1.
코코아, Win32 API, MFC 같은 플랫폼 종속적인 API를 전혀 쓰지 않고 순수하게 표준 C/C++ 라이브러리 함수만으로 백 엔드 엔진만 만들었다 해도 Windows + Visual C++로 작성한 코드가 안드로이드 내지 맥 같은 다른 플랫폼에서는 곧장 컴파일 되지 않거나, 빌드된 프로그램이 의도한 대로 동작하지 않을 수 있다.

개인적으로는 회사에서 wchar_t 때문에 굉장한 불편을 겪었다. 잘 알다시피 Windows에서는 이게 2바이트이지만 다른 플랫폼에서는 4바이트이다. 플랫폼을 불문하고 2바이트 문자 단위로 동작하는 strcpy, strcat, strlen, printf, atoi 등등은 직접 구현이라도 해야 하는지..? 특히 파일로 읽고 쓰려면 말이다.

C++ string 클래스야 typedef std::basic_string<unsigned short> string16; 부터 먼저 만들어 놓고 썼다지만 그렇게 처음부터 객체를 만드는 게 아니라 raw memory를 다루는 상황에서는 해결책이 되지 못한다.

이런 게 원초적인 애로사항이고 또, 소스 코드 내부에서 유니코드 문자열 상수를 표현하는 방식도 또 다른 난관이다.
언어가 제공하는 L"" 문법은 wchar_t형 기반이다. 그러니 wchar_t 말고 명시적으로 unsigned short 배열에다가는 문자열 상수를 쓸 수 없고 "가"를 { 0xac00, }로 표현하는 식의 삽질을 해야 한다.

거기에다 비주얼 C++은 C++ 소스 코드나 명령 프롬프트가 UTF8과 전혀 친화적이지 않다는 다른 문제점도 있어 더욱 불편하다. 유니코드가 등장하면서 플랫폼별로 문자열을 다루는 방식이 너무 심하게 파편화됐다는 생각이 든다.
문자열을 저장하고 메모리를 관리하는 방식이 난립하는 것 말고(string class!) 문자열을 구성하는 문자를 표현하는 방식 그 자체부터가 말이다.

2.
하루는 Visual C++에서 표준 C 함수만 사용해서 만들어 준 코드를 안드로이드 내지 맥 OS 플랫폼으로 넘겨 줬더니 컴파일 에러가 났다. wcslen 함수가 선언되지 않았다고 꼬장을 부리는데 도무지 원인을 알 수 없었다. strlen은 인식되는데 wcslen은 왜 인식이 안 되는 거지?

그런데 알고 보니 wcslen은 strlen과는 달리 string.h가 아니라 wchar.h에 선언되어 있었다.
Visual C++은 string과 wchar에 wcslen을 모두 선언해 줬지만 타 플랫폼은 그렇지 않았다. 흐음~ 나의 불찰이다.

malloc/free 함수는 stdlib.h에도 있고 malloc.h에도 있다.
memset/memcpy는 string.h에도 있고 memory.h에도 있다.
그런 예가 몇 가지 있는 건 알고 있었지만 wcs* 함수는 Visual C++에만 string/wchar 겸용으로 선언돼 있었던 듯하다.
C 인클루드 헤더는 한 함수가 오로지 한 헤더에만 유일하게 존재하지는 않기도 하다는 것이 흥미롭게 느껴진다.

3.
요즘 표준 라이브러리들의 헤더 파일을 보면 함수의 인자마다 타입과 이름만 있는 게 아니라 소스 코드 정적 분석을 위한 Annotation 정보가 같이 들어있다. 같은 포인터라 해도 이건 읽기 전용, 쓰기 전용.. 쓴다면 어떤 조건으로 얼마만지 써지는지(옆의 인자만큼~) 같은 거.

그래서 함수 하나만 봐도 선언도 정말 덕지덕지 길어졌다. 이 정보들이 처음부터 있지는 않았을 텐데, 그 수많은 API들의 선언에다 일일이 다 기입하는 건 완전 중노동이었을 것 같다.
한때는 정적 분석 기능은 개발툴의 유료 최상급(엔터프라이즈 같은) 에디션에서나 접근 가능한 고급 기능이었는데, 이것도 죄다 무료로 풀리는 듯하다. 유료 GUI 툴킷이 통째로 MFC에 들어갔듯이 말이다.

4.
요즘은 CPU 아키텍처야 x86 아니면 ARM만 살아 남아서 그런지, 이식성을 논할 때 비트 순서, 일명 endian-ness 얘기는 별로 안 나오는 것 같다. 우리 주변에서 흔히 볼 수 있는 x86은 요지부동 리틀 엔디언인 반면, 옛날에 매킨토시의 밑천이던 PowerPC는 빅 엔디언이었다. 트루타입 폰트 포맷이 빅 엔디언 기반인 건 이런 애플의 영향력이 닿아서 그랬던 걸까?

