디지털 컴퓨터는 전자 신호로 0과 1만을 인식할 수 있다. 그렇기 때문에 컴퓨터에서는 문자 역시 0과 1의 조합인 숫자로 표현되며, 문자를 그런 숫자에다가 대응시키는 규칙이 바로 문자 코드이다. 정보 교환을 원활히 하기 위해서는 보내는 쪽과 받는 쪽이 모두 문자 코드가 통일돼 있어야 함은 두 말할 나위가 없다.

정보량의 최소 단위는 1비트이지만 현실적으로 컴퓨터의 기억 장치들이 한 글자로 취급하는 정보량의 최소 단위는 8비트, 즉 바이트이다. 8비트, 2^8승, 즉 256이라는 정보량은 숫자와 알파벳을 정하는 데는 충분하고 상위 1비트를 잉여화하여 오류 검출용으로까지 사용할 수 있을 정도이지만, 한글이나 한자 같은 문자를 담는 데는 턱없이 부족하다.

한자는 글자를 체계적으로 부분글자로 분해할 뾰족할 방도가 없는 상태로 글자 수가 너무 많다. 한글은 글자 생성 체계는 한자보다 훨씬 더 유리한 위치에 있지만, 실용적으로 편하게 다루려면 여전히 1만여 개의 미리 조합된 음절 형태를 그대로 배당해야 한다.

예를 들어 현실에서 '학교'라는 단어는 두 글자로 간주되지, 데이터베이스나 문서 분량 같은 데서 5글자라고 계수되는 곳은 아무도 없다. 코드 차지 영역을 줄이자니 메모리 사용량이 늘며, 그리고 오늘날로 치면 화면에 보이는 글자 길이와 메모리를 차지하는 글자 길이가 서로 완전히 따로 노는 complex script 급의 복잡한 기술이 필요해진다.

결국 한글과 한자는 1바이트만으로 표현할 수 없고 통상 2바이트로 표현된다. 그런데 기존 1바이트 영문· 숫자를 건드릴 수는 없으니 1바이트와 2바이트 문자가 공존하는 multi-byte 코드 체계가 만들어진다. 영문권에서 패리티 비트 내지 유럽 특수문자를 표현하는 데 쓰이는 최상위 1비트는, 이 문자가 1바이트로 끝인지 아니면 2바이트 문자의 첫 바이트(lead byte)인지를 판별하는 비트로 쓰인다.
공교롭게도 한글· 한자는 폭도 균일한 2글자 분량을 차지하여 비주얼 상 잘 어울린다. 전각· 반각이라는 개념이 여기서 유래된다.

그런데 lead byte는 그렇다 쳐도 2바이트의 다음 둘째 바이트인 tail byte도 기존 순수 1바이트 문자들과(영문· 숫자 같은) 전혀 겹치지 않게 할 것인지? 아니면 어차피 얘는 lead byte에 의해 변별이 됐으니 좀 문맥 의존적으로 겹치는 걸 허용할 것인지가 문제가 된다. 한글 코드의 경우 완성형은 겹치지 않으나 조합형은 겹친다.

그렇기 때문에 조합형은 tail byte가 대문자 알파벳과 소뭇자 알파벳이 제각기 따로 될 수 있고 심지어 \ 역슬래시 문자가 나올 수도 있다. 이런 이유로 인해 조합형은 1비트 + 초중성 5비트씩 한글의 구성 원리를 매우 잘 반영하여 설계된 문자 코드임에도 불구하고 당시 8.3 제약이 있던 시절에 파일 이름을 사실상 한글로 지정할 수 없었으며, 심지어 이론적으로는 // 주석을 조합형 한글로 지정한 경우 \ 때문에 2-byte aware 하지 않은 컴파일러에서는 충돌이 발생할 수도 있었다.

