나 싶다..;;.

범언어적인 통합 개발 환경이라는 개념을 내놓은 것도 마소가 더 일렀다. Visual Studio가 나온 게 무려 1997년이니까.. 개발툴계의 '오피스'인 셈이다. (Word, Excel 등 통합처럼 Basic, C++ 통합). 그에 비해 볼랜드 진영에서 Delphi와 C++Builder를 통합한 RAD Studio를 내놓은 것은 그보다는 훨씬 나중의 일이다.

Windows NT야 이미 있던 16비트 Windows와 버전을 맞추기 위해서 3.1부터 시작했는데, Visual Studio의 경우, 공교롭게도 1990년대 중반까지 Visual Basic과 Visual C++의 버전이 모두 4.x대였다.
그래서 첫 버전인 Visual Studio 97은 각각의 툴 버전과 Studio 버전이 모두 깔끔하게 5로 맞춰졌으며, 이듬해에 나온 차기 버전은 어째 98이라는 연도 대신, 버전인 6으로 맞춰질 수 있었다.

2010년대 이후로 C++이 워낙 미친 듯이 바뀌고 발전하고 있으니.. D 같은 동급 경쟁 언어들조차 기세가 꺾이고 버로우 타는 중이다. 도대체 지난 2000년대에 C++98, C++03 시절에는 C++ 진영이 export 병크 삽질이나 벌이면서 왜 그렇게 침체돼 있었나 의아할 정도이다. 그 사이에 Java나 C# 같은 가상 머신 기반 언어들이 약진하니, 뭘 모르는 사람들은 겁도 없이 "C++은 이제 죽었네" 같은 소리를 태연히 늘어놓을 지경까지 갔었다. (2000년대 중반이 Windows XP에, IE6에... PC계가 전반적으로 좀 '고인물'스러운 분위기로 흘러가던 때였음) 한때 잠시 그러던 시절이 있었다.

Posted by 사무엘

2020/01/20 08:34 2020/01/20 08:34
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1707

본인은 최근에 직장일 때문에 이메일을 자동으로 생성해서 보내는 프로그램이란 걸 난생 처음으로 작성해 봤다. 소켓 API만 써서 말이다.
서식이고 첨부고 몽땅 다 생략한 최소한의 형태만 생각한다면, 이메일을 보내는 것 자체는 내 예상보다 굉장히 간편하게 쉽게 자동화할 수 있는 일이라는 걸 알 수 있었다. SMTP 서버 명령어 몇 개만 스펙대로 주고 받으면 된다.

발신자는 말할 것도 없고 수신자조차도 실제로 수신하는 대상과 화면에 표시되는 수신자가 서로 다르게 얼마든지 조작 가능하다. 스팸 메일을 대량으로 살포하는 건 일도 아니겠다는 걸 이제야 느꼈다. 이런 문제도 있고, 또 이메일 내용을 다른 해커가 가로챌 수도 있으니 이 바닥에도 온갖 복잡한 인증과 암호화 계층이 나중에 도입된 거지 싶다.

이메일과 관련하여 서버에다 요청을 보낼 때는 줄 바꿈 문자가 \n이 아니라 반드시 \r\n을 써야 한다는 게 인상적이었다. 이건 어째 유닉스가 아닌 DOS/Windows 진영의 관행과 일치한다. 그리고 메일 본문의 끝을 의미하는 게 도스의 copy con이 사용하는 Ctrl+Z 같은 제어 문자가 아니라 그냥 "빈 줄+마침표+빈 줄"이다.

또 주목할 만한 것은 DATA(본문)에 들어가는 발신 날짜였다. 난 메일을 보내면 발신 시각 정도는 메일 서버가 자기 시각을 기준으로 당연히 자동으로 넣어 줄 거라고 생각했다. 사람이 이메일을 보낼 때 발신 시각을 일일이 써 넣지 않듯이 말이다.
하지만 내부적으로는 그렇지 않았다. 보내는 쪽에서 알려 줘야 하며, 허위로 조작된 임의의 날짜· 시각을 보내는 것도 얼마든지 가능하다.

그리고 여기에 써 주는 날짜· 시각은 "Tue, 18 Nov 2014 13:57:11 +0000" 같은 형태로, 날짜와 시각, time zone을 모두 포함하고 있다. 심지어 요일이라는 일종의 잉여 정보도 있다.
이 형식은 RFC 2822에 표준 규격으로 정해졌는데, 보다시피 사람이 읽기 편하라고 만들어졌지 컴퓨터의 입장에서 간편하게 읽고 쓸 수 있는 형식은 아니다. 컴퓨터의 관점에서는 그냥 1970년 1월 1일 이래로 경과한 초수, 일명 Unix epoch 숫자 하나가 훨씬 편할 텐데 말이다. time zone도 무시하고 UTC만 통용시키고 말이다.

실제로 이 날짜· 시각 문자열은 그 형태 그대로 쓰이지 않는다. 어차피 이메일 클라이언트가 파싱을 해서 내부적으로 Unix epoch 같은 단순한 형태로 바꿔야 한다. 그래야 당장 메일들을 오래된 것-새것 같은 순서대로 정렬해서 목록을 뽑을 수 있을 테니 말이다. 또한 그걸 출력할 때는 "2014년 11월 18일 오후 10시 57분 11초"처럼 사용자의 언어· 로케일과 설정대로 형태가 또 바뀌게 된다.

그러니 사람보다는 기계가 더 활용하는 날짜 시각 문자열 포맷이 왜 저렇게 복잡한 형태로 정해진 건지 의문이 들지 않을 수 없다. 읽고 쓰기 위해서 달 이름과 요일 이름 테이블까지 참조해야 하고 말이다. 글쎄, SMTP 명령어를 사람이 직접 입력해서 이메일을 보내던 엄청난 옛날에 사람이 읽고 쓰기 편하라고 저런 형태가 정해진 건지는 모르겠다.

Windows API의 GetDateFormat/GetTimeFormat 내지 C 언어의 asctime/ctime 함수 어느 것도 이메일의 날짜· 시각 포맷과 완전히 일치하는 문자열을 되돌리지는 않는다. 특히 C 함수의 경우,

Tue Nov 18 13:57:11 2014

로, 년월일 시분초 요일까지 정보가 동일하고 맨 처음에 요일이 나오는 것까지도 일치하지만.. 이메일 포맷과는 일치하지 않는다. C 함수도 나열 순서와 글자수가 언제나 동일하고 불변인 것이 보장돼 있기 때문에 저걸 변경할 수는 없다. 저 결과값을 그대로 쓸 수도 없으니 답답하기 그지없다.

참고로 일반인이 저런 날짜· 시각 format 함수를 작성한다면 그냥 단순무식하게 sprintf "%02d %s" 같은 방식으로 코딩을 하겠지만, 프로그래밍 언어 라이브러리에서는 그런 짓은 하지 않고 성능을 최대한 중요시하여 각 항목들을 써 넣는 것을 한땀 한땀 직접 구현한다. 해당 라이브러리의 소스를 보면 이를 확인할 수 있다.

Windows API에는 SYSTEMTIME이라는 구조체가 있고, C에는 tm이라는 구조체가 있어서 날짜와 시각을 담는 역할을 한다. 그런데 tm이라니.. 구조체 이름을 무슨 변수 이름처럼 참 이례적으로 짧고 성의없게 지은 것 같다. -_-
C 시절에는 앞에 struct라는 표식을 반드시 덧붙이기라도 해야 했지만 C++은 그런 것도 없으니 더욱 난감하다. C++의 등장까지 염두에 뒀다면 이름을 절대로 저렇게 지을 수 없었을 것이다.

또한 tm 구조체의 멤버들 중 월(tm_mon)은 1이 아니라 0부터 시작한다는 것, 그리고 연도(tm_year)는 실제 연도에서 1900을 뺀 값을 되돌린다는 것도 직관적이지 못해서 번거롭다. 즉, 2019년 7월은 각각 119, 6이라고 기재된다는 것이다. 그에 반해 Windows의 SYSTEMTIME은 그렇지 않으며 wYear과 wMonth에 실제값이 그대로 들어가 있다.

월이 0부터 시작하는 건 쟤네들 문화권에서는 어차피 월을 숫자가 아닌 이름으로 취급하기 때문에 배열 참조의 편의를 위해서 그렇게 했을 것이다. 그런데 연도는.. 무슨 공간을 아끼려고 굳이 1900을 뺐는지 모르겠다. 16비트 int 기준으로 서기 32767년만 해도 정말 까마득하게 먼 미래인걸 말이다.

아 하긴, 20세기 중후반엔 연도의 마지막 두 자리(10과 1)만 써도 70이니 90이니 하면서 월과 일의 숫자 범위보다 월등히 컸기 때문에 변별력이 있었다. 연도도 두 자리만 쓰는 게 관행이었기 때문에 1900을 빼는 것은 그런 관행을 반영한 조치였을 것이다. Office 97은 있어도 Office 07은 없고 2007이니까 말이다.

엑셀 같은 스프레트시트들도 날짜 겸 시각을 저장하는 자료형의 하한이 1900년 1월 1일로 잡혀 있다. 그래서 한국 최초의 철도가 개통한 1899년 9월 18일 같은 날짜는 아슬아슬하게 날짜형으로 저장하지 못하며, 일반 문자열로만 취급된다. =_=;;

이렇게 인간 가독형 날짜· 시각 말고 기계 가독형으로 직렬화된 날짜· 시각을 저장하는 정수 자료형으로 Windows에는 FILETIME이 있고, C에는 time_t가 있다. FILETIME은 Windows NT 시절부터 64비트로 시작했지만 후자는 2000년대 이후에 와서야 2038년 버그를 미연에 방지하기 위해 각 플랫폼별로 64비트로 확장됐다. 사실, 이때부터 PC도 64비트로 바뀌어서 플랫폼에 따라서는 long 같은 자료형도 64비트로 바뀌기도 했다..

그리고 요일이야.. 두 구조체 모두 일요일이 0이고 토요일이 6이다.
요일도 이름이 아닌 숫자로만 취급하는 언어는 내가 알기로 중국어밖에 없는데 혹시 더 있는지 궁금하다. 물론 인간의 언어에는 설마 0요일이 있을 리는 없고 1부터 시작할 텐데.. 중국어의 경우 일요일은 日이어서 이게 0 역할을 하고, 월요일부터 토요일까지가 1요일~6요일에 대응한다.

이상이다. 이메일 얘기로 시작해서 날짜 시각 얘기로 소재가 바뀌었는데..
이메일(POP3/SMTP)을 비롯해 HTTP, FTP 같은 표준 인터넷 프로토콜들을 클라이언트와 서버를 모두 소켓 API만으로 직접 구현해 보는 건 코딩 실력의 향상에 도움이 될 것 같다. 일상생활에서야 이미 만들어져 있는 솔루션만 사용하면 되니까 실용적인 의미는 별로 없겠지만, 학교에서 학술..도 아니고 그냥 교육적인 의미는 충분히 있을 테니 말이다. 내부 구조를 직접 살펴보면, 이런 프로토콜의 secure 버전이 왜 따로 만들어져야 했는지 이유도 알게 될 것이다.

더구나 이를 응용해서 특정 메일에 대해 자동 회신을 보내는 프로그램, 한 FTP 서버의 파일을 다른 FTP 서버로 올리는 프로그램까지 만드는 건 시험이나 과제 용도로도 괜찮아 보인다. 요즘은 FTP 같은 거 명령어로 이용할 줄 아는 사람이 얼마나 될까? 당장 본인도 모른다. ㅎㅎ

이메일을 쓰지 않는다는 도널드 커누쓰 할배가 문득 생각난다. 이분이야 뭐 1970년대, 컴퓨터 네트워크라는 건 그냥 기업· 연구소, 정부 기관만의 전유물로 여겨졌고 이메일이란 게 처음으로 발명됐던 시절에 그걸 다뤄 왔던 분이다. 그러다가 현역 은퇴 후에 때려치우고 온라인 공간의 속세와 단절한 셈이다. 이젠 뭐가 아쉬워서 누구에게 이메일로 연락을 하거나 연락을 기다려야 할 처지도 전혀 아니고.. 그냥 아날로그 종이 편지를 취급하는 것만으로 충분하시댄다.

