전기 철도의 집전 장치

전기는 훌륭한 단백질 공급원..은 아니고, 훌륭한 동력 공급원이며 매력적인 에너지이다. 그러나 생산과 동시에 광속으로 흘러가 버린다는 특성상, 전기는 여느 물리적인 연료와는 달리 저장과 축적이 어렵다는 게 난감한 점이다. 획기적인 장거리 무선 송전 기술이라도 개발되지 않는 한, 전기로 움직이는 교통수단에다 전력을 공급하는 방식은 다음 세 시나리오 중 하나로 귀착될 것이다.

  1. 자기가 전력을 직접 생산해서 쓴다: 이건 뭐 원자력 잠수함에서나 가능한 일이니 제낀다. 디젤 전기 기관차 같은 경우도 응당 논외로 하고.
  2. 전적으로 배터리로부터 공급받는다: 무겁고 비싼 배터리의 충전 용량과 충전 시간, 그리고 수명 같은 여러 기술적인 어려움이 있다. 게다가 배터리는 충· 방전을 거듭할수록 용량이 하락하기 때문에 교체가 필요한 소모품이다. 그래서 순수 배터리 기반 전기 자동차는 단거리나 소형 교통수단에 머물러 있고, 하이브리드는 반대로 무게와 가격 문제 때문에 중형급 이상의 고급차에나 적용되고 있다.
  3. 전차선으로부터 공급받는다: 철도는 그나마 이게 가능해서 다행이다. 아니면 딱 전차선이 놓인 노선만 달리는 시내버스 정도나 말이다.

그래서 3번에 속하는 전기 철도 차량의 경우, 차량의 일정 부분이 전차선과 접촉하면서 끊임없이 전기를 공급받아야 한다. 가장 무난한 방식은 전차선을 선로의 위에다 달고, 열차는 천장에 달린 팬터그래프가 그 전차선과 접촉하여 전기를 받는 것이다.

이런 이유로 인해, 어떤 철도가 전철화되면 선로 주변엔 일정 간격으로 어마어마한 개수의 전봇대가 세워지고 빨랫줄마냥 전깃줄이 선로를 따라 주렁주렁 달린다. 전철화는 아무래도 주변 미관에는 좋은 영향을 끼친다고 볼 수 없다. 무슨 지중화를 할 수도 없는 노릇이니 말이다.
전철화 작업에는 초기에 굉장히 많은 시설 부설 비용이 들기 때문에, 초기 투자 비용을 능가하는 이익이 날 거라는 확신이 설 정도로 장사가 잘 되는 노선만을 선별하여 전철화를 해야 한다.

하지만 역사적으로는 팬터그래프 집전 방식이 최초로 쓰인 것은 아니다. 전차선을 열차의 위에다 설치하는 게 아니라 아래의 선로에다 같이 설치하는 방식이 먼저 쓰였다. 일명 제3궤조 집전식.

여기서 용어 설명을 좀 하겠다.
'궤조'란, 열차 하나가 다닐 수 있는 철길을 구성하는 길다란 선 모양의 쇳덩어리 하나를 가리킨다.
이 궤조가 특정 궤간을 유지하여 평행하게 둘 깔리면 '궤도'가 된다. 열차가 궤도를 벗어나는 사고를 일으키면 탈선했다고 표현한다. 그리고 모노레일은 궤도가 단 하나의 궤조로만 구성된 교통수단이다.
끝으로, 노반이 다져지고 침목도 깔리고 열차가 실제로 달릴 수 있는 형태로 궤도가 놓인 철도 시설 전체를 '선로'라고 부른다.

따라서 제3궤조라 함은, 한 궤도에 양 바퀴를 올려놓는 두 개의 궤조뿐만 아니라 전력을 공급하는 제3의 궤조가 하나 또 놓인다는 걸 일컫는다. 전기 철도라고 해서 무조건 치렁치렁 전차선과 전봇대가 달려 있는 건 아니라는 뜻이다.

사용자 삽입 이미지

꽤 유명한 사진이다. 이것은 독일의 베르너 폰 지멘스가 발명한 세계 최초의 전기 기관차로, 1879년에 베를린 박람회에 출품하여 선보인 모습이다.
좌우로 총 6명의 승객이 앉은 객차가 3개(= 총 18명) 편성되었으니, 영락없는 놀이공원용 꼬마열차 크기이다. 궤간은 겨우 490mm로 일본 케이프 궤간의 절반, 표준궤의 1/3 규모에 불과하다. 박람회장 내부에 설치된 시험선은 300m 남짓한 길이였다고 한다.

규모가 워낙 작기 때문에 혹시 그냥 배터리로 달린 건 아닌가 하는 생각이 들었는데 그건 아니고, 그 작은 선로의 중앙에 직류 150V짜리 제3궤조가 있었다. (오늘날 지하철이 사용하는 1500V가 아님! 0이 하나 빠졌다. 그냥 가정용 전기 콘센트와 비슷한 규모의 전압.)
기관차는 3마력짜리 전동기로 그냥 사람이 살짝 빨리 걷는 속도인 시속 6km를 냈다고 한다. 단, 객차를 끌지 않고 기관차만 혼자 달릴 때는 그 두 배의 속도도 가능했다고.