먼 옛날 대학 시절에 터미널에 원격 접속해서 거기서 C 컴파일러를 돌려 봤던 게 본인으로서는 빅 엔디언 컴퓨터를 직접 구경한 처음이자 마지막 경험이다. 큰 자릿수가 앞부분부터 저장되다니 굉장히 신기했다. 이건 앞으로 수동 변속기 차량이라든가 IA64 (Itanium) 컴퓨터만큼이나 앞으로 또 접할 일이 없는 초희귀템으로 남을 것 같다.

최신 CPU인 ARM은 하드웨어 차원에서 endian-ness를 모두 지원하기 때문에 아무 쪽으로든 취사 선택이 가능하다고 한다. 사람으로 치면 완벽한 양손잡이이고, 철도에다 비유하자면 좌측/우측통행 전용 복선 철도가 아니라 어느 쪽으로든 운용 가능한 단선병렬과 비슷한 격이다.
결국은 다 지원하는 것으로 가는구나. 한글 코드에서 조합형/완성형 논쟁, CPU 미시구조에서 CISC/RISC 논쟁, 리눅스에서 그놈/KDE 셸 논쟁도 다 비슷한 방식으로 종결됐듯이 말이다.

비트 순서 같은 하드웨어 특성을 타는 요소 말고 소프트웨어 플랫폼과 언어 차원에서.. 사소하지만 코드의 이식성을 은근히 저해하는 요소는 내 경험상 몇 가지 있었다. 그러니 GUI가 없고 특정 운영체제의 API를 사용하지 않았다고 해서 무작정 이식이 잘 될 거라고 기대할 수는 없다.

5.
당장 떠오르는 건, 64비트 상수를 나타내는 % 문자가 파편화돼 있다(%I64d, %lld). 그리고 long이 Windows에서는 64비트 플랫폼에서도 여전히 32비트이지만 타 플랫폼은 그렇지 않다. 그러니 이식성을 생각한다면, long은 파일 오프셋 계산에 영향을 주는 곳에서는 절대로 구조체 멤버로 쓰이거나 sizeof의 대상이 돼서는 안 된다. (앞서 논했던 char_t도 마찬가지이고!) 그런 데서는 정말 닥치고 int32, uint64처럼 비트수를 명시한 typedef를 쓰는 게 안전하다.

C#이나 Java, D는 아무래도 1990년대 중후반에 PC에서 32비트 CPU 정도는 확실하게 정착한 뒤에 등장한 최신 언어이다 보니, 32/64비트 플랫폼을 불문하고 long이 처음부터 일관되게 64비트였다. 하지만 C/C++은 그보다 훨씬 전부터 컴퓨터 하드웨어의 발전의 격변기와 동고동락했던 언어이다 보니, 저런 깔끔함을 기대할 수는 없는 노릇이 돼 있다.

그리고, fopen에다 주는 옵션에서 r/w/a (+)만 있고 b/t 모드가 지정되지 않았을 때..
Windows는 binary 모드로 동작하는 반면 맥에서는(타 플랫폼은 확인 안 해 봄) 디폴트가 text였다. 멀쩡한 코드가 완전 엉뚱하게 동작하고 파일이 쓰라는 대로 써지지 않고 읽으라는 대로 읽히지 않아서 한창 문제를 추적했더니.. 결국은 이런 데에서 차이가 있었다. 이것도 표준 규격이 정의돼 있지 않나 보다.

말이 나왔으니 말인데, Visual C++은 fopen조차 쓰지 말고 fopen_s를 쓰라고 권한다. printf_s, qsort_s 같은 *_s 물건은 안전하고 편리하긴 하지만 언제까지나 이식 불가능한 Visual C++만의 전유물로 남을지 궁금하다..

strdup와 _wcsdup는 표준처럼 생겼지만 진짜 표준인지 아닌지 알쏭달쏭한 놈이다. 앞에 괜히 밑줄이 있는 게 아니다. _wtoi 이런 것도 Windows를 벗어나면 컴파일되지 않을 가능성이 높은 지뢰이니 strtol, wcstol을 쓰는 게 안전하다.
strtok의 경우 Visual C++은 토큰 컨텍스트를 따로 받는 _s 버전을 추가한 반면, 타 플랫폼은 strtok, wcstok 함수 자체가 그렇게 고쳐진 것도 있다. 이런 것들도 너무 골치아프다.