Posted by 사무엘

2019/12/18 08:32 2019/12/18 08:32
, ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1695

C/C++은 어떤 명칭에 대해 선언과 정의의 구분이 명확한 축에 드는 언어이다. 정의는 선언도 같이 포함하지만 그 역은 성립하지 않는다. 전자는 심판의 선고이고, 후자는 집행이라고 봐도 되겠다.

(1) 함수: 실행되는 코드를 담고 있기 때문에 {}에 둘러싸여 정의된 몸체의 존재감이 압도적인 물건이다. 또한 함수의 선언부는 자신의 프로토타입(인자의 개수와 타입, 리턴값의 타입)을 나타내기도 한다. 그렇기 때문에 얘는 소형 인라인 형태가 아닌 이상, 선언과 정의의 구분이 가장 명확하다.

(2) 자료형: 구조체나 클래스는 함수보다야 선언 따로 정의 따로일 일이 훨씬 드물다. 하지만 헤더에서는 포인터 형태만 사용하는데 쓸데없는 #include 의존성을 또 만들지 않기 위해 class Foo; 같은 불완전한 타입을 선언만 하는 게 가능은 하다. 마치 함수 선언처럼 말이다.
선언만 존재하는 불완전한 타입은 sizeof 연산자를 적용할 수 없으며, 포인터형의 경우 *나 ->로 역참조해서 사용할 수도 없다.

(3) static 멤버/전역 변수: 변수는 선언하는 것 자체 말고 딱히 {}로 둘러싸인 세부 정의가 존재하지 않는다. 생성자 인자라든가 초기화 값(initializer)이 쓰이긴 하지만 그건 definition, body와는 성격이 완전히 다른 정보이니 말이다.

다만, 지역 변수 말고 클래스의 static 멤버에 대해서는 static int bar와 int Foo::bar 같은 선언/정의 구분이 존재한다. 그리고 전역 변수도 extern이라고 선언된 놈은 정의가 아닌 선언 껍데기일 뿐이다. (실제 definition은 다른 translation unit에 존재한다는..)
사실, global scope에서 함수의 선언도 앞에 extern이 생략된 것이나 마찬가지이다. 지역 변수의 선언들이 모두 구 용법의 auto가 생략된 형태인 것처럼 말이다.

함수건 변수건 선언은 여러 군데에서 반복해서 할 수 있지만 몸체 정의는 딱 한 군데에만 존재한다. 이는 마치 분향소와 빈소의 관계와도 비슷해 보인다.
이런 선언부에서는 배열의 경우 그 구체적인 크기를 생략할 수 있다. * 대신 []을 써서 얘는 정확한 크기는 모르지만 어쨌든 포인터가 아닌 배열이라고 막연하게 선언할 수 있다는 것이다. 그리고 const 변수는 초기화 값이 선택이 아니라 필수인데, 이 역시 선언 단계에서 생략될 수 있다.

1. 함수와 구조체: 상호 참조를 위한 불완전한 전방 선언

(1) 함수나 (2) 구조체/클래스는 상호 참조를 할 수 있다. A라는 함수에서 B를 호출하고, B도 A를 호출할 수 있다. 또한, X라는 구조체에서 Y라는 구조체의 포인터를 멤버로 갖는데, Y도 내부적으로 X의 포인터를 갖고 있을 수 있다.

요즘 프로그래밍 언어들은 구조적으로 같은 소스 코드를 두 번 읽어서 파싱하게 돼 있기 때문에 한 함수에서 나중에 등장하는 다른 함수를 아무 제약 없이 참조할 수 있다. C++도 그런 요소가 있기 때문에 한 클래스의 인라인 멤버 함수에서 클래스 몸체의 뒷부분에 선언된 명칭에 곧장 접근할 수 있다. 즉, 다음과 같은 코드는 컴파일 된다.

class Foo {
public:
    void func1() {
        func2();
    }
    void func2() {
        func1();
    }
};

하지만 global scope에서 이런 코드는 적어도 C++ 문법에서는 허용되지 않는다.

void Global_Func1() {
    Global_Func2();
}
void Global_Func2() {
    Global_Func1();
}

맨 앞줄에 void Global_Func2(); 이라고 Global_Func2라는 명칭이 껍데기만이라도 forward(전방) 선언돼 있어야 한다. 파스칼 언어에는 이런 용도로 아예 forward라는 지정자 키워드가 있기도 하다.
매우 흥미로운 것은..

struct DATA1 {
    DATA2* ptr;
};
struct DATA2 {
    DATA1* ptr;
};

이렇게 구조체끼리 상호 참조를 하기 위해서는..
심지어 클래스 안의 구조체라 하더라도 앞에 struct DATA2는 반드시 미리 전방 선언이 돼 있어야 한다는 것이다. 클래스 안에 선언된 멤버 함수와는 취급이 다르다. 왜 그런 걸까? 멤버 함수의 몸체는 클래스 밖에 완전히 따로 정의될 수도 있지만 구조체의 몸체는 그럴 수 없다는 차이 때문인 듯하다.

원래 파스칼과 C는 옛날에 컴파일러의 구현 난이도와 동작 요구 사양을 낮추기 위해, 소스 코드를 한 번만 읽으면서 곧장 parsing이 가능하게 설계되기도 했다. 모든 명칭들은 사용되기 "전에" 정의까지는 아니어도 적어도 선언은 미리 돼 있어야 컴파일 가능하다. 아무 데서나 '정의'만 한번 해 놓으면 아무 데서나 그 명칭을 사용할 수 있는 그런 자유로운 언어가 아니라는 것이다.

함수와 전역 변수의 경우, 그 다음으로 몸체 정의를 찾아서 실제로 '연결'하는 건 잘 알다시피 링커가 할 일이다. 단지, 구조체/클래스는 몸체가 당장 컴파일 과정에서 그때 그때 쓰이기 때문에(멤버의 타입과 오프셋...) 링크가 아닌 컴파일 단계에서 실제 몸체를 알아야 한다는 차이가 있다.

불완전한 타입에 대해서 거기에 소속된 구조체/클래스를 불완전한 형태로 또 중첩 선언하는 것은 가능하지 않다.

class A;
class A::B;

A의 몸체를 모르는 상태에서 연쇄적으로 B를 저렇게 또 선언할 수는 없다는 것이다. 그걸 허용하는 건 C++을 동적 타입 언어급으로 만드는 너무 사악한(?) 짓이 될 것 같다. 특히 이미 자유도가 너무 높은 템플릿을 구현하는 것까지 생각했을 때 말이다.
실체가 없는 저런 자료형의 포인터를 무리하게 만들 바에야 아예 void* 포인터를 그때 그때 캐스팅해서 쓰고 말겠다. 아니면, 저런 식으로 다단계 scope 구분만 하는 게 목적이라면 클래스 대신 namespace라는 훌륭한 대체제가 있다.

2. 구조체: 전방 선언과 다중 상속 사이의 난감함

이렇게 몸체를 모르는 클래스를 불완전 전방 선언만 해서 쓰는 것은 일면 편리하지만.. C++이 제공하는 다른 기능 내지 이념과 충돌해서 난감한 상황을 만들 때도 있다.
즉, class X와 class Y라고 이름밖에 모르던 시절에는 X와 Y는 서로 완전히 남남이며, 포인터 형변환도 오프셋 보정 없이 단순무식한 C-style로만 하면 된다.

그런데 알고 보니 X와 Y가 다중 상속으로 얽힌 사이라면.. 몸체를 모르던 시절과 알고 난 뒤의 컴파일러의 코드 생성 방식이 서로 달라질 수밖에 없다. 특히 X 내지 Y의 멤버 함수를 가리키는 pointer-to-member 타입의 크기와 구현 방식도 달라지게 된다. X가 전방 선언만 돼서 아무런 단서가 없을 때가 제일 복잡하고 까다롭다.

Visual C++의 경우, 얘가 전방 선언만 됐지만 다중/가상 상속 같은 것 안 쓰는 제일 단순한 형태이기 때문에 pointer-to-member도 제일 단순한 형태로만 구현해도 된다고 단서를 제공하는 비표준 확장 키워드를 자체적으로 제공할 정도이다. 그만큼 C++의 스펙은 복잡 난해하고 패러다임이 서로 충돌하는 면모도 존재한다.

이렇듯, 명칭의 선언과 정의라는 간단한 개념을 고찰함으로써, C/C++ 이후의 언어들은 선배 언어의 복잡 난해함을 어떻게든 감추고 사용자와 컴파일러 개발자의 입장에서 다루기 편한 언어를 만들려고 어떤 개량을 했는지를 알 수 있다. 당장 Java만 해도 헤더/소스 구분 없이 한 클래스에서 각종 함수나 명칭을 수정하면 번거로운 재컴파일 없이도 그걸 다른 소스 코드에서 곧장 사용 가능하니 얼마나 편리한가 말이다.

3. 함수: extern "C"

앞서 살펴본 바와 같이 extern은 static library 형태이든 DLL/so 방식이든 무엇이건, 외부로 노출되는 전역 함수 및 변수 명칭을 선언하는 키워드이다. 그런데 기왕 대외 선언을 하는 김에 노출을 하는 방식도 옵션을 줘서 같이 지정할 수 있다.
모르는 사람에게는 굉장히 기괴해 보이는 문법인 extern "C"가 바로 그것이다. 이건 함수 명칭을 C++ 스타일로 decorate를 할지, 아니면 예전의 C 시절처럼 원래 이름을 변조 없이 그대로 선언할지를 지정한다.

C++에서 변조니 decorate니 해서 굳이 언어의 ABI 차원에서 호환을 깨뜨려야 하는 이유는.. C++에는 C와 달리 함수 인자를 기반으로 오버로딩이 존재하기 때문이다. 그러니 argument의 개수와 타입들에 대한 정보가 이름에 첨가돼야만 이 함수를 그 이름으로 유일하게 식별할 수 있다.

뭐, static 함수는 대외 노출이 아니니 한 번역 단위 안에서 함수 이름이야 어떻게 붙이건 전혀 상관없으며.. C++ 클래스 멤버 함수는 애초에 C언어에서 접근 불가능한 물건이이고 무조건 C++ 방식으로 decoration을 해야 한다. 그러니 extern "C" 옵션이 필요한 곳은 C와 C++이 모두 접근 가능한 일반 전역 함수 정도로 한정된다.

"C" 말고 쓸 수 있는 문자열 리터럴은 "C++".. 요 둘뿐이다. 그리고 "C++"은 디폴트 옵션이므로 signed만큼이나 잉여이고, 오늘날까지도 사실상 "C"만 쓰인다.
만들고 있는 라이브러리가 자기 제품 내부에서밖에 안 쓰이거나, 어차피 소스째로 통째로 배포되는 오픈소스여서 특정 컴파일러의 ABI에 종속되어도 아무 상관 없다면.. 함수를 C++ 형태로, 아니 C++ 클래스 라이브러리 형태로 선뜻 만들 수 있을 것이다.

그게 아니라면 외부 노출 함수 이름은 어느 언어에서나 쉽게 import 가능한 extern "C" 형태로 만드는 게 일반적이다. extern "C" 다음에는 이 구간에서 선언되는 명칭들을 모두 C 방식으로 노출하라고 중괄호 {}까지 줄 수 있으니 생소함과 기괴함이 더해진다.