제3궤조 집전식은 선로 주변의 미관을 해치지 않으며 시설 부설 비용이 저렴하다. 차량의 위에 치렁치렁거리는 주변 시설이 없으니 특히 지하철의 경우, 딱 열차 하나만 간신히 지나갈 만치 터널을 작게 뚫어도 된다는 큰 장점이 있다. 건설비를 절약할 수 있다는 뜻이다.

사용자 삽입 이미지

이렇게 극단적으로 작은 터널은, 팬터그래프 집전 방식을 기준으로 건설된 지하철에서는 상상도 할 수 없을 것이다.
위의 사진은 세계에서 최초로 건설된 지하철인 런던 지하철이다. 런던이야 제3으로도 모자라서 제4궤조라는 특이한 집전 방식까지 독자적으로 개발해서 쓰는 동네이다만, 얘네들뿐만 아니라 고무 타이어로 유명한 파리 지하철도 제3궤조요, 일본 도쿄의 지하철도 초창기에 개통한 두 노선인 '긴자'(1927) 선과 '마루노우치'(1954) 선은 직류 600V 제3궤조 집전식이다. 그러니 이들 지하철이 다니는 곳은 선로 주변에 전차선이 보이지 않는다.

전차선을 차량 아래의 선로에다 또 하나의 궤조 형태로 설치하는 방식은 저렴하고 미관에 좋다는 장점이 있다.
그러나 단점도 만만찮아서 선로에 사람이나 이물질이 떨어지면 안전이 굉장히 위협받게 된다. 또한 선로 분기나 교차가 발생하는 지점에서 전력을 공급해 주기 어려우며, 건널목 같은 데는 아예 절연을 시켜 줘야 한다. 선로가 침수되거나 결빙됐을 때도 골치가 더 아파지는 건 덤이다. (작년 겨울에 의정부 경전철이 운행 멈춘 것 기억하시는지?)

물론, 바닥에 놓인 전차선의 위에다 덮개를 씌워서 제3궤조를 사람이 밟는 것 정도로는 감전이 되지 않게 하는 최소한의 안전 장치는 다 있다. 하지만 그 경우 열차의 입장에서 집전 설비가 더 복잡해지고 유지 비용이 증가하는 건 불가피하며, 이런 한계로 인해 제3궤조 방식 전철은 고속화가 좀 어렵다. 영국에서 있는 수단 없는 방법을 다 동원하여 시속 160~170km 정도까지 달려 본 게 최고 한계라고 한다.

게다가 제3궤조로는 직류 수백 V, 혹은 정말 많아야 1000몇백 V 정도까지는 보내도, 이런 방식으로 수만 V에 달하는 교류 전기를 보내는 건 아무래도 위험하고 무리이다. 장거리 철도로 쓰기에는 전력 손실이 클 수밖에 없다.

그래서 제3궤조 집전 방식은 고속철 내지 장거리 간선용으로는 쓰이지 않으며, 끽해야 광역전철이고 지하철, 혹은 아예 저비용 경전철용으로 용도가 굳어져 가는 추세이다.
롯데월드에 가 보니 범퍼카가 천장을 향하는 집전봉이 달려 있지 않고 바닥으로부터 전기를 공급받는다는데, 이게 개념적으로는 제3궤조식으로 바뀐 셈이다. 하루 종일 눈 코 뜰 새 없이 움직여야 하는 카에 배터리가 있지는 않을 테니 말이다.

공중에다 전차선을 따로 부설하는 방식도 사실 역사가 길며, 우리나라만 해도 그 기원을 찾자면 서울에 노면전차가 다니던 시절로 거슬러 올라간다.
옛날에는 전차선으로부터 전기를 끌어 오기 위해 '집전봉'(trolley pole)이라는 막대가 쓰였다. 이건 점과 점을 일치시켜 접촉해야 했기 때문에 전차선이 레일과 조금만 어긋나 있어도 전기 공급이 끊어지기 쉬웠으며, 특히 한 상태로 차량이 전진과 후진을 동시에 할 수 없었고 고속 주행도 당연히 어려웠다.

그래서 접촉면을 점이 아니라 전차선과 수직 방향인 선으로 바꿔, 선의 아무 지점에나 전차선이 닿아도 집전이 가능하게 한 뷔겔(bow collector)이 등장했다. 그러나 이것도 전차선의 높이 변화라든가 주행 방향에 유동적으로 대응할 수 없다는 문제점이 있어서 스프링이 달린 팬터그래프 집전 방식이 발명되었으며, 이것으로 오늘날의 신칸센이나 KTX 같은 고속열차가 달리고 있다.