6.
끝으로, 이건 이식성하고는 큰 관계가 없는 얘기다만..
형변환 연산자인 static_cast는 코드 생성 차원에서 하는 일이 전혀 없거나(base class* → derived_class*, enum → int), 뻔한 값 보정(float → int, char → int), 또는 다중 상속일 때는 컴파일 타임 때 결정된 고정된 상수만치 this 포인터 보정 정도만(derived_class_B* → base_class) 하는 걸로 으레 생각했다.

그런데 다중 상속을 다룰 때 꼭 그런 일만 하는 건 아니다. 포인터가 처음부터 NULL이었다면, 거기서 또 얼마를 뺄 게 아니라 cast된 포인터도 그냥 NULL을 주는 예외 처리를 해야 한다. 과연 생각해 보니 그렇다. 아래 코드를 생각해 보자.

struct A { int a,b; };

struct B { int c,d; };

struct C: public A, public B { int e,f; };

void foo(B *pm) { printf("Received %p\n", pm); }

int main()
{
    C m, *pm=&m;
    printf("Passing %p\n", pm); foo(pm);
    pm=NULL; printf("Passing %p\n", pm); foo(pm);
    return 0;
}

단일 상속과는 달리, 다중 상속에서 passing의 값과 received의 값이 서로 달라질 수 있다고 아는 것은 하나를 아는 것이다.
그러나 NULL일 때는 다중 상속이더라도 언제나 NULL이 유지된다는 것이 함정이다. 우와.. 지금까지 한 번도 그런 경우를 생각한 적이 없었는데.. 꽤 충격적이다. 간단하지만 다중 상속의 보이지 않는 오버헤드를 보여주는 요소 중 하나이다.

Posted by 사무엘

2016/05/13 08:29 2016/05/13 08:29
, ,
Response
No Trackback , 5 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1226

문자의 집합인 문자열(string)은 어지간한 프로그래밍 언어들이 기본으로 제공해 주는 기본 중의 기본 자료형이지만, 그저 기초라고만 치부하기에는 처리하는 데 내부적으로 손이 많이 가기도 하는 자료형이다.

문자열은 그 특성상 배열 같은 복합(compound) 자료형의 성격이 다분하며, 별도의 가변적인 동적 메모리 관리가 필요하다. 또한 문자열을 어떤 형태로 메모리에 저장할지, 복사와 대입은 어떤 형태로 할지(값 내지 참조?) 같은 전략도 구현체에 따라서 의외로 다양하게 존재할 수 있다.

그래서 C 언어는 컴퓨터 자원이 열악하고 가난하던 어셈블리 시절의 최적화 덕후의 정신을 이어받아, 언어 차원에서 따로 문자열 타입을 제공하지 않았다. 그 대신 충분히 크게 잡은 문자의 배열과 이를 가리키는 포인터를 문자열로 간주했다. 그리고 코드값이 0인 문자가 문자열의 끝을 나타내게 했다.

그 이름도 유명한 null-terminated string이 여기서 유래되었다. 오늘날까지 쓰이는 역사적으로 뿌리가 깊은 운영체제들은 응당 어셈블리나 C 기반이기 때문에, 내부 API에서 다 이런 형태의 문자열을 사용한다.
그리고 파일 시스템도 이런 문자열을 사용한다. 오죽했으면 이를 위해 MAX_PATH (=260)같은 표준 문자열 길이 제약까지 있을 정도이니 말 다 했다. 그렇기 때문에 null-terminated string은 앞으로 결코 없어지지 않을 것이며 무시할 수도 없을 것이다.

딱히 문자열만을 위한 별도의 표식을 사용하지 않고 그저 0 문자를 문자열의 끝으로 간주하게 하는 방식은 매우 간단하고 성능면에서 효율적이다. 지극히 C스러운 발상이다. 그러나 이는 buffer overflow 보안 취약점의 근본 원인을 제공하기도 했다.

또한 이런 문자열은 태생적으로 문자열 자기 내부엔 0문자가 또 들어갈 수 없다는 제약도 있다. 하지만 어차피 사람이 사용하는 표시용 문자열에는 코드 번호가 공백(0x20)보다 작은 제어 문자들이 사실상 쓰이지 않기 때문에 이는 그리 심각한 제약은 아니다. 문자열은 어차피 문자의 배열과는 같지 않은 개념이기 때문이다.