이건 컴파일러의 구문 분석 방식을 변경하는 옵션이 아니다. {} 안의 코드는 C 문법으로만 해석하라는 말이 절대 아니다. extern "C" 방식으로 선언된 함수의 안에서도 템플릿, 지역 클래스 등 C++ 문법은 얼마든지 사용할 수 있고 타 C++ 객체를 참조할 수 있다. 단지 이 함수는 동일 명칭의 여러 오버로딩 버전을 만들어서 대외적으로 제공할 수 없을 뿐이다.

또한, 컴파일러의 최적화나 코드 생성 방식에 영향을 주지도 않는다. stdcall, pascal, cdecl 같은 calling convention이야 인자를 스택에다 올리는 순서 내지 스택 주소 복귀를 하는 주체(caller or callee)를 지정하는 것이니까 코드 생성 방식에 영향을 준다. 언어 문법 차원에서의 프로토타입이 동일하더라도 calling convention이 다른 함수끼리는 포인터가 서로 호환되지 않는다.
그에 반해 extern "C" 지정이 잘못되면 obj와 lib 사이에 공급된 명칭과 요청한 명칭이 일치하지 않아서 끽해야 링크 에러가 날 뿐이다. 개념이 이렇게 정리된다.

Posted by 사무엘

2019/11/16 08:32 2019/11/16 08:32
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1684

1. 문법 함정

C/C++에서 연산자로 쓰이는 토큰(문자)들 중에는 문맥에 따라서 의미가 중복될 수 있는 것이 있다.
예를 들어 * () [] 같은 토큰은 값을 계산하는 수식에서 쓰일 때와, 변수를 선언할 때 의미가 서로 다르다. 한쪽에서는 인근의 변수가 배열· 포인터· 함수 타입임을 나타내지만, 다른 쪽에서는 실제로 배열 첨자나 포인터를 역참조하고 함수를 호출하는 역할을 한다.

심지어 =조차도 int a=5; 와 그냥 a=5; 에서 =는 문법적인 의미가 서로 동일하지 않다. 똑같이 =를 썼더라도 중괄호를 동원하여 배열이나 구조체를 초기화하는 것은 일반 수식에서는 가능하지 않기 때문이다.

이런 것 말고도 콤마(,)의 경우.. 함수 인자 구분자와 쓰임이 완벽하게 겹친다. 그렇기 때문에 함수 인자에서 콤마 연산자를 쓰려면 수식을 괄호로 싸야 한다.

그리고 <>로 둘러싸인 템플릿 인자에서 부등호 내지 비트 이동 연산자를 쓸 때도 상황이 좀 난감해진다. 템플릿 인자에 typename만 올 때는 <>가 모호성을 전혀 일으키지 않지만, 문제는 템플릿 인자로 정수도 들어올 수 있다는 것이다. 그리고 값이 컴파일 타임 때 결정만 될 수 있다면 정수값을 만들어 내는 각종 연산자들도 당연히 쓰일 수 있다.

template class Foo<size_t N> { .... };

Foo<(a>b ? 5:3)> bar1;
Foo<(MAX>>3)> bar2;

그러니 위와 같은 상황에서는 수식 전체를 괄호로 싸야만 한다. 괄호가 단순히 같은 수식 안에서 연산 우선순위를 조절할 때만 쓰이는 게 아니라는 점이 흥미롭다. 수식 영역과 함수 및 템플릿 인자 영역을 구분할 때도 쓰인다.

std::vector<std::list<int>> vl;

요렇게 중첩되었던 템플릿 인자들이 한꺼번에 종결될 때 > 사이를 강제로 띄우지 않아도 되게 컴파일러의 동작 방식 지침이 달라진 때가 내 기억이 맞다면 C++03과 C++11사이였지 싶은데.. 정확하게는 모르겠다.

그 밖에 2[a]가 가능하다는 C/C++의 변태적인 특성상, 람다와 관련해서 또 변태 같은 중의성을 만들 수 있지는 않으려나 궁금한데, 너무 머리가 아파서 더 생각해 보지는 않으련다.
요즘 C++은 auto라든가 using, delete를 보면 =를 사용하는 새로운 문법이 여럿 생긴 것 같다.

2. 비표준이지만 표준처럼 쓰이는 함수

C언어 라이브러리에 있는 모든 함수들이 100% 표준이고 어느 플랫폼에서나 동일하게 사용 가능한 게 아니다.
본인은 평소에 Visual C++만 쓸 때는 이런 걸 전혀 의식하지 않고 지냈는데.. strlwr과 심지어 내 기억이 맞다면 strdup도 macOS에서는 지원되지 않는 걸 최근에 확인하고는 놀랐었다.
물론 저런 함수들이야 하는 일이 워낙 간단하니 3분 만에 직접 짤 수도 있다. 하지만 핵심은 저건 universal한 표준이 아니라는 것이다.

Visual C++도 세월이 흐를수록 '표준 준수'를 강조하는 쪽으로 라이브러리의 디자인이 바뀌다 보니, 관례적으로 제공되긴 했지만 엄밀히 말해 표준이 아닌 함수들에 대해서는 앞에 밑줄을 붙여서 구분하는 추세이다.
하긴 그러고 보니, Visual C++을 업그레이드 한 뒤에 기존 코드가 컴파일되지 않아서 수정하던 내역 중에도 멀쩡한 함수 앞에다가 _를 붙이는 게 많았다. 일례로, 이분 검색 함수는 bsearch가 당당히 표준으로 등재돼 있지만, 그에 상응하는 선형 검색 함수는 표준이 아니어서 그런지 _lfind이다.

3. 스택 메모리의 임의 할당

그러고 보니 비표준 함수 중에는.. malloc의 변종으로서 가변 길이(= 크기가 런타임 때 정해지는) 메모리를 heap이 아닌 무려 현재의 스택 메모리에서 얻어 오는 alloca이던가 malloca인가 하는 물건도 있었다. 옛날 16비트 Turbo C에만 있는 줄 알았는데 현재의 Visual C++에서도 지원은 하는가 보다. 물론 앞에 밑줄은 붙여서 말이다.

얘는 C에서 문법적으로 가능하지 않은 동적 배열을 heap이 아닌 스택 메모리에 구현해 준다. 메모리 할당 속도가 heap을 다루는 것보다 훨씬 더 빠르며, 함수 실행이나 scope이 끝날 때 해제도 자동으로 되어 memory leak 걱정을 할 필요 없으니 편리하다. 지금 실행 중인 함수의 stack frame을 조작하는 물건이니, 겉으로는 함수 호출 같지만 실제로는 컴파일러 인트린식 형태로 구현되지 싶다.

이렇게 생각하면 얘는 장점이 많아 보이지만.. 일단 할당 장소가 장소인 관계로 (1) 수 MB 이상급의 대용량 메모리를 할당할 수 없으며, (2) 할당 방식의 특성상 heap 메모리처럼 할당과 해제를 무순으로 임의로 자유자재로 할 수 없다. (3) C++ 언어의 보조를 받는 게 없기 때문에 해제와 C++ 객체 소멸을 한데 연계할 수도 없다.

이런 한계로 인해 스택에서의 동적 메모리 할당은 생각만치 그렇게 유용하지 않다. 본인도 지난 20여 년 동안 C/C++ 프로그래밍을 하면서 이걸 전혀 사용해 본 적이 전혀에 가깝게 없었다.
저 함수가 괜히 비표준이 아닌 셈이다. 마치 정수 기반 고정소수점과 비슷한 위상의 이단아인 것 같다. 다만, 그럼에도 불구하고 본인은 이런 상황은 어떨까 하는 생각을 해 보았다.

생성자에서 문자열을 인자로 받아들여 적절한 처리를 하는 기반 클래스가 있다.
이걸 상속받아 파생 클래스가 만들어졌는데, 얘는 자주 쓰이는 문자열 패턴을 손쉽게 생성하기 위해 여러 개의 문자열이나 숫자를 숫자를 인자로 받으며, 이로부터 단일 문자열을 생성하여 기반 클래스의 생성자에다가 전달한다. 즉, 이런 꼴이다.

Derived::Derived(string arg1, string arg2, int num):
 Base( prepareArgument(arg1, arg2, num) ) {}

예시를 보이기 위해 편의상 string이라는 자료형을 썼지만, 실제로 저기서 쓰이는 것은 const char * 같은 문자열 포인터이다.
즉, 나는 Derived의 생성자에서 char buf[128] 같은 스택 기반 지역변수 배열을 선언한 뒤, 거기에다 arg1, arg2, num의 정보를 담고 있는 문자열을 담고 그걸 Base의 생성자에다가 전달하고 싶으나.. 문법 구조상 그건 가능하지 않다. 기반 클래스는 파생 클래스의 생성자가 실행되기 전에 초기화가 완료돼야 하기 때문이다. 그러니 파생 클래스의 생성자 함수에서 확보해 놓은 스택 변수의 공간을 받을 방법도 존재하지 않는다.

이럴 때 prepareArgument(_alloca(len), arg1, arg2, num) 이런 식으로 static한 보조 함수를 만들면 굳이 힙 메모리 할당과 생성자· 소멸자가 뒤따르는 범용 string을 쓸 필요 없이 스택에다가 문자열을 담을 공간을 임시로 확보하여 소기의 목적을 달성할 수 있을 것으로 보인다.

4. 쓰레기값

'초기화되지 않은 변수, 쓰레기값'이라는 건 내가 아는 프로그래밍 언어들 중에는 C/C++에만 존재하는 개념이다. 물론 컴퓨터라는 기계에 본질적으로 존재하니까 C/C++에도 존재하는 것이지만 말이다.
이것 때문에 야기되는 버그의 황당함과 막장스러움은 뭐, 이루 말로 형용할 수 없다. 같은 소스 코드가 release 빌드와 debug 빌드의 실행 결과가 달라지는 건 애교 수준이다. 프로그램이 미묘하게 삑사리가 나고 있어서 몇 시간을 끙끙대며 디버깅을 했는데 원인이 고작 이것 때문인 일이 비일비재하다.

개인적으로는 부모 클래스의 멤버가 초기화되지 않았는데 그걸 자식 클래스에서도 초기화하지 않은 것, 처음에는 0 초기화가 보장되는 static 영역에 있던 오브젝트를 별 생각 없이 스택/힙으로 옮긴 것, 심지어 한 멤버를 초기화할 때 아직 초기화되지 않은 다른 멤버를 참조해서 망한 것이 기억에 남아 있다.

간단한 int 지역변수가 초기화되지 않은 건 컴파일러 차원에서 잡아 주지만 위와 같은 사항들, 복잡한 구조체의 멤버가 일부 초기화되지 않는 것, 스택이 아닌 힙에서 할당하는 동적 메모리가 돌아가는 사정은 컴파일러도 일일이 다 챙겨 주지 못하기 때문에 더 복잡한 정적 분석의 영역으로 가야 한다.

그런데 개인적으로 의문이 드는 건 초기화되지 않은 쓰레기값이란 건 어느 정도로 무질서하냐는 것이다. 무슨 수학적으로 균일한 난수 수준일 리는 없을 것이다.
그 쓰레기들의 값에 영향을 주는 것은 정확하게 무엇일까? (스택이냐 힙이냐에 따라 다르게 생각해야 할 듯) 컴파일 시점에서 결정되어서 한번 빌드된 프로그램은 동일한 동작 조건에서는 불변인 걸까? 혹은 운영체제에 따라 달라질 수 있을까?

마치 중간값 피벗 기반의 퀵 정렬이 최고 시간 복잡도가 나오게 공격하는 방법을 연구하는 것처럼 저것도 뭔가 컴퓨터공학적인 고찰이 필요한 의문인 것 같다.