뷔겔과 팬터그래프의 차이는 간단하다. 전자는 열차 지붕에서 전차선까지 닿는 데 꺾이지 않는 막대기 하나가 쓰이지만, 후자는 사람의 팔처럼 한 번 꺾이는 막대기가 쓰인다.

앞으로 전기 철도를 구경할 일이 있으면 집전 장치가 어떻게 만들어져 있는지 유심히 살펴보도록 하자.

Posted by 사무엘

2013/06/03 08:37 2013/06/03 08:37
, , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/838

전기 철도 차량의 팬터그래프

이번 달은 철도 관련 글이 이례적으로 무척 드물었다.
그래서 오늘은 짤막한 철도 토막 상식 하나. ㄲㄲㄲ

전기로 달리는 철도 차량은 어떤 형태로든 길에 있는 전차선으로부터 전기 에너지를 공급받는 장치가 있다.
외국의 철도(당장 북한부터 포함) 내지 놀이기구에는 땅에 있는 궤도에 전차선이 나란히 부설되어 있는 제3궤조 집전식이 쓰이기도 하지만, 한국의 전기 철도는 천장에 빨랫줄처럼 전차선이 매달려 있고 이를 차량의 팬터그래프가 끌어다 쓰는 방식이 표준으로 채택되어 있다.

마치 헬리콥터에 동축 반전 로터 방식과 테일 로터 방식이라는 차이가 있듯, 전기 철도도 시설에서 미묘한 차이가 존재하는 셈이다. 제3궤조 집전식은 거추장스러운 전봇대와 전차선이 없어서 미관에는 좋지만, 반대로 철길에서 작업을 하는 사람이 잘못해서 감전될 위험이 크다.
뭐, 가장 좋은 꿈의 기술은 무선 송전이겠지만, 에너지의 손실이 커서 아직 실용화는 못 돼 있는 듯하다.

고속으로 열차가 주행 중일 때 팬터그래프는 전차선과 닿으면서 마찰과 마모가 발생하는 부위가 존재하기 주기적으로 교체가 필요하다. 이 부분을 잘 만드는 게 첨단 기술이다. 전차선은 팬터그래프의 모든 부분과 고르게 닿도록, 선로의 진행 방향 기준으로 볼 때 약간 지그재그로 왔다 갔다 하게 배선되어 있다. 무조건 선로와 평행하게 깔려 있지가 않다.

참고로 철도는 비단 팬터그래프뿐만이 아니라 차륜조차도 고르게 마모되게 하기 위해, 굳이 차를 돌릴 필요가 없는 전후 대칭형 동차도 정기적으로 열차 진행 방향을 바꾸는 작업을 한다.
(한 우진 님의 관련글: http://blog.naver.com/ianhan/120116919855 )

전기 기관차가 팬터그래프를 올리면서 그게 전차선과 닿을 때 불꽃이 팍 튀는 모습이 본인의 기억에 생생하다.
KTX가 고속선에서 시속 250~300km로 전속력으로 달리는 모습을 보면, 팬터그래프와 전차선이 맞닿은 곳에서 빛이 나는 걸 볼 수 있다.

물론, 이런 모습을 직접 보기란 쉽지 않다.
천안아산 역을 답사라도 하면서 무정차 통과 열차를 봐야 할 것이고, 아니면 경부선 일반열차를 타면서 기존선과 고속신선이 만나고 때마침 KTX가 지나가는 모습을 우연히 보기를 바라야 할 텐데 그 기회가 그리 만만하게 찾아오는 게 아니기 때문이다.
서울 시내의 전철역에서야 KTX도 시속 100 남짓한 속도로 천천히 달리기 때문에 팬터그래프 주변이 그렇게 강한 압박을 받고 있지는 않은 것 같다.

팬터그래프는 열차의 진행 방향 기준으로 최대한 뒤쪽에 장착하는 것이 상식이며 관례이다.
그렇게 하면 열차의 앞부분이 갑자기 절연 구간이나 전기 규격이 다른 곳에 진입했을 때 그 대처를 할 시간을 벌 수 있으며, 사고로 팬터그래프가 부러지더라도 그 부위는 뒤로 곧장 날아가 사라져 버리기 때문에 안전하다.
앞과 뒤의 팬터그래프를 모두 올릴 수 있는데 평소에는 뒷쪽 것만 쓴다. 그러나 뒷쪽 것에 문제가 생기면 스페어로 앞쪽 것을 투입한다.

그렇기 때문에 전기 철도 차량이 달리는 사진을 보면, 불빛의 색깔뿐만이 아니라 팬터그래프의 위치만 보고도 이 열차는 비록 전후 대칭형 차량이지만 원래 어느 쪽으로 달리고 있었다는 걸 철덕은 금세 유추할 수 있다.

Posted by 사무엘

2011/07/27 19:12 2011/07/27 19:12
, ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/546


블로그 이미지

그런즉 이제 애호박, 단호박, 늙은호박 이 셋은 항상 있으나, 그 중에 제일은 늙은호박이니라.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2024/11   »
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Site Stats

Total hits:
2983392
Today:
1129
Yesterday:
1381