문자열을 기본 자료형으로 제공하는 언어들은 대개 문자열을 포인터 형태로 표현하고, 그 포인터가 가리키는 메모리에는 처음에는 문자열의 길이가 들어있고 다음부터 실제 문자의 배열이 이어지는 형태로 구현했다. 그러니 문자열의 길이를 구하는 요청은 O(1) 상수 시간 만에 곧바로 수행된다. (C의 strlen 함수는 그렇지 않다)

그리고 문자열의 길이는 대개 machine word의 크기와 일치하는 범위이다. 다만, 과거에 파스칼은 이례적으로 문자열의 크기를 16비트도 아닌 겨우 8비트 크기로 저장해서 256자 이상의 문자열을 지정할 수 없다는 이상한 한계가 있었다. 더 긴 문자열을 저장하려면 다른 특수한 별도의 자료형을 써야 했다.

과거에 비주얼 베이직은 16비트 시절의 버전 3까지는 “포인터 → (문자열의 길이, 포인터) → 실제 문자열”로 사실상 실제 문자열에 접근하려면 포인터를 이중으로 참고하는 형태로 문자열을 구현했다. 어쩌면 VB의 전신인 도스용 QuickBasic도 문자열의 내부 구조가 그랬는지 모르겠다.

그러다가 마이크로소프트는 훗날 OLE와 COM이라는 기술 스펙을 제정하면서 문자열을 나타내는 표준 규격까지 제정했는데, COM 기반인 VB 4부터는 문자열의 포맷도 그 방식대로 바꿨다.

일단 기본 문자 단위가 8비트이던 것이 16비트로 확장되었다. 마이크로소프트는 자기네 개발 환경에서 ANSI, wide string, 유니코드 같은 개념을 한데 싸잡아 뒤죽박죽으로 재정의한 것 때문에 문자 코드 개념을 좀 아는 사람들한테서 많이 까이고 있긴 하다. 뭐, 재해석하자면 유니코드 UTF16에 더 가깝게 바뀐 셈이다.

OLE 문자열은 일단 겉보기로는 null-terminated wide string을 가리키는 포인터와 완전히 호환된다. 하지만 그 메모리는 OLE의 표준 메모리 할당 함수로만 할당되고 해제된다. (아마 CoTaskMemAlloc) 그리고 포인터가 가리키는 메모리의 앞에는 문자열의 길이가 32비트 정수 형태로 또 들어있기 때문에 문자열 자체가 또 0문자를 포함하고 있을 수 있다.

그리고 문자열의 진짜 끝부분에는 0문자가 1개가 아니라 2개 들어있다. 윈도우 운영체제는 여러 개의 문자열을 tokenize할 때 double null-termination이라는 희대의 괴상한 개념을 종종 사용하기 때문에, 이 관행과도 호환성을 맞추기 위해서이다.

2중 0문자는 레지스트리의 multi-string 포맷에서도 쓰이고, 또 파일 열기/저장 공용 대화상자가 사용하는 확장자 필터에서도 쓰인다. MFC는 프로그래머의 편의를 위해 '|'(bar)도 받아 주지만, 운영체제에다 전달을 할 때는 그걸 다시 0문자로 바꾼다. ^^;;;

요컨대 이런 OLE 표준 문자열을 가리키는 포인터가 바로 그 이름도 유명한 BSTR이다. 모든 BSTR은 (L)PCWSTR과 호환된다. 그러나 PCWSTR은 스택이든 힙이든 아무 메모리나 가리킬 수 있기 때문에 그게 곧 BSTR이라고 간주할 수는 없다. 관계를 알겠는가? BSTR은 SysAllocString 함수를 통해 생성되고 SysFreeString 함수를 통해 해제된다.

'내 문서', '프로그램 파일' 등 운영체제가 특수한 용도로 예정하여 사용하는 디렉터리를 구하는 함수로 SHGetSpecialFolderPath가 있다. 이 함수는 MAX_PATH만치 확보된 메모리 공간을 가리키는 문자 포인터를 입력으로 받았으며, 특수 폴더들을 CSIDL이라고 불리는 일종의 정수값으로 식별했다.

그러나 윈도우 비스타에서 추가된 SHGetKnownFolderPath는 폴더들을 128비트짜리 GUID로 식별하며, 문자열도 아예 포인터의 포인터 형태로 받는다. 21세기에 도입된 API답게, 이 함수가 그냥 메모리를 따로 할당하여 가변 길이의 문자열을 되돌려 준다는 뜻이다. 260자 제한이 없어진 것은 좋지만, 이 함수가 돌려 준 메모리는 사용자가 따로 CoTaskMemFree로 해제를 해 줘야 한다. SysFreeString이 아님. 메모리만 COM 표준 함수로 할당했을 뿐이지, BSTR이 돌아오는 게 아닌 것도 주목할 만한 점이다.