5. 메모리 주소의 align 문제

"어..? 구조체의 크기가 왜 각 구조체 멤버들의 크기의 합보다 더 크지? 컴파일러의 버그인가?"
본인이 이렇게 크게 놀랐던 게 벌써 20여 년 전, 고딩 시절에 도스용 DJGPP를 갖고 놀던 때였다.
그때는 지금 같은 구글 검색도 없고 네이버 지식인도 없고.. 이런 시시콜콜한 이슈를 다루는 C언어 서적도 없었으니, 궁금하면 물어 볼 만한 곳이 PC 통신 프로그래밍 관련 동호회 게시판밖에 없었다.

메모리 취급에 매우 관대한 x86 물에서만 놀던 사람이라면 word align이라는 개념이 더욱 생소할 수밖에 없다. 더구나 그 경계에 맞지 않은 단위로 메모리 접근을 시도할 경우, CPU가 귀찮아서 예외까지 날린다면??
본인은 포팅이라는 걸 할 때 word align을 조심해야 한다는 것을 머리로는 들어서 알았지만 그 문제를 회사에서야 실제로 겪었다.

이제 네이티브 코드는 반드시 ARM64 기반으로 빌드해야 하니 해당 부분을 64비트로 다시 빌드했다. 그런데 동일한 엔진을 얹은 안드로이드 앱이 어떤 기기에서는 잘 돌아갔는데 다른 기기에서는 뻗었다.
죽은 지점이 어딘지는 stack dump를 통해 알아낼 수 있었지만 거기는 null pointer, buffer overflow 등 그 어떤 통상적인 메모리 문제가 발생할 여지도 없는 곳이었다.

알고 보니 거기는 파일 형태로 기록하는 조밀한 버퍼에다 wcsncpy( reinterpret_cast<wchar_t*>(buf+1), str, len) 이런 짓을 하고 있었으며, 타겟 포인터가 한눈에 보기에도 wchar_t의 크기 대비 word align이 되어 있지 않았다(buf 는 char* ㄲㄲㄲ).
그래서 wcsncpy를 memcpy로 교체함으로써 문제를 해결할 수 있었다. wchar_t는 long과 더불어 포팅을 어렵게 하는 주범이며, reinterpret_cast는 align과 관련된 잠재적 위험성을 발견하는 용도로도 쓰일 수 있다는 점을 알게 됐다.

복잡한 포인터 메모리 조작 코드에서 잠재적인 align 문제를 잡아내는 건 사람의 디버깅만으로는 한계가 있을 텐데, 정적 분석으로 가능한지 궁금하다. 그리고 반대로 레거시 코드를 돌리기 위해 컴파일러가 성능이 떨어지는 걸 감수하고라도 최소한 뻗지는 않게 align 보정 코드를 집어넣어 주는 옵션도 있을 텐데 그것도 궁금해진다.

6. 32비트 단위 문자열

C/C++에서 wchar_t 크기의 파편화로 인해 야기된 혼란과 원성이 워낙 장난이 아니었기 때문에 C++11에서는 아예 크기를 직접 명시하고 고정시킨 char16_t와 char32_t라는 자료형이 built-in으로 추가되었다. int는 32비트 시대에 크기가 변했고 long은 64비트 시대에 플랫폼별로 삐걱거리기 시작했다면, wchar_t는 유니코드와 함께 새로 등장하면서 저 지경이 된 셈이다.

개인적으로 인상적인 것은 char32_t는 U""라고 문자열 리터럴을 나타내는 접두사까지 언어 차원에서 새로 등장했다는 점이다. 드디어 확장 평면 문자도 취급하기 더 수월해지겠다.
그런데 그러면 Visual C++이라면 ""는 1바이트, L""는 2바이트, U""는 4바이트라고 자연스럽게 연결되는데, 처음부터 wchar_t가 4바이트였던 맥에서는 L과 U가 모두 4바이트이다. char16_t에 대응하는 2바이트 문자열은 리터럴로 표현하는 방법이 없나 궁금하다. 오히려 Objective C에서 사용하는 NSString의 @""가 2바이트 문자열 리터럴이다.

char32_t가 언어 차원에서 이렇게 지원되기 시작했는데 str*, wcs*처럼 32비트 문자열 버전에 대응하는 strlen, strcpy, sprintf 등도 있어야 하지 않나 싶다. C++이라면 char_traits 템플릿으로 땜빵할 수도 있겠지만 C에는 그런 게 없으니까..
그리고 템플릿이 없는 저쪽 동네 Java는 32비트 단위 문자열을 취급하는 string class 같은 것도 있어야 하지 않을까? 문자 하나도 확장 평면까지 감안해서 얄짤없이 int로 표기하는 건 직관적이지 못하고 불편하니 말이다.

7. 레퍼런스 사이트

C/C++은 마소의 C#, 애플의 Swift, 썬-오라클의 Java처럼 한 기업이 주도해서 개발하는 언어가 아니다. 그래서 C++ 라이브러리 레퍼런스 같은 걸 검색해도 딱 떨어지는 개발사의 홈페이지가 곧장 나오지는 않는다.
하지만 수 년 전부터 구글 검색에서 상위권으로 노출되고 있는 유명한 사이트는 아래의 딱 두 곳인 것 같다.

http://www.cplusplus.com
https://en.cppreference.com/w

얘들은 개인? 단체? 어디서 운영하는지 모르겠다. C++17, C++20 같은 최신 정보도 곧장 올라오는 걸 보니 유지보수도 활발히 되고 있고 만만하게 볼 퀄리티가 아니다.
마치 Doom 게임 관련 자료를 듬뿍 얻을 수 있는 위키 사이트가 doomwiki와 doom.fandom.com 요 두 계열로 나뉘듯이 말이다.

Posted by 사무엘

2019/11/13 08:33 2019/11/13 08:33
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1683

1. 스마트 포인터의 필요성

C/C++에서 포인터로 참조하는 동적 메모리가 안전하게 관리되기 위해서는.. 가장 간단하게는 포인터의 생명 주기와 그 포인터가 가리키는 메모리 실체의 생명 주기가 동일하게 유지돼야 할 것이다. 어느 한쪽이 소멸되면 다른 쪽도 소멸돼야 한다. C++에서는 이 정도 절차는 포인터를 클래스로 감싸고 그 클래스의 생성자와 소멸자 함수를 구현함으로써 자동화할 수 있다.

하지만 이것만으로 문제가 다 해결되는 건 아니다. 어떤 메모리에 대한 포인터의 ownership이 더 깔끔하게 관리되고 통제돼야 한다. 멀쩡한 주소값이 딴 걸로 바뀌어서 원래 가리키던 메모리로 접근 불가능해지거나(leak..), 이미 해제된 메모리를 계속 가리키고 있다가 사고가 나는 일도 없어야 한다.

그런 일을 예방하려면 여러 포인터가 동일 메모리를 참조하는 것을 완전히 금지하고 막든가, 아니면 reference count 같은 걸 따로 둬서 그런 상황에 대비를 해야 한다. 실행시켰을 때 뻑이 날 만한 짓은 아예 컴파일이 되지 않고 거부되게 해야 한다.
이런 메모리 관리를 자동으로 해 주는 클래스가 표준 C++ 라이브러리에도 물론 구현돼 있으며, 크게 두 가지 관점에서 존재한다.

  • 배열 지향: POD 또는 비교적 단순한 오브젝트들의 동적 배열로, 원소들의 순회, 추가· 삭제와 전체 버퍼 재할당 같은 동작에 최적화돼 있다. 원소 전체 개수와 메모리 할당량 정보가 별도로 들어 있으며, 문자열 클래스도 어찌 보면 배열의 특수한 형태라고 간주할 수 있다. [] 연산자가 오버로딩 돼 있다.
  • 오브젝트 지향: 단일 오브젝트 중심으로 메모리 할당 크기보다는 소유자(ownership) 관리에 더 최적화돼 있다. 그래서 구현 방식에 따라서는 원소 개수 대신 레퍼런스 카운트 정보가 있곤 한다. 담고 있는 타입 형태로 곧장 활용 가능하게 하기 위해, ->와 * 같은 연산자가 반드시 오버로딩 돼 있다.

C/C++은 배열과 포인터의 구분이 애매하니 helper class는 각 분야에 특화된 형태로 따로 구현되었다는 것을 알 수 있다.
배열 버전이야 std::vector라는 유명한 클래스가 있고, 오브젝트를 담당하는 물건을 우리는 smart pointer라는 이름으로 오랫동안 불러 왔다.

Windows 진영에서도 ATL 내지 WTL 라이브러리에는 일반 포인터뿐만 아니라 COM 인터페이스를 감싸서 소멸자에서 Release를 해 주고, 대입 연산자 및 복사 생성자에서 AddRef 따위 처리를 해 주는 간단한 클래스가 물론 있었다.
소멸자는 예외 처리가 섞여 있을 때 더욱 빛을 발한다. 함수의 실행이 종료되는 경로가 여럿 존재하게 됐을 때 goto문을 안 쓰고도 메모리 단속이 꼼꼼하게 되는 것을 언어와 컴파일러 차원에서 보장해 주기 때문이다. 그리고 이 정도 물건은 C++ 좀 다루는 프로그래머라면 아무라도 생각해 내고 구현할 수 있다.

2. 초창기에 도입됐던 auto_ptr과 그 한계

C++은 이런 스마트 포인터도 표준화하려 했으며, 그 결과로 auto_ptr이라는 클래스가 C++98 때부터 도입됐다. 선언된 헤더는 #include <memory>이다.
그러나 auto_ptr는 오늘날의 최신 C++의 관점에서 봤을 때는 썩 좋지 못한 설계 형태로 인해 deprecate됐다. 이미 이걸 사용해서 작성돼 버린 레거시 코드를 실행하는 것 외의 용도로는 사용이 더 권장되거나 지원되지 않게 되었다.

그 대신, C++11부터는 용도를 세분화한 unique_ptr, shared_ptr, weak_ptr이라는 대체제가 등장했다. 이거 마치 C-style cast와 C++ *_cast 4종류 형변환의 관계처럼 보이지 않는가? =_=;;

auto_ptr은 한 메모리를 오직 한 포인터만이 참조하도록 하고 포인터가 사라질 때 소멸자도 호출해 주는 최소한의 기본 조치는 잘 해 줬었다. auto_ptr<T> ptr(new T(arg1, ...)) 같은 꼴로 선언해서 사용하면 됐다. 하지만...

(1) 단일 포인터와 배열의 구분이 없었다.
물론 스마트 포인터는 전문적인 배열 컨테이너 클래스와는 용도가 다르니, 원소의 삽입· 삭제나 원소 개수 관리, 메모리 재할당 처리까지 할 필요는 없다.

하지만 클래스의 소멸자에서 호출해 주는 clean-up을 별도의 템플릿 인자로 추상화하지는 않았고 그냥 delete ptr로 고정해 놓았기 때문에.. 당장 delete와 delete[]조차도 구분할 수 없어서 번거로웠다. 다시 말해 auto_ptr<T> ptr(new T[100]) 이런 식으로 써먹을 수는 없다.

(2) 포인터의 ownership을 관리하는 것까지는 좋으나.. 그게 복사 생성자 내지 대입 연산자에서 우항 피연산자를 변조하는 꽤 기괴한 형태로 구현돼 있었다.
무슨 말이냐 하면.. auto_ptr<T> a(ptr), b에서 b=a 또는 b(a)라고 써 주면.. b는 a가 가리키는 값으로 바뀜과 동시에 a가 가리키는 값은 NULL로 바뀌었다. 즉, 포인터와 메모리의 일대일 관계를 유지시키기 위해, 소유권은 언제나 복사되는 게 아니라 이동되게 한 것이다.

