MFC와 View 오브젝트 이야기

1. 들어가는 말: MFC에 대한 큰 그림

MFC는 Windows API를 단순히 C++ 클래스 형태로 재포장만 한 게 아닌 독창적인 기능이 다음과 같이 최소한 세 가지 정도는 있다.

  • 가상 함수가 아니라 멤버 함수 포인터 테이블을 이용하여 메시지 핸들러를 연결시킨 메시지 맵. MFC 프로그래머 치고 BEGIN/END_MESSAGE_MAP()을 본 사람이 없다면 간첩일 것이다.
  • 운영체제가 제공하는 핸들 자료형들과 C++ 개체를 딱 일대일로 연결시키고, 특히 MFC가 자체적으로 생성하지 않은 핸들이라도 임시로 C++ 개체를 생성해서 연결했다가 나중에 idle time 때 자동으로 소멸을 시켜 주는 각종 handle map 관리자들. 절묘하다.
  • 20년도 더 전의 MFC 1.0 시절부터 있었던 특유의 document-view 아키텍처. 상당히 잘 만든 디자인이다.

양념으로 CPoint, CRect, CString 같은 클래스들도 편리한 물건이긴 하지만, 그건 너무 간단한 거니까 패스.

사실, MFC는 Windows API를 객체지향적으로 재해석하고 포장한 수준은 그리 높지 않다. 본디 API가 prototype이 구리게 설계되었으면, MFC도 해당 클래스의 멤버 함수도 똑같이 구린 prototype을 답습하고 내부 디테일을 그대로 노출했다.

이와 관련하여 내가 늘 드는 예가 하나 있다. 당시 경쟁작 라이브러리이던 볼랜드의 OWL은 radio button과 check button을 별도의 클래스로 분리했다. 그러나 MFC는 그렇게 하지 않았다. 운영체제 내부에서 둘은 똑같은 버튼 윈도우이고 스타일값만 다를 뿐이기 때문이다. 그러니 MFC로는 동일한 CButton이다. 그리고 CStatic도 마찬가지.
아마 기존 응용 프로그램의 포팅을 용이하게 하려고 의도적으로 이런 식으로 설계한 것 같긴 하지만, 이것 때문에 MFC를 비판하는 프로그래머도 물론 적지 않았던 게 사실이다.

그러나 인간이 하루 하루 숨만 쉬고 똥만 만드는 기계가 아니듯, MFC는 단순한 API 포장 껍데기가 아니라 다른 곳에서 더 수준 높은 존재감을 보여준다. 오늘 이 글에서는 document-view 아키텍처 쪽으로 얘기를 좀 해 보겠다.

2. view가 일반적인 윈도우와 다른 점

MFC는 뭔가 문서를 생성하여 작업하고 불러오거나 저장하는 일을 하는 업무용 프로그램을 만드는 일에 딱 최적화되어 있다. 그렇기 때문에 MFC AppWizard가 FM대로 생성해 주는 기본 코드는 아주 간단한 화면 데모 프로그램만 만들기에는 구조가 필요 이상으로 복잡하고 거추장스러워 보인다.
그냥 프레임 윈도우의 클라이언트 영역에다 바로 그림을 그려도 충분할 텐데 굳이 그 내부에 View라는 윈도우를 또 만들었다. 그리고 View는 Document 계층과 분리돼 있기 때문에, 화면에 그릴 컨텐츠는 따로 얻어 와야 한다.

이런 계층 구분은 소스 코드가 몇십~몇백만 줄에 달하는 전문적인 대형 소프트웨어를 개발할 걸 염두에 두고 장기적인 안목에서 해 놓은 것이다.
먼저, View와 Document를 구분해 놓은 덕분에, 동일한 Document를 여러 View가 자신만의 다양한 설정과 방법으로 화면에 동시에 표시하는 게 가능하다. 텍스트 에디터의 경우, 한 문서의 여러 지점을 여러 창에다 늘어놓고 수시로 왔다 갔다 하면서 편집할 수 있다. 한 창에서 텍스트를 고치면 수정분이 다른 창에도 다같이 반영되는 것이 백미.

일례로, MS 워드는 기본, 웹, 읽기, 인쇄, 개요 등 같은 문서를 완전히 다른 방식으로 렌더링하는 모드가 존재하지 않던가(물론, MS 워드가 MFC를 써서 개발됐다는 얘기는 아님). 게다가 이 중에 실제로 위지윅이 지원되고 장치 독립적인 레이아웃이 사용되는 모드는 인쇄 모드뿐이다. 인쇄를 제외한 다른 모드들은 인쇄 모드보다 문서를 훨씬 덜 정교하게 대충 렌더링하는 셈이다.