예전에 FormatMessage 함수도 FORMAT_MESSAGE_ALLOCATE_BUFFER 플래그를 주면 자체적으로 메모리가 할당된 문자열의 포인터를 되돌리게 할 수 있는데, 이놈은 윈도우 NT 3.x 시절부터 있었던 함수이다 보니, 받은 포인터를 LocalFree로 해제하게 되어 있다.

이렇게 운영체제 API 차원에서 메모리를 할당하여 만들어 주는 문자열 말고, 프로그래밍 언어가 제공하는 문자열은 메모리 관리에 대한 센스가 추가되어 있다. 대표적인 예로 MFC 라이브러리의 CString이 있다.

CString 자체는 BSTR과 마찬가지로 언뜻 보기에 PCWSTR 포인터 하나만 멤버로 달랑 갖고 있다. 그래서 심지어 printf 같은 문자열 format 함수에다가 "%s", str처럼 개체를 명시적인 형변환 없이 바로 넘겨 줘도 괜찮다(권장되는 프로그래밍 스타일은 못 되지만).

그런데 그 포인터의 앞에 있는 것이 단순히 문자열 길이 말고도 더 있다. 바로 레퍼런스 카운트와 메모리 할당 크기. 그래서 문자열이 단순 대입이나 복사 생성만 될 경우, 그 개체는 동일한 메모리를 가리키면서 레퍼런스 카운트만 올렸다가, 값이 변경되어야 할 때만 실제 값 복사가 일어난다. 이것을 일명 copy-on-modify 테크닉이라고 하는데, MFC 4.0부터 도입되어 오늘날에 이르고 있다. 이는 상당히 똑똑한 정책이기 때문에 이것만 있어도 별도로 r-value 참조자 대입 최적화가 없어도 될 정도이다.

메모리 할당 크기는 문자열에 대해 덧셈 같은 연산을 수행할 때 메모리 재할당이 필요한지를 판단하기 위해 쓰이는 정보이다. MFC는 표준 C 라이브러리에 의존적이기 때문에 이때는 응당 malloc/free가 쓰인다. 재할당 단위는 보통 예전에 비해 배수 단위로 기하급수적으로 더 커진다.

CString이 그냥 포인터와 크기가 같은 반면, 표준 C++ 라이브러리에 존재하는 string 클래스는 비주얼 C++ 2010 x86 기준 개체 하나의 크기가 28바이트나 된다. 길이가 16 이하인 짧은 문자열은 그냥 자체 배열에다 담고, 그보다 긴 문자열을 담을 때만 메모리를 할당하는 테크닉을 쓰기 때문이다. 그리고 대입이나 복사를 할 때마다 CString 같은 reference counting을 하지 않고, 일일이 메모리 재할당과 값 복사를 한다.

글을 맺겠다.
C/C++이 까이는 여러 이유 중 하나는 라이브러리가 지저분하고 동일 기능의 중복 구현이 너무 많아서 혼란스럽다는 점이다. 문자열도 그 범주에 정확하게 속하는 요소일 것이다. 메모리 할당과 해제 자체부터가 구현체 중복이 한둘이 아니니... 어지간히 덩치와 규모가 있는 프레임워크 라이브러리는 그냥 자신만의 문자열 클래스 구현체를 갖고 있는 게 이상한 일이 아니다. 하지만 그건 C/C++이 쓰기 편리한 고급 언어와 시스템 최적화 오덕질이라는 두 토끼를 모두 잡으려다 어쩔 수 없이 그리 된 것도 강하다.

문자열에 대한 이야기 중에서 일부는 내가 예전 블로그 포스트에서도 한 것도 있지만, 이번 글에 처음으로 언급한 내용도 많을 것이다. 프로그래밍 언어 중에는 문자열을 다루기가 기가 막히게 편리한 것이 있는데, 그런 것도 내부적으로는 다 결국은 컴퓨터가 무진장 고생해서 결과물을 만들어 내는 것이다.
컴퓨터가 받아들이고 뱉어내는 문자열들이 내부적으로 어떤 구현체에 의해 어떤 처리를 거치는지를 생각해 보는 것도 프로그래머로서는 의미 있는 일일 것이다.

Posted by 사무엘

2012/10/13 08:26 2012/10/13 08:26
, , , ,
Response
No Trackback , 8 Comments
RSS :
http://moogi.new21.org/tc/rss/response/743


블로그 이미지

그런즉 이제 애호박, 단호박, 늙은호박 이 셋은 항상 있으나, 그 중에 제일은 늙은호박이니라.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2024/11   »
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Site Stats

Total hits:
2955219
Today:
2128
Yesterday:
1068