그렇게 구현한 심정은 이해가 되지만, 대입 연산에서 A=B라고 하면 A만 변경되어야지, B가 바뀌는 건 좀 납득이 어렵다.
복사 생성자라는 것도 형태가 T::T(const T&)이지, T::T(T&)는 아니다. 차라리 임시 객체만 받는 R-value 이동 전용 생성자라면 T::T(T&&)이어서 우항의 변조가 허용되지만, 복사 생성자는 그런 용도가 아니다.

(3) 위와 같은 특성이랄지 문제로 인해.. auto_ptr은 call-by-value 형태로 함수의 인자나 리턴값으로 그대로 전달했다간 큰일 났다.
메모리의 소유권이 호출된 함수의 인자로 완전히 옮겨져 버리고, 그 함수가 끝날 때 그 메모리는 auto_ptr의 소멸자에 의해 해제돼 버리기 때문이다. 이 문제를 컴파일러 차원에서 잡아낼 수 없다. (뭐, 이미 free된 메모리를 이중으로 해제시키는 사고는 나지 않는다. 깔끔한 null pointer 접근 에러가 날 뿐.)

auto_ptr을 함수 인자로 전달하려면 그냥 call-by-reference로 하든가, 아니면 그 원래의 T* raw 포인터 형태로 전해야 했다.
아니, 함수 인자뿐만 아니라 값을 그대로 함수의 리턴값으로 전할 때, 혹은 vector 및 list 같은 컨테이너에다 집어넣을 때 등.. 임시 객체가 발생할 만한 모든 상황에서 동일한 문제가 발생하게 된다.

이게 제일 치명적이고 심각한 문제이다. 여러 함수를 드나들고 컨테이너에다 집어넣는 것도 raw pointer와 다를 바 없이 가볍게 되라고 smart pointer를 만들었는데 그러지 못한다면.. 이걸 만든 의미가 없다. 그러면 한 함수 안에서 달랑 소멸자 호출만 자동화해 주는 것 말고는 쓸모가 없다.
또한, 매번 call-by-reference로 전하는 건 엄밀히 말해 포인터의 포인터.. 즉, 포인터를 정수가 아니라 구조체 같은 덩치 큰 물건으로 취급하는 거나 마찬가지이고..

이런 이유로 인해 auto_ptr은 좋은 취지로 도입됐음에도 불구하고, 현재는 이런 게 있었다는 것만 알고 최신 C++에서는 잊어버려야 할 물건이 됐다.
(1) C 라이브러리 함수라든가(gets...) (2) C++ 키워드뿐만 아니라(export) (3) C++ 라이브러리 클래스 중에서도 흑역사가 생긴 셈이다.

auto_ptr이 무슨 보안상의 결함이 있다거나 성능 오버헤드가 크다거나 한 건 아니다. 21세기 이전에는 C++에 R-value 참조자 같은 문법이 없었으니 복사 생성자에다가 move 기능을 집어넣을 수밖에 없었다. 나중에 C++에 언어 차원에서 smart pointer의 불편을 해소해 주는 기능이 추가된 뒤에도 이미 만들어진 클래스의 문법이나 동작을 변경할 수는 없으니 새 클래스를 따로 만들게 된 것일 뿐이다.

3. unique_ptr

auto_ptr의 가장 직접적인 대체제는 unique_ptr이다.
얘는 최신 C++에서 새로 추가된 문법을 활용하여 단일 개체와 배열 개체를 구분할 수 있다. unique_ptr<T>와 unique_ptr<T []>로 말이다. 신기하다..;;
그리고 템플릿 가변 인자 문법을 이용하여 new를 생략하고 std::make_unique<T>(arg1, arg2..) 이렇게 객체를 생성할 수도 있다. 얘는 C++14에서야 도입된 더 새로운 물건이다.

unique_ptr은.. 말 많고 탈 많던 복사 생성자와 대입 연산자가 막혀 있다. 함수에 날것 형태로 전달하거나 컨테이너에 집어넣는 등의 시도를 하면.. 그냥 컴파일 에러가 나게 된다. 그래서 안전하다.
이전의 auto_ptr이 하던 것처럼 소유권을 옮기는 것은 R-value 이동 생성자라든가 std::move 같은 다른 방법으로 하면 된다.

어떤 클래스에 대해서 복사 생성자와 대입 연산자가 구현돼 있지 않으면 컴파일러가 디폴트, trivial 구현을 자동 생성하는 편이다. 각 멤버들에 대한 memcpy 신공 내지 대입 연산자 호출처럼 해야 할 일이 비교적 직관적으로 뻔히 유추 가능하기 때문이다. 하지만 클래스에 따라서는 그런 오지랖이나 유도리가 바람직하지 않으며 이를 금지해야 할 때가 있다. 인스턴스가 단 하나만 존재해야 하는 singleton 클래스, 또는 저렇게 반드시 1핸들, 1리소스 원칙을 유지해야 하는 클래스를 구현할 때 말이다.

그걸 금지하는 가장 전형적이고 전통적인 테크닉은 해당 함수를 private으로 선언해 버리는 것이 있다. (정의는 당연히 하지 말고)
하지만 이것도 friend 함수에서는 안 통하는 한계가 있기 때문에 최신 C++에서는 액세스 등급과 별개로 상속 받았거나 디폴트 구현된 멤버 함수의 사용을 그냥 무조건적으로 금지해 버리는.. = delete라는 문법이 추가되었다. 순수 가상 함수를 나타내는 = 0처럼 말이다! unique_ptr은 이 문법을 사용하고 있다.

그럼 unique_ptr은 컨테이너에 집어넣는 게 전혀 불가능한가 하면.. 그렇지 않다.

vector<unique_ptr<T> > lc;
lc.push_back( unique_ptr<T>(new T) );

처럼 push_back이나 insert에다가 T에 속하는 변수를 줄 게 아니라 저렇게 애초부터 R-value 임시 객체를 주면 된다.
그러면 임시 객체의 ownership이 컨테이너 안으로 자연스럽게 옮겨지고, 컨테이너 안의 unique_ptr만이 유일하게 T를 가리키고 있게 된다.

얘는 auto_ptr보다 상황이 훨씬 더 나아졌고 이제 좀 쓸 만한 smart pointer가 된 것 같다.
사실, 작명 센스조차도.. auto는 도대체 뭘 자동으로 처리해 준다는 건지 좀 막연한 구석이 있었다. 그게 unique/shared로 바뀐 것은 마치 '인공지능'이라는 막연한 용어가 AI 암흑기를 거친 후에 분야별로 더 구체적인 기계학습/패턴인식 같은 말로 바뀐 것과 비슷하게 들리기도 한다. ㅎㅎ

4. shared_ptr와 weak_ptr

그럼 다음으로, shared_ptr을 살펴보자.
얘는 마치 COM의 IUnknown 인터페이스처럼 reference counting을 통해 다수의 포인터가 한 메모리를 참조하는 것에 대한 대비가 돼 있다. 그래서 unique_ptr과 달리, 대입이나 복사를 자유롭게 할 수 있다.

(1) 날포인터는 그냥 대책 없이 허용하기 때문에 ownership 문제가 발생하고.. 아까 (2) auto_ptr은 무조건 ownership을 옮겨 버리고, (3) unique_ptr은 깔끔하게 금지하는데 (4) 얘는 참조 횟수를 관리하면서 허용한다는 차이가 있다. 소멸자는 가리키는 놈의 reference count를 1 감소시켜서 그게 0이 됐을 때만 실제로 메모리를 해제한다.

그래서 shared_ptr은 크기 오버헤드가 좀 있다.
unique_ptr은 일반 포인터 하나와 동일한 크기이고 기술적으로 machine word 하나와 다를 바 없는 반면, shared_ptr은 reference count 데이터를 가리키는 포인터를 추가로 갖고 있다. 일반 포인터 두 개 크기를 차지한다.

이는 static_cast보다 dynamic_cast가 오버헤드가 더 큰 것과 비슷한 모습 같다. 그리고 멤버 포인터가 다중 상속 하에서의 this 오프셋 보정 때문에 추가 정보를 갖고 있다면, 얘는 ownership 관리 때문에 추가 정보를 갖고 있다는 점이 비교된다.

끝으로, weak_ptr이라고, shared_ptr로부터 얻어 올 수 있는 포인터도 있다. 얘는 이름에서 유추할 수 있듯이 reference count를 건드리지 않으며 소멸자에서도 아무 처리를 하지 않는 포인터.. 즉 일반 포인터와 차이가 사실상 없는 물건이다. 순환 참조 문제를 예방하려면 A에서 B를 참조한 뒤에 B에서 또 A를 참조할 때는 레퍼런스 카운트를 건드리지 않아야 하기 때문이다.

그런데도 일반 포인터 대신 굳이 이런 자매품도 따로 만든 이유는 언어 차원에서의 무결성 보장처럼 for the sake of completeness 때문으로 보인다. 무결성 보장이란 게 무슨 말인지 예를 들자면, weak_ptr은 가리키는 주소가 반드시 shared_ptr로부터 유래되었고, unique_ptr과는 절대 섞이지 않는다는 것 말이다.

물론 COM 인터페이스도 아니고 일반 포인터에서 굳이 weak_ptr이 필요할 정도로 극단적인 상황은 현실에서는 거의 없을 것이다. 상상조차 잘 안 된다. 포인터 A가 다른 클래스 B를 가리키는데, 그 클래스 B 내부에 포인터 A가 소속된 다른 객체를 가리키는 포인터가 들어 있다던가.. 뭐 그런 상황 정도이다.
다만, 순환 참조는 단순히 A→B→A뿐만 아니라 A→B→C→A 같은 더 복잡한 형태로도 발생하고, 일단 발생한 것을 감지하기란 몹시 난감하다. 그러니 weak_ptr이라는 개념 자체는 반드시 필요하다.

이상이다. 그냥 생성자와 소멸자를 적절히 구현해 주고 ->와 *만 오버로딩 해 주면 끝일 것 같은 smart pointer도 깊게 들어가면 내막이 생각보다 더 복잡하다는 것을 알 수 있다.
Rust 언어는 garbage collector 기반이 아니면서 더 독특한 방식으로 메모리 소유권을 관리한다던데 그 내막이 어떠했던지가 다시 궁금해진다.

5. 여담

(1) = delete는 다시 봐도 참신하기 그지없다. delete라는 키워드가 연산자 말고 이런 용도로도 활용되는 날이 오더니!
배열 첨자 연산자이던 []와 구조체 참조 연산자이던 ->가 람다 선언에서 의미가 완전히 확장된 것만큼이나 참신하다.
하긴, 옛날에 템플릿이 처음 등장했을 때.. 그저 비교 연산자일 뿐이었던 <와 >가 완전히 새로운 여닫는 형태로 사용되기 시작한 것도 정말 충격적인 변화였을 것이다.

(2) 글쎄, 멤버 함수의 접근을 금지하는 방법이 저렇게 도입됐는데, 어떤 클래스에 대해서 Java의 final이나 C#의 sealed처럼 상속이 더 되지 않게 하는 옵션은 C++에 도입되지 않으려나 모르겠다. C++은 타 언어에 없는 protected, private 상속이 존재하지만 상속 자체를 금지하는 옵션은 없어서 말이다.

특히 내부 구조가 아주 간단하고 가상 함수가 존재하지 않는 것, 특히 소멸자가 가상 함수 형태로 별도로 선언되지 않은 클래스는 상속을 해도 어차피 polymorphism을 제대로 살릴 수 없다. 그냥 단순 기능 확장에만 의미를 둬야 할 것이다.
Java는 모든 함수가 기본적으로 가상 함수일 정도로 유연한데도 이와 별개로 상속을 금지하는 옵션이 있는데.. 그보다 더 경직된 언어인 C++은 의외로 그런 기능이 없다.