옛날에 한글 MS-DOS 시절에 한글 도스 셸이나 QBasic처럼 텍스트 GUI(?)를 구현한 프로그램들을 실행해 보면 한국 마소가 굉장히 잘 만든 게 있었다. 메뉴나 대화상자 같은 게 표시되어서 배경에 있던 2바이트 텍스트를 반토막 내더라도 깨진 문자열을 보여주는 법이 결코 없었다. 늘 짝수 바이트가 유지돼야 하는 한글/한자 영역이 홀수 바이트로 줄어들면 가장자리를 하나 삭제해 주면 된다.

그러나 문맥 의존적인 문자 코드로 그런 걸 구현하려면 문자열을 처음부터 읽어 봐야 하고, 두 바이트 중 하나가 소실됐을 때의 뒷처리가 문맥 독립 코드보다 더 어려우면 어렵지 쉽지는 않을 것이다. 불가능하다는 뜻은 아니지만.

조합형을 옹호하고 완성형을 까기에만 바쁜 분들의 심정이야 세벌식+한글 에반젤리스트로서 본인은 적극 이해한다. 그러나 과거의 2바이트 한글 코드의 이면엔 이런 면모도 있었음을 지적하고자 한다. 완성형은 여러 이슈가 얽혀서 그렇게 만들어졌지, 작정하고 한글을 난도질하려는 악의적인 의도로 만들어진 건 아니었다. 문맥 독립성뿐만 아니라 굉장히 보수적인 국제 규격 권장 사항을 만족하는 방식으로 문자 코드를 만들려다 보니, 한글 11172자에다 한자와 각종 특수문자들까지 넣을 절대적인 공간 자체가 부족했기 때문이다.

나중에 완성형에다 어거지로 한글 부족분을 채워 넣은 cp949 확장완성형은 어차피 조합형처럼 문맥 독립성이 깨졌다. 물론, 어차피 이렇게 만들 거면 처음부터 조합형으로 가지 하는 비판은 피할 수 없게 된 게 사실이다. 그런데, 이런 비슷한 삽질을 일본도 문자 코드를 만들면서 했으며, 이를 우리나라도 그대로 답습했을 뿐이다.

조합형과 완성형은 11172자와 2350자의 차이뿐만 아니라 한글 낱자를 표현하는 방식에서 매우 큰 차이가 있다.
조합형은 글자마디와 자모의 차이가 사실상 없다. 그냥 초 중 종성 중 한 성분만 있으면 자모이고, 초성과 중성이 갖춰졌으면 글자마디이다. 초성 ㄱ과 종성 ㄱ을 구분해서 표현할 수 있고 초성+종성이나 중성+종성 같은 '미완성 한글'도 얼마든지 표현할 수 있다.

그러나 완성형엔 그런 개념이 없다. 한글 입력을 처음 시작했을 때 쓰라고 '호환용 한글 자모'라는 게 있는데 그건 한글이 아니라 명목상으로는 '특수문자' 영역이다. 그냥 한글 자모 모양인 그림일 뿐이다. 초성+종성 구분이나 미완성 한글 표현 같은 건 없다.

메모리 1바이트가 아깝던 16비트 도스 시절에 국내에서는 조합형 한글 코드+글꼴이 쓰였지 마소의 윈도처럼 2350자 완성형 코드+글꼴로 돈지랄을 하는 프로그램은 전혀 없었다. 이런 압도적인 인지도의 차이로 인해 조합형은 1992년에 한국의 복수 표준으로 승격되어서 cp1361이라는 이름으로 나름 운영체제의 코드 페이지에 등록도 됐다.

자, 이렇게 컴퓨터는 1바이트 인코딩에다가 한중일 문화권을 위한 1+2바이트 멀티바이트 인코딩 구도가 유지되었고 마소에서는 이를 도스 시절부터 코드 페이지라고 불렀다. 그런데 이런 문자 코드들은 (1) 알파벳· 숫자 같은 공통 문자를 제외하면 같은 문자라 해도 국가마다 배당된 코드값이 같을 수가 없고, (2) 문자 집합 자체의 크기가 너무 작아서 세계 모든 문자들을 한 코드 페이지에다 담을 수 없다는 문제가 있었다.