이렇듯, view는 그 자체만으로 독립성이 충분한 특성을 가진 계층임을 알 수 있다. view는 프레임 윈도우와도 분리되어 있는 덕분에, 한 프레임 윈도우 내부에 splitter를 통해 하위 view 윈도우가 여러 개 생성될 수도 있다.
CWnd의 파생 클래스인 CView는 윈도우 중에서도 바로 저런 용도로 쓰이는 윈도우를 나타내는 클래스이며, 부모 클래스보다 더 특화된 것은 크게 두 가지이다. 하나는 CDocument와의 연계이고 다른 하나는 화면 출력뿐만 아니라 인쇄와 관련된 기능이다.

SDI형 프로그램에서는 view 윈도우 자체는 계속 생성되어 있고 딸린 document만 수시로 바뀌기 때문에, document를 처음 출력할 때 view가 추가적인 초기화를 하라고 OnInitalUpdate라는 유용한 가상 함수가 호출된다. 그리고 화면 표시와 프린터 출력을 한꺼번에 하라고 WM_PAINT (OnPaint) 대신 OnDraw라는 가상 함수가 호출된다. 하지만 프린터 출력이 화면 출력과 기능면에서 같을 수는 없으니 CDC::IsPrinting이라든가 OnPrepareDC 같은 추가적인 함수도 갖고 있다.

그러고 보니 MFC의 view 클래스는 운영체제에 진짜 존재하는 '유사품' 메시지인 WM_PRINT 및 WM_PRINTCLIENT와는 어떻게 연계하여 동작하는지 모르겠다. 화면의 invalidate 영역과 긴밀하게 얽혀서 BeginPaint와 EndPaint 함수 호출을 동반해야 하는 WM_PAINT와는 달리, PRINT 메시지는 invalidate 영역과는 무관하게 그냥 창 내용 전체를 주어진 DC에다가 그리면 된다는 차이가 존재한다. 거의 쓰일 일이 없을 것 같은 메시지이지만, AnimateWindow 함수가 창 전환 효과를 위해 창 내용 이미지를 미리 내부 버퍼에다 저장해 놓을 때 꽤 유용하게 쓰인다.

3. CView의 파생 클래스들

MFC에는 CView에서 파생된 또 다른 클래스들이 있다. 유명한 파생 클래스 중 하나인 CCtrlView는 MFC가 자체 등록하는 클래스 말고 임의의 클래스에 속하는 윈도우를 그대로 view로 쓰게 해 준다.
그래서 운영체제의 시스템 컨트롤을 view로 사용하는 CTreeView, CListView, CEditView, CRichEditView 등등은 다 CCtrlView의 자식들이다.

  • 프로그램의 클라이언트 영역에다 CTreeView와 CListView를 splitter로 나란히 배열하면 '탐색기' 내지 레지스트리 편집기 같은 외형의 프로그램을 금세 만들 수 있다.
  • <날개셋> 편집기가 MFC를 써서 개발되던 버전 2.x 시절에는 문서 창을 CCtrlView로부터 상속받아 만들었다.

CCtrlView 말고 CView의 또 다른 메이저 파생 클래스로는 CScrollView가 있다. 얘는 이름에서 유추할 수 있듯, view에다가 스크롤과 관련된 기본 구현들이 들어있다. 텍스트 에디터 같은 줄 단위 묶음 스크롤 말고, 픽셀 단위로 컨텐츠의 스크롤이 필요한 일반 워드 프로세서, 그래픽 에디터 같은 프로그램의 view를 만들 때 매우 유용하다. 마우스 휠과 자동 스크롤 모드(휠 클릭) 처리도 다 기본 구현돼 있다.

인쇄 미리 보기 기능은 온몸으로 scroll view를 써 달라고 외치는 기능이나 다름없으며, 실제로 MFC가 내부적으로 구현해 놓은 '인쇄 미리 보기' view인 CPreviewView 클래스도 CScrollView의 자식이다.
단, 요즘은 Ctrl+휠을 굴렸을 때 확대/축소 기능도 구현하는 게 대세인데 배율까지 관리하는 건 이 클래스의 관할이 아닌 듯하다. 그건 사용자가 직접 구현해야 한다.

그럼 스크롤 가능한 view로는 오로지 자체 윈도우만 설정할 수 있느냐 하면 그렇지는 않다. CFormView는 대화상자를 view 형태로 집어넣은 클래스인데 그냥 CView가 아니라 CScrollView의 파생 클래스이다. 워낙 설정할 게 많아서 환경설정 대화상자 자체가 세로로 쭈욱 스크롤되는 프로그램은 여러분의 기억에 낯설지 않을 것이다.

옛날에 윈도우 3.x 시절의 PIF 편집기처럼 클라이언트 영역에 대화상자 스타일로 각종 설정을 입력 받는 게 많은 프로그램을 만들 때 CFormView는 대단히 편리하다. 대화상자는 여느 윈도우들과는 달리, 자식으로 추가된 컨트롤들에 대해 tab 키 순환과 Alt+단축키 처리가 메시지 처리 차원에서 추가되어 있다.