(3) C/C++의 사고방식에 익숙한 프로그래머라면 포인터란 곧 메모리 주소이고, 본질적으로 machine word와 동일한 크기의 부호 없는 정수 하나일 뿐이라는 편견 아닌 편견을 갖고 있다.
하지만 객체지향이라든가 함수형 등 프로그래밍 언어 이론을 조금이라도 제대로 구현하려면 숫자 하나만으로 모든 것을 표현하기엔 부족한 포인터가 얼마든지 등장하게 된다.

앞서 다뤘던 shared_ptr이라든가 다중 상속을 지원하는 멤버 함수 포인터..
그리고 자기를 감싸는 문맥 정보가 담긴 클래스 객체 포인터라든가 람다 함수 포인터 말이다.
C++은 전자를 기본 지원하지 않기 때문에 모든 클래스들이 Java 용어로 치면 개념적으로 static class인 거나 마찬가지이다.
그리고 후자를 기본 지원하지 않기 때문에 람다는 캡처가 없는 놈만 기존 함수 포인터에다 담을 수 있다.

그런 것들이 내부적으로 어떻게 구현되고 구현하는 시공간 비용이 어찌 되는지를 프로그래머라면 한 번쯤 생각할 필요가 있어 보인다.

(4) C++에서 class T; struct V; 처럼 이름만 전방 선언된 incomplete type에 대해서는 제일 단순한 직통 포인터, 그리고 무리수가 좀 들어간 멤버 포인터 정도만 선언할 수 있다. T나 V의 실체를 모르니 이런 타입의 개체를 생성하거나, 포인터를 실제로 참조해서 뭔가를 할 수는 없다.
그런데 이런 불완전한 타입을 가리키는 포인터를 상대로 delete는 가능할까? 난 이런 상황에 대해 지금까지 한 번도 생각해 본 적이 없었다.

sizeof(T)의 값을 모르더라도 포인터가 가리키는 heap 메모리 블록을 free하는 것은 얼마든지 가능하다. 애초에 malloc/void가 취급하는 것도 아무런 타입 정보가 없는 void*이니 말이다.
그러니 operator delete(ptr)은 할 수 있지만, 해당 타입에 대한 소멸자 함수는 호출되지 못한다.

컴파일러는 이런 코드에 대해서 경고를 띄우는 편이다. Visual C++의 경우 C4510이며, delete뿐만 아니라 delete[]에 대해서도 동일한 정책이 적용된다.

Posted by 사무엘

2019/10/09 08:35 2019/10/09 08:35
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1671

그리고.. 이튿날 아침에는 계속해서 봉화로 이동하기 시작했다. 새벽에는 계절이 바뀌기라도 했나 싶을 정도로 공기가 차가워져 있었다.

사용자 삽입 이미지

주변엔 계속해서 이런 풍경이 펼쳐졌다.
그러고 보니 옛날 도로는 가드레일 말고 저렇게 노란 경계석이 쓰였던 것 같은데 요즘은 어느 샌가 보기 힘든 풍경이 돼 있다.

사용자 삽입 이미지

중간에 마을 어귀를 흐르는 요런 맑은 개울을 발견해서 차를 세우고 물놀이를 했다.
이럴 때 햇볕이 쨍쨍하고 날씨가 더 더웠으면 물놀이의 효과가 더 커졌겠지만, 폭염과 가뭄 때문에 개울이 말라 버리는 것보다야 이렇게라도 물에 들어가는 게 훨씬 더 낫다. 비 덕분에 여기 모든 개천· 개울들은 물이 콸콸 세차게 흐르고 있어서 참 보기 좋았다.
그렇잖아도 어제 땀을 많이 흘려서 몸이 온통 끈적거리는 상태였는데 싹 개운해졌다.

사용자 삽입 이미지사용자 삽입 이미지

그리고.. 일월산 자생화 공원이라는 곳을 발견해서 들렀다가 갔다. 주변에 나밖에 없는 오지에서 자연을 즐긴다는 건 참 멋진 일이다. 지구가 금성 화성과 달리 초록별이라는 사실에 경이로움과 고마움을 느끼게 된다.

사용자 삽입 이미지

영양에서 봉화로 가려면 역시 산을 하나 넘어야 하더라. 길은 어느 샌가 꼬불꼬불한 산길로 바뀌었다.
터널 안에 들어갈 때는 일반적으로는 헤드라이트를 켜는 게 맞는데, 현실에서는 '끄시오'라고 안내된 표지판도 많이 보인다. 화장실에서 휴지는 변기에 "넣으시오/넣지 마시오"만큼이나 사람을 헷갈리게 만드는 사항인 것 같다.

저 영양 터널을 지난 다음에는 행정구역이 봉화로 바뀌고, 봉화 터널과 어느 공군 부대가 뒤이어 등장했다. 그리고 오르막이 끝나고 내리막이 시작됐다.

6. 봉화군 탐험기

본인은 이번 여행의 마지막 일정으로, 봉화에서 영동선 양원 역을 답사하고 봉화 시가지로 돌아갔다.

사용자 삽입 이미지
사용자 삽입 이미지사용자 삽입 이미지

상· 하행 합쳐도 차가 몇 분에 한 대 다닐까말까인 이 꼬불꼬불 산길을 떠나고 싶지 않았다. 그래서 수시로 정차하고 사진 찍고 시동 끄고 사색에 잠기곤 했다.

사용자 삽입 이미지

산을 하나 넘어서 내려오니 또 강이 펼쳐졌다. 이 강은 온통 흙탕물이었다.

사용자 삽입 이미지사용자 삽입 이미지

그리고 영동선 철길 위를 지나갔다. 참 공교롭게도 본인이 아래를 내려다보고 있는 타이밍에 맞춰서 여객도 아니고 화물 열차가 하나 지나갔다. 얼마나 무거운 짐을 끄는지, 전기 기관차 중련에다가 보조 중형 디젤 기관차까지 편성한 상태였다.

사용자 삽입 이미지

드디어 양원 역이 자리잡고 있다는 어느 마을 어귀에 도착했다. 마을 앞에도 맑은 물이 졸졸 흐르고 있었다.
양원 역은 행정구역상 봉화이지만 동쪽 맨 끝이기 때문에 거의 울진 근처이며, 가는 길에 울진의 서쪽 끝을 경유하기도 했다. 봉화 시가지와는 수십 km 이상 떨어져 있었다.

사용자 삽입 이미지

그런데 마을에 도착했다고 끝이 아니었다. 양원 역으로 가려면 거기서도 산을 하나 타넘어야 했다~!
엔진 회전수 4000rpm을 고속도로에서 고속으로 밟을 때도 찍고, 여기서 2단 엔진 브레이크로도 찍었다. 1단 말고 2단으로 말이다.
그렇게 산을 넘은 뒤에도 저 길로 들어가야 했는데.. 차가 지나갈 수는 있지만 거기서 주민에게 민폐를 끼치지 않고 딱히 차를 세울 만한 공간이 없었다. 그래서 차는 이 부근에서 세우고 여기서부터 몇백 m 남짓은 걸어가야 했다.

사용자 삽입 이미지사용자 삽입 이미지

지도를 보니 이 강은 낙동강 상류라고 한다. 물이 콸콸 세차게 흐르고 있었다. 저 교각은 무슨 옛날에 있었던 다리의 흔적 같다.
양원 역이 이 정도로 답 없는 오지에 있는지는 미처 몰랐다. 저기를 건너간 다음에야..

사용자 삽입 이미지

드디어 얘를 실물로 보게 되었다.
예전에 태백선· 함백선 부근에서 조동 역과 함백 역을 보던 느낌이었다.

사용자 삽입 이미지

양원 역은 전국에서 유일하게.. 지역 주민들이 교통이 너무 불편해서 현기증이 나니 제발 열차 좀 정차시켜 달라고 아우성 치고 정부에 청원 넣고, 아무 국고 지원 없이 스스로 돈을 모아서 역 건물을 지어서 승인 받은 역이다. 진정한 의미의 민자역사인 셈이다. 단지, 자본주의 논리가 아니라 지역 주민 복지를 위한 민자역사인 것이고.. 그게 지금으로부터 무려 30년 전의 일이다.
전날 옥천에서 정 지용 시인 관련 안내문에서도 1988이라는 숫자를 봤는데, 양원 역의 개업 시기도 1988년 4월이라니 우연 치고는 절묘하다. (지용회: 1988년 3월)

얼마나 한이 서렸으면 양원 역에 첫 열차가 정차하던 날 사람도 감격하고 산과 강도 감격했댄다.
옛날엔 열차가 여기 마을을 통과할 때 짐보따리부터 미리 던져 놓은 뒤 더 먼 승부 역에서 여기까지 걸어서 돌아와서 그 짐을 챙겼다니..

지금으로서는 상상하기 어렵겠지만, 옛날에는 열차에 화장실이 비산식이었고(오물이 선로로 그대로...; ), 주행 중일 때 차량의 출입문이나 창문을 수동으로 조작할 수 있었다.
그럼 근성 있는 사람이라면 짐만 미리 던져 놓는 게 아니라, 자기 자신까지 훌쩍 뛰어내릴 법도 해 보이는데.. 그러기에는 아무리 젊고 민첩한 사람이라도 좀 위험했을 것 같다.

사용자 삽입 이미지사용자 삽입 이미지

영락없이 컨테이너 가건물 같은 규모이지만 컨테이너가 아니다. 시멘트를 얹어서 정식으로 지은 건축물이다.

사용자 삽입 이미지사용자 삽입 이미지

이 궁서체 안내판까지도 주민들이 직접 만든 거라고 한다.
현재는 여기가 유명세를 타면서 정규 여객열차뿐만 아니라 V-train(백두대간 협곡)과 O-train(중부내륙 순환)이라는 관광 열차도 정차하는 곳이 되었다. 그러니 역 건물과 안내판 말고 저 승강장은 코레일에서 만들었다는 티가 난다.
순환선이기 때문에 O이고, 그리고 계곡 모양을 형상화해서 V라니.. 코레일 수뇌부에서 머리 좀 쓴 것 같다. 이름을 참 기발하게 지었다.

사진을 찍지는 못했지만 마침 저기에 열차가 정차하는 것을 봤다.
이번 여행 동안 경부선과 영동선을 지나는 열차를 종종 목격했는데, 모두 전기 기관차 기반이었다. 디젤 기관차는 전혀 보지 못했다.

사용자 삽입 이미지사용자 삽입 이미지
사용자 삽입 이미지

서쪽의 봉화 시가지로 가는 길에 또 절경을 발견하여 풍경 사진을 찍었다.

사용자 삽입 이미지

그리고 오후가 돼서야 봉화 시가지에 도착했다. 이 강은 낙동강의 지류인 내성천이다.
여기서 식사를 하고 보급을 받는 것으로 2일간의 여행에 종지부를 찍었다.
올해도 어김없이 정말 즐거운 시간을 보냈다. 앞으로는 3년 주기로 남해안, 서해안, 동해안을 한 번씩 가는 것으로 어렴풋이 계획을 잡았다.

Posted by 사무엘

2019/09/13 08:33 2019/09/13 08:33
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1661

1. 재부팅 이벤트

본인은 지금까지 Windows가 시스템 종료/재시작/로그아웃 될 때.. 메시지에 즉각 응답하면서 정상적으로 돌아가는 프로그램이라면 종료 처리도 당연히 정상적으로 되는 줄로 알고 있었다.
사용자가 [X] 버튼이나 Alt+F4를 눌러서 종료할 때와 완전히 동일하게 말이다. WM_CLOSE에 이어 WM_DESTROY, WM_NCDESTROY가 날아오고, WM_QUIT이 도달하고, message loop이 종료되고, MFC 프로그램으로 치면 ExitInstance와 CWinApp 소멸자가 호출되고 말이다.