人(사람 인)이라는 한자가 한국· 중국· 일본의 표준 코드에서의 코드값이 같을 리가 없으니 (1)은 자명한 문제다. (2)의 경우, 2바이트 코드라 해도 앞서 보았듯이 1바이트 문자와의 충돌을 피하기 위해 매우 제한된 영역의 바이트들만 묶을 수 있다. 이 때문에, 문맥 의존까지 시킨다 해도 추가로 만들 수 있는 문자는 1만여 자에 불과하다. CJK에서 쓰는 상용 한자들이나 간신히 다 집어넣을 정도이다.

그래서 1980년대 말부터 이런 발상의 전환이 이뤄졌다. “앞으로 컴퓨터의 메모리는 증가하고 소프트웨어 국제화의 중요성은 커질 테니, 글자 하나의 크기를 16비트로 쿨하게 확장하고 6만여 자의 공간에다가 전세계 언어 문자들을 집어넣고 동일 문자 동일 코드값을 실현하는 게 어떨까?”

이것이 바로 유니코드의 존재 목적 되시겠다. 컴공 전공자가 아니더라도 컴퓨터에서 '유니코드'라는 말은 한 번쯤은 다들 들어 보셨을 것이다. 이건 그야말로 컴퓨터 문자 코드계의 바벨 탑 내지 에스페란토 같은 물건이다.

마이크로소프트는 소프트웨어의 국제화에 굉장한 혜안이 있던 기업이었다. 그래서 OS/2와 결별하고 Windows NT를 첫 개발할 때, 애초부터 8비트 문자가 아니라 유니코드를 담을 수 있는 16비트 문자를 기반으로 설계했다. 심지어는 NTFS 파일 시스템까지도. 그리고는 이를 독자적으로 wide character이라고 부르기 시작했다. 어차피 8비트 문자만으로 충분하던 라틴 문화권에서는 별로 득이 되는 것도 없이 메모리 사용량만 두 배로 뻥튀기되는 대가를 감수하고라도 말이다.

Win32 API는 기존 16비트 윈도 API를 최대한 닮게 설계되었지만, 문자열을 다루는 모든 API에 A 버전과 W 버전 구분이 생겼다. 다만, 32비트 시절에 처음으로 도입된 OLE/COM 같은 기술은 처음부터 오로지 유니코드(= wide) 문자열만 취급하게 만들어졌다.

PE 방식으로 만들어진 32비트 EXE/DLL은 string 테이블, 메뉴, 대화상자 같은 리소스의 저장 포맷도 다 유니코드 방식으로 바뀌었다. 윈도 3.1에다가 Win32s를 설치하면 32비트 커널 DLL뿐만 아니라 각종 코드 페이지 변환 테이블도 설치되는 걸 볼 수 있다. 그게 바로 리소스를 변환하기 위해서이다.

윈도 NT가 3.x나 9x보다 메모리 사용량이 매우 많았던 이유 중 하나도 유니코드 때문이며, 반대로 윈도 9x가 유니코드 API를 지원하지 않았던 이유도 가정용 PC의 부족한 메모리 문제 때문이다.
이 때문에 컴파일 스위치만 바꿔서 유니코드와 기존 멀티바이트를 모두 커버할 수 있는 TCHAR, _T 같은 개념도 그때 생겼다. 두 개의 문자 포맷을 모두 지원하는 작업은 정말 엄청난 대공사였을 것 같다.

Posted by 사무엘

2013/12/13 08:24 2013/12/13 08:24
, , , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/908

Trackback URL : http://moogi.new21.org/tc/trackback/908

Leave a comment
« Previous : 1 : ... 1332 : 1333 : 1334 : 1335 : 1336 : 1337 : 1338 : 1339 : 1340 : ... 2131 : Next »

블로그 이미지

그런즉 이제 애호박, 단호박, 늙은호박 이 셋은 항상 있으나, 그 중에 제일은 늙은호박이니라.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2024/03   »
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31            

Site Stats

Total hits:
2633825
Today:
623
Yesterday:
1754