4. CScrollView 다루기

처음에는 CView로부터 상속받은 view를 만들어서 프로그램을 열심히 만들고 있다가, 뒤늦게 view에다가 스크롤 기능을 추가해야 할 필요가 생기는 경우가 종종 있다.
이미 수많은 프로그래밍 블로그에 해당 테크닉이 올라와 있듯, 이것은 대부분의 경우 base class를 CView에서 CScrollView로 문자적으로 일괄 치환하고 몇몇 추가적인 코드만 작성하면 금세 구현할 수 있다.

클래스 이름을 치환한 뒤 가장 먼저 해야 할 일은 스크롤의 기준이 될 이 view의 실제 크기를 SetScrollSizes 함수로 지정해 주는 것이다. OnInitialUpdate 타이밍 때 하면 된다. 안 해 주면 디버그 버전의 경우 아예 assertion failure가 난다.

여기까지만 하면 반은 먹고 들어간다. OnDraw 함수의 경우, 전달되는 pDC가 아예 스크롤 기준대로 좌표 이동이 되어 있다! 즉, 내부적으로 (30, 50) 위치에다가 점을 찍는 경우, 현재 스크롤 시작점이 (10, 20)으로 잡혀 있으면 화면상으로 이 위치만치 뺀 (20, 30)에 점이 찍힌다는 뜻이다. 내가 수동으로 스크롤 좌표 보정을 할 필요가 없다. 아, 이 얼마나 편리한가! invalid 영역의 좌표도 화면 기준이 아닌 내부 기준으로 다 이동된 채로 전달된다.

그러니 CView 시절에 짜 놓은 그리기 코드를 어지간하면 수정 없이 CScrollView에다 곧바로 써먹을 수 있다. 다만, 최적화만 좀 신경 써 주면 된다. 당장 화면에 표시되는 영역은 수백 픽셀에 불과한데 수천 픽셀짜리의 전체 그림을 몽땅 불필요하게 계산해서 그리는 루틴을 OnDraw에다 때려박지 않도록 주의해야 한다.
이때 유용한 함수는 RectVisible이다. 이 영역이 invalidate되었기 때문에 반드시 그려 줘야 하는지의 여부를 알 수 있다.

그 다음으로 신경을 좀 써야 하는 부분은 마우스 클릭이다.
마우스 좌표는 화면 기준으로 오지 내부 기준으로 오지는 않으므로, 내부 개체에 대한 hit test를 하려면 마우스 좌표에다가 GetScrollPosition(현재 스크롤 위치) 함수의 값을 더하면 된다.
그리고 화살표 키로 무슨 아이템을 골랐다면, 그 아이템의 영역이 지금의 화면 범위를 벗어났을 경우 스크롤을 시켜 줘야 한다. 수동 스크롤은 ScrollToPosition 함수로 하면 된다.

화면의 일부 영역을 다시 그리도록 invalidate하는 것도 스크롤 위치 반영이 아닌 그냥 지금 화면 기준의 좌표를 지정하면 된다. 그러면 OnDraw 함수에서는 스크롤 위치가 반영된 내부 좌표 기준으로 refresh 위치가 전달된다.

끝으로, 마우스로 어떤 개체나 텍스트를 눌러서 끌든, 혹은 단순 selection rectangle을 만들든 그 상태로 포인터가 화면 밖으로 나갔을 때, 타이머를 이용한 자동 스크롤도 구현해야 할 것이다. 이 역시 자동화하기에는 customization의 폭이 너무 넓기 때문에 MFC가 알아서 해 주는 건 없다. 알아서 구현할 것. 이 정도면 이제 스크롤 기능을 그럭저럭 넣었다고 볼 수 있을 것이다.

이 정도면 어지간한 개발 이슈들은 다 나온 것 같다.
참, 혹시 재래식 GDI API가 아니라 GDI+를 쓰고 있는 프로젝트라면 CScrollView로 갈아타는 걸 신중히 해야 할 것 같다. GDI+는 MFC가 맞춰 놓은 GDI 방식의 기본 스크롤 좌표를 무시하고 DC의 상태를 난장판으로 만들어 버리기 때문이다. GDI+는 재래식 GDI보다 느리지만 곡선의 안티앨리어싱과 알파 블렌딩이 뛰어나니 아무래도 종종 사용되게 마련인데..

간단한 해결책 중 하나는, GDI+ 그래픽은 CreateCompatibleDC / CreateCompatibleBitmap을 이용한 메모리 DC에다가 따로 그리고, 본디 화면에다가는 그 결과를 Bitblt로 뿌리기만 하는 것이다. 그렇게 하면 아무 문제가 발생하지 않고, 심지어는 속도도 내 체감상으로는 더 빨라지는 것 같다.