왜냐하면 시스템이 종료될 때 발생하는 현상이 언뜻 보기에 정상적인 종료 과정과 동일했기 때문이다. 저장되지 않은 문서가 있는 프로그램에서는 문서를 저장할지 확인 질문이 뜨고, 운영체제는 그 프로그램 때문에 시스템 종료를 못 하고 있다고 통보를 한다. 좋게 WM_CLOSE 메시지를 보내는 걸로 반응을 안 하는 프로그램에 대해서만 운영체제가 TerminateProcess 같은 강제 종료 메커니즘을 동원할 것이다.

그런데 알고 보니 그게 아니었다.
정상적인 종료라면 ExitInstance 부분이 실행되어야 할 것이고 프로그램 설정들을 레지스트리에다 저장하는 부분도(본인이 구현한..) 실행돼야 할 텐데, 내 프로그램이 실행돼 있는 채로 시스템 종료를 하고 나니까 이전 설정이 저장되어 있지 않았다.

꼭 필요하다면 WM_ENDSESSION 메시지에서 사실상 WM_DESTROY 내지 ExitInstance와 다를 바 없는 cleanup 작업을 해야 할 듯했다. 뭐, 날개셋 한글 입력기에서 이 부분이 반영되어 수정돼야 할 건 딱히 없었지만 아무튼 이건 내 직관과는 다른 부분이었다.

시스템이 종료될 때 발생하는 일은 딱히 디버거를 붙여서 테스트 가능하지 않다. =_=;; 로그 파일만 기록하게 해야 하고, 매번 운영체제를 재시작해야 하니 가상 머신을 동원한다 해도 몹시 불편하다. 꽤 오래 전 일이 됐다만, 날개셋 외부 모듈이 특정 운영체제와 특정 상황에서 시스템 종료 중에 운영체제 시스템 프로세스 안에서 죽는 문제가 발생해서 디버깅을 한 적이 있었다. 몹시 골치 아팠었던 걸로 기억한다.

2. 파일의 동등성 비교

파일 이름을 나타내는 어떤 문자열이 주어졌을 때,

  • 상대 경로(현재의 current directory를 기준) vs 절대 경로
  • 과거 Windows 9x 시절이라면 ~1 같은 게 붙은 8.3 짧은 이름 vs 원래의 긴 이름
  • 대소문자 (Windows는 대소문자 구분이 없으므로. 그런데 이것도 A~Z 26자만 기계적으로 되나? 언어별로 다른 문자의 대소문자는?)
  • 그리고 옵션으로는 정규 DLL search path와 환경 변수

이런 것들을 몽땅 다~ 감안해서 다음과 비스무리한 일을 하는 가벼운 API가 좀 있으면 좋겠다. 보다시피 동일한 파일을 표현하는 방법이 굉장히 다양하기 때문이다.

  • 두 개의 파일 명칭이 서로 동일한 파일인지 여부를 판단. 당연히 파일을 직접 open/load하지 않고 말이다.
  • 그 파일의 대소문자 원형을 유지한 절대 경로. 일명 '정규화된' 이름을 되돌린다. 이게 동일한 파일은 물리적으로, 절대적으로 동일한 파일임이 물론 보장된다.
    참고로 Windows API 중에서 얼추 비슷한 일을 한다고 여겨지는 GetFullPathName이나 GetModuleFileName 함수는 절대 경로 말고 파일의 대소문자 원형 복원이 제대로 되지 않는다.
  • 혹은 그 파일의 시작 지점이 디스크에서 물리적으로 어디에 있는지를 나타내는 64비트 정수 식별자를 구한다. 포인터가 아니지만 파일의 동등성 여부 판단은 가능한 값이다. 정수를 넘어 UUID급이어도 무방함.

본인은 비슷한 목적을 수행하기 위해, 그냥 두 파일을 CreateFileMapping으로 열어 보고 리턴된 주소가 동일하면 동일한 파일로 간주하게 한 적이 있었다. 핸들 말고 MapViewOfFile 말이다. 본질적으로 동일한 파일이라면 운영체제가 알아서 같은 주소에다 매핑을 하고 레퍼런스 카운트만 증가시킬 테니까..
Windows 9x에서는 주소가 시스템 전체 차원에서 동일하겠지만 NT 계열에서는 한 프로세스 내부에서만 동일할 것이다.

하지만 내가 필요한 건 파일의 내용이 아니라 그냥 두 파일의 동등성뿐인데 이렇게 매핑을 하는 건 overkill 삽질 같다는 인상을 지울 수 없었다.
비슷한 예로, LoadLibrary도 같은 파일에 대해서는 같은 리턴값이 돌아온다. HMODULE도 오늘날은 핸들이 아니라 메모리 map된 주소이니까.. 다만, 오버헤드를 줄인답시고 LoadLibraryEx + LOAD_LIBRARY_AS_DATAFILE 이렇게 열어서는 안 된다. 그러면 로딩 방식이 크게 달라지더라.

3. JNI에서 문자열 처리하기

Java 언어는 JNI라고 해서 자기네 바이트코드 가상 머신이 아닌 C/C++ 네이티브 코드를 호출하는 통로를 제공한다.
프로그램 자체를 C/C++로 짜던 시절에는 극한의 성능을 짜내야 하는 부분에 어셈블리어를 집어넣는 게 관행이었는데.. 이제는 일반적인 코딩은 garbage collector까지 있는 상위 계층에서 수행하고, 극한의 성능을 짜내야 하는 부분에서만 C/C++ 코드를 호출한다는 게 흥미롭다.

JNI는 그냥 언어 스펙에 가까운 광범위한 물건이다. Windows 환경에서는 그냥 Visual C++로 빌드한 DLL이 export하는 함수를 그대로 연결할 수도 있다. 물론 그 DLL을 빌드하기 위해서는 Java SDK에서 제공하는 jni 인터페이스 헤더와 static 라이브러리를 사용해야 한다.
한편, 안드로이드 앱 개발에서 쓰이는 NDK는 JNI 스펙을 기반으로 자체적인 C++ 컴파일러까지 갖춘 네이티브 코드 빌드 도구이다.

Java의 문자열은 JNI에서는 jstring이라고 내부 구조를 알 수 없는 자료형의 포인터 형태로 전달된다. C++에서는 UTF-8과 UTF-16 중 편한 형태로 바꿔서 참조 가능하다.
UTF-8로 열람하려면 JNIEnv::GetStringUTFChars를 호출하면 된다. 길이를 알아 오려면 GetStringUTFLength부터 호출한다. 전해받은 문자열 포인터는 ReleaseStringUTFChars로 해제한다.

그 반면, UTF-16 형태로 열람하려면 위의 함수 명칭에서 UTF를 빼면 된다. GetStringChars, GetStringLength, ReleaseStringChars의 순이다. Java가 내부적으로 문자를 2바이트 단위로 처리하기 때문에 이들이 주로 취급하는 자료형은 jchar*이다. 그러니 얘는 char16_t 자료형과 호환된다고 간주해도 좋다. 참고로 wchar_t는 NDK 컴파일러의 경우 4바이트로 처리되더라.

UTF-16이나 UTF-8이나 다 UTF이긴 마찬가지인데, Java는 변별 요소인 8을 생략하고 함수 이름을 왜 저렇게 지었나 개인적으로 의구심이 든다. 물론 GetStringChars는 Java가 내부적으로 문자열을 원래부터 2바이트 단위로 처리하다 보니 우연히 UTF-16과 대응하게 됐을 뿐, 대놓고 UTF-16을 표방했던 건 아닐 것이다. 뭐, 이제 와서 그 체계를 바꾸는 건 불가능하고 "자바 문자열 = 2바이트 단위"는 완전히 고정되고 정착했지만 말이다.

또한 GetStringChars는 GetStringUTFChars와 달리 굉장히 치명적으로 불편한 단점이 하나 있다. 바로.. 변환된 문자열이 NULL-terminated라는 보장이 없다는 것이다!
그래서 본인은 이 포인터를 사용할 때 메모리를 n+1글자만치 또 할당해서 null문자를 추가해 주는 매우 번거로운 두벌일을 하고, 아예 클래스를 이렇게 따로 만들어야 했다. 좀 개선의 여지가 없으려나 모르겠다.

class CJstrToString16 {
    JNIEnv *_ev;
    jstring _jstr;
    const jchar *_ret;
    char16_t *_arr;
public:
    CJstrToString16(JNIEnv *ev, jstring js): _ev(ev), _jstr(js) {
        jsize n = ev->GetStringLength(js);
        _ret = ev->GetStringChars(js, NULL);
        _arr = new char16_t[n+1];
        memcpy(_arr, _ret, n*sizeof(char16_t));
        _arr[n] = 0; //고작 요거 하나 때문에..
    }
    ~CJstrToString16() {
        ev->ReleaseStringChars(_jstr, _ret);
        delete[] _arr;
    }
    operator const char16_t*() const { return _arr; }
};

4. Visual C++의 STL

C++은 타 프로그래밍 언어들과 달리, 심지어 전신인 C와도 달리, 언어가 개발되고 나서 자신의 특성을 잘 살린 라이브러리가 언어 차원에서 붙박이로 곧장 제정되지 않았던 모양이다. 그래서 각 컴파일러들이 중구난방으로 파편화된 형태로 라이브러리를 제공해 오다가.. 표준화라는 게 1990년대 말이 돼서야 논의되기 시작했다.

템플릿이 추가되어 C++에서도 제네릭, 메타프로그래밍이라는 게 가능해진 뒤부터 말이다. 처음에는 자료구조 컨테이너 위주로 STL이라는 이름이 붙었다가 나중에는 그냥 C++ library가 된 걸로 본인은 알고 있다.

Windows용으로 가장 대중적인 C++ 컴파일러야 두 말할 나위 없이 MS Visual C++이다. 얘는 거의 20여 년 전 6.0 시절부터 P.J. Plauger라는 사람이 구현한 C++ 라이브러리를 제공해 왔다. C 라이브러리와 달리 C++ 라이브러리는 소스가 비교도 안 될 정도로 복잡하고 난해하다는 것(암호 같은 템플릿 인자들..=_=), 그리고 저렇게 마소 직원이 아닌 개인 이름이 붙어 있다는 게 인상적이었다. 2000년대 초까지만 해도 휴렛-패커드라는 회사명도 주석에 기재돼 있었다.

P.J. Plauger는 현재는 Dinkumware라고 C++ 라이브러리만 전문적으로 관리하고 라이선스 하는 회사를 설립해 있다. 나이도 생각보다 지긋한 듯..
그런데 이런 세계적인 제품에 들어가는 라이브러리가.. 성능이 의외로 시원찮은가 보다. Visual C++이 제공하는 컨테이너 클래스가 유난히도 느리다고 까이는 걸 여러 사이트에서 봐 왔다.

최근에는 본인 직장의 상사마저도 같은 말씀을 하시기에 "헐~!" 했다. 업무상 필요해서 string, set, map 등을 써서 수십, 수백 MB에 달하는 문자열을 분석하는 프로그램을 돌렸는데, 자료 용량이 커질수록 속도가 급격히 느려져서 자료구조를 직접 새로 짜야 할 판이라고 한다.

난 개인적으로는 C++ 라이브러리를 거의 사용하지 않고, 더구나 그걸로 그 정도까지 대용량 작업도 해 보지 않아서 잘 모르겠다. 그 날고 기는 전문가가 만든 코드에 설마 그런 결함이 있으려나? 아니면 컴파일러의 최적화 문제인지?

글쎄.. 이런 게 있을 수는 있다. MFC의 CString은 그냥 포인터와 크기가 동일하며 값으로 전할 때의 reference counting도 처리한다. 그러나 std::string은 자주 쓰이는 짧은 문자열을 번거로운 heap 메모리 할당 없이 빠르게 취급하기 위한 배열까지 내부에 포함하고 있다. 이런 특성을 모르고 std::string도 함수에다 매번 value로 전달하면 성능에 악영향을 줄 수밖에 없다.

그런 식으로 임시 객체가 쓸데없이 생겼다가 사라지는 구조적인 비효율이 C++ 라이브러리에 좀 있는 걸로 들었다. R-value 참조자 &&가 도입된 것도 vector의 내부 처리에서 그런 삽질을 예방하는 근거를 언어 차원에서 마련하기 위해서라지 않는가? 그리고 Visual C++이 그런 비효율을 보정하는 성능이 좀 시원찮다거나 한 것 같다. 전부 다 그냥 추측일 뿐이다.

그러고 보니 cout<<"Hello world"가 printf("Hello world")보다 코드 오버헤드가 작아지는 날이 과연 올지 모르겠다. 이것도 그냥 떡밥인 건지..?? =_=;;

Posted by 사무엘

2019/04/09 08:32 2019/04/09 08:32
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1606

1. 32비트 컴파일러: 16비트 메모리 접근의 한계를 극복하기

예전에도 언급한 적이 있지만.. 1993년 말에 발매되었던 Doom 게임은 그야말로 충격적인 3차원 그래픽 덕분에 게임 업계에 큰 충격을 선사했다. 업계 종사자들은 기술 수준 자체뿐만 아니라 "얘는 어셈블리어를 거의 사용하지 않고 순수 C만으로 개발되었습니다"라는 존 카맥의 말에 더 큰 충격을 받게 됐다.

훗날(1997년) Doom의 소스 코드가 공개되면서 이 말은 사실임이 밝혀졌다.
Doom은 무슨 16비트 Windows 같은 쑤제 어셈블리어 튜닝 위주로 개발된 게 아니라, Windows NT처럼 굉장히 이식성 있게 개발되었다. 그러니 Doom 엔진 기반의 수많은 게임과 mod들이 온갖 플랫폼으로 이식되어 만들어질 수 있었다.

단지, 오리지널 도스용의 경우, 컴파일러를 그 당시에 흔하던 볼랜드나 MS 같은 16비트용을 쓴 게 아니라 Watcom이라는 다소 생소한 32비트 고성능 제품을 썼을 뿐이다.
그리고 어셈블리어를 안 쓰더라도 고정소수점이라든가, IEEE754의 특성을 이용해서 3차원 그래픽용 실수 연산(삼각함수, 제곱근, 벡터 정규화...)을 왕창 빠르게 수행하는 각종 tweak들은 응당 최대한 구사해서 성능을 끌어올렸다.

그러니 Doom은 아직 상대적으로 생소하던 32비트 컴파일러라든가 DOS/4G 도스 익스텐더 같은 물건의 인지도를 끌어올려 줬다. 이렇게 Doom을 통해 Watcom 컴파일러까지 알렸던 id 소프트웨어에서는 훗날 퀘이크를 만들어서 이번에는 오픈소스 진영의 걸출한 도스용 32비트 컴파일러이던 djgpp를 알리게 되었다.

운영체제 자체를 OS/2나 Windows NT처럼 통째로 32비트로 쓰기에는 아직 기계값이 너무 비싸고 특히 메모리가 부족했다. 그러니 도스에서 돌아가는 일부 대형/고사양 프로그램이 자체적으로 도스의 한계를 극복하고 보호 모드로 진입하는 솔루션을 내장했던 것이다.

생각해 보니 국내에서도 아래아한글 2.1이 전문용은 Watcom C/C++을 이용한 32비트 전용으로 만들어졌다. 얘는 발매 시기가 심지어 Doom보다도 3개월 남짓 더 앞섰다(1993년 9월 vs 12월). 그러니, 터보 C, 볼랜드 C++ 하던 그 시절에도 32비트 컴파일러에 대해서 알 사람은 이미 다 알기는 했던 모양이다.

다만, 아직도 286 똥컴이 많이 굴러다니고 서민용 운영체제들은 아직도 16비트 도스와 Windows가 주류인데, 내 프로그램을 386 전용으로 개발하는 것에 대한 득과 실을 신중하게 따져야 했다. 오죽했으면 아래아한글도 후속 버전인 2.5와 3.0에서는 일반용/전문용 구분이 없어지고 그냥 hwp86.exe와 hwp386.exe 두 에디션을 모두 내장하는 것으로 형태가 바뀌었다. 추가 글꼴과 사전 컨텐츠는 '확장팩'으로 분리되고 말이다.

아래아한글은 Phar Lap 도스 익스텐더를 사용했다. 아래아한글이 그 시절의 도스용 게임처럼 DOS/4G(W) 로고를 띄우면서 실행되었다면 무척 볼 만했을 것이다.
86과 386 에디션은 성능 말고는 덧실행 프로그램이 지원되는지의 여부가 가장 큰 차이점이었다. 덧실행은 16/32비트용이 따로 나오지 않고 32비트 전용이었기 때문이다.

화면 보호기들, 그리고 확장팩에서 제공되었던 프라임 영한사전도 다 덧실행 프로그램이었다.
먼 옛날 1.2 시절에는 별도의 액세서리로 테트리스 게임이 있었는데 나중에 그게 덧실행으로 컴백한 걸 보니 개인적으로 감회가 새로웠었다.

이렇게 1990년 중반에 도스용 프로그램들의 32비트화 추세와 달리, 마소는 진작부터 PC에서 도스를 Windows로 대체하려는 큰 그림을 갖고 있어서 그런지.. 도스용으로 32비트 컴파일러를 결코 내놓지 않았다. 정작 자기들은 그 기술을 내부적으로 보유하고 사용했으면서 말이다.
Visual C++ 1.5x는 16비트 도스/Windows 바이너리들을 빌드할 수 있었는데, 명령 프롬프트에서 돌아가는 컴파일러와 링커 같은 툴들은 그냥 32비트 프로그램이 아니라 32비트 PE 기반의 콘솔 프로그램이었다.

Windows NT 같은 데서는 직통으로 실행 가능하고, 도스에서 실행되면 stub으로 embed된 도스 익스텐더가 컴을 보호 모드로 진입시키고 CreateFile/GlobalAlloc 같은 Win32 API를 제공해서 프로그램을 실행했다.
스레드를 만들지는 못했겠지만 컴파일러· 링커가 사용하는 Win32 API야 뭐 파일이나 메모리 I/O 정도밖에 없었을 것이고, 이건 도스 익스텐더가 감당 가능했다. 결국 한 바이너리만으로 도스와 Windows에서 모두 사용 가능.

이건 뭐 콘솔 프로그램계의 Win32s나 마찬가지인 엄청난 기술인데.. 마소의 Visual C++에서 이런 이중 바이너리를 만드는 걸 end-user에게 지원한 적은 내가 알기로 없다.
마치 C# 네이티브 코드 컴파일러만큼이나 대외적으로 공개되지 않고 마소 내부에 봉인된 기술인 것 같다.

2. 슈퍼 VGA 라이브러리: 표준 VGA의 한계를 극복하기

IBM 호환 PC라고 불리는 물건에서 IBM이 주도하는 PC의 단일/표준 규격이라는 건 286 AT 이후로 없어졌다. 그러니 286 이후로 최초의 386 PC는 IBM이 아닌 컴팩에서 출시되기까지 했다.
그리고 그래픽 카드도 절대불변 단일 표준은 1987년의 구닥다리 VGA가 마지막이다. 표준 VGA는 800*600 해상도조차 지원하지 않았으며, 그나마 색깔이 아쉬운 대로 다양해진 256색은 겨우 320*200에서밖에 지원되지 않아서 업무라기보다는 그냥 게임 전용 모드로만 쓰였다.

그 뒤로 VGA보다 더 높은 해상도와 더 많은 색상을 지원하는 규격은 그야말로 온갖 싸제 SVGA 제조사들이 난립하면서 파편화 천국이 됐다. VESA 같은 규격이 괜히 필요해진 게 아니다.

이게 불과 1990년대 초반의 일이니, 앞에서 언급한 보호 모드가 어떻고 DPMI가 제정되던 때와 시기적으로 비슷하다. 하긴, 1990년에 나온 그 옛날 프로그램인 Deluxe Paint조차도 처음 실행될 때 맨 아래에 1024*768 256색 SVGA 모드가 있긴 했다. 물론 당대에 그걸 선뜻 고를 수 있을 정도의 금수저 컴퓨터를 소유한 사용자는 매우 소수였을 것이다.

마소의 베이직 컴파일러야 SCREEN 명령으로 SVGA 지원은 전무했다. API 구조가 완전히 다른 3rd-party 라이브러리를 구해서 써야 했다.
볼랜드의 경우는 상황이 약간 낫다. 비록 자체적으로는 VGA까지밖에 지원하지 않았지만, 일종의 그래픽 드라이버인 bgi 파일이 내부 스펙이 공개돼 있고 확장 가능했기 때문에 이걸 기반으로 SVGA 라이브러리를 만든 곳이 있긴 했다.

검색을 해 보니 Jordan Hargraphix 소프트웨어가 이 업계의 독자적인 큰손이었던 모양이다. 이미 1991년 무렵부터 유명했다.
바이오스를 거치지 않고 일명 VGA mode X라고 불리는 320*240, 400*300 같은 변형 모드까지 다 지원했다.
그때는 소프트웨어가 잘못된 명령을 내려서 컴퓨터만 뻗게 하는 게 아니라 모니터를 손상시키는 것도 가능했던 시절이다. (주사율 변조..) 옛날에 CGA도 160*100 같은 tweak mode가 있었다고 하는데 그것만큼이나 신기한 일이 아닐 수 없다.

다만, BGI라는 그래픽 API는 무려 1980년대 후반에 개발된 것이며, 아무리 bgi 드라이버를 새 하드웨어에 맞게 확장한다 해도 256색 이상의 색을 지원하는 것은 구조적으로 불가능했다고 한다. 트루컬러 SVGA를 지원하려면 완전히 새로운 독자 라이브러리를 써야 했다.
BGI는 색상을 관리하는 게 RGB값 기반이 아니라 팔레트 인덱스 기반으로 고정돼 있었던 모양인데, 16비트 시절에 이는 충분히 수긍이 간다. 쟤가 무슨 Windows GDI 급으로 하드웨어 통합과 추상화를 표방한 물건은 아니었으니 말이다.

도스용 아래아한글은 16비트 바이너리의 경우 Turbo/Borland 컴파일러로 개발되었다. 하지만 아주 초창기인 1.x 시절부터 그래픽 라이브러리를 독자 구현했는지, 볼랜드의 보급 BGI 라이브러리를 사용한 흔적이 전혀 없는 것이 매우 흥미롭다.
이건 비슷한 시기에 도스용 한메 타자 교사도 마찬가지다. 얘도 MS C로 개발되었지, 의외로 볼랜드 출신이 아니다.

Posted by 사무엘

2019/03/23 08:31 2019/03/23 08:31
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1600

« Previous : 1 : 2 : 3 : 4 : 5 : ... 8 : Next »

블로그 이미지

철도를 명절 때에나 떠오르는 4대 교통수단 중 하나로만 아는 것은, 예수님을 사대성인· 성인군자 중 하나로만 아는 것과 같다.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2020/09   »
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30      

Site Stats

Total hits:
1442301
Today:
113
Yesterday:
482