Posted by 사무엘

2013/03/13 19:34 2013/03/13 19:34
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/806

1. 메뉴 -- 긴 역사를 자랑하는 GUI 구성요소

'메뉴'(menu)라는 단어는 순우리말로는 흔히 차림표라고 하고, 식당의 음식 메뉴 아니면 컴퓨터 소프트웨어의 GUI 요소라는 꽤 이질적인 두 심상이 결합해 있는 독특한 단어이다. 이런 점에서 '메뉴'는 '마우스'하고도 비슷한 구석이 있는 것 같다.

메뉴는 GUI라는 개념이 컴퓨터에 도입된 이래로 굉장히 오랜 시간을 인간과 함께해 왔다. 워낙 중요하고 필수적인 기능이기 때문에 Windows 운영체제는 아예 API 차원에서 창을 하나 만들 때 메뉴 핸들을 같이 넘겨 줄 수 있게 돼 있다. (CreateWindowEx 함수) Windows는 그래도 보급 메뉴(?) 지원을 무시하고 GUI 툴킷이 자체 구현한 싸제 메뉴를 붙일 여지라도 있지만, Mac OS는 메뉴 bar가 무조건 화면 위에 붙박이로 고정이고 게다가 운영체제의 시스템 메뉴와 일심동체로 통합되어 있기 때문에 싸제 메뉴 같은 건 있을 수 없다.

물론, 너무 무난하고 밋밋한 관계로 요즘 만들어지는 응용 프로그램에서는 메뉴가 천덕꾸러기처럼 취급되는 면모가 없지는 않다. 메뉴+툴바가 리본 UI로 대체된 것은 물론이고, 메뉴가 있더라도 메뉴 bar를 평소에는 감춰 버리고 Alt키를 눌러야만 마지못해 보여 준다. 글쎄, 이러다가 나중에 또 복고풍으로 메뉴로 돌아가지는 않을지?
그리고 어떤 경우든 사각형 안에서 선택막대로 기능을 선택하는 전통적인 메뉴 개념 자체가 없어지는 일은 없을 것이다.

난 닷넷 프레임워크는 그냥 운영체제의 보급 메뉴를 자기 고유 API로 감쌌는줄 알았는데, 그렇지 않다는 걸 알게 되어 개인적으로 놀란 적이 있다. 닷넷 기반 GUI 프로그램은 기본적으로 Office XP 스타일을 적당히 따라 한 싸제 메뉴가 나온다.

보급이든 싸제든, 어쨌든 GUI에서 전통적인 메뉴는 F10을 눌렀을 때 화면 상단에 나타나는 가로줄 메뉴, 혹은 main 메뉴를 가리키는 경우가 많다.
그러나 이것 외에 어떤 개체를 마우스로 우클릭했을 때 나타나는 Context 메뉴, 혹은 팝업 메뉴는 좀 더 나중에, 1990년대 중반에 도입되었다. 윈도우 95 이전에 3.x 시절에는 그림판으로 두 색깔을 번갈아가며 쓸 때 말고는 마우스를 우클릭할 일 자체가 거의 없었던 것 같다. 팝업 메뉴를 띄우는 기능 자체는 3.x 시절에도 있었을 텐데도 불구하고 말이다.

2. HMENU

자, 그럼 Windows 플랫폼 프로그래밍의 관점에서 운영체제의 메뉴 개체에 대해서 좀 더 살펴보자.

이 메뉴라는 놈을 관리하는 개체는 바로 HMENU이다. 얘는 메뉴에 표시시킬 각종 아이템들과 그것들의 상태들을 보관하고 있는 일종의 연결 리스트의 포인터라고 생각하면 된다. 어떤 메뉴 항목에는 또 부메뉴가 딸려 있을 수 있으므로 메뉴는 일종의 재귀성까지 갖추고 있다.

메뉴는 잘 알다시피 리소스의 형태로 쉽게 만들어 내장시킬 수도 있다. 그러나 HMENU 값은 아이콘이나 액셀러레이터, 마우스 포인터 같은 여타 리소스들과는 달리, read-only 리소스가 아니다. 이게 무슨 말인지 배경을 좀 설명하자면 이렇다.

16비트 Windows 시절에는 EXE/DLL에 있는 리소스 데이터를 얻기 위해서 별도로 파일을 열고 메모리를 할당하고 고정하는 등의 절차가 필요했다. 그러나 운영체제가 32비트 환경으로 바뀌면서 실행 파일의 로딩 방식이 memory mapping 방식으로 바뀌었기 때문에, 모듈에 내장된 리소스를 찾는 건 그냥 이미 로딩된 메모리의 주소만 되돌리는 형태로 아주 간단해졌다.

그래서 예전과는 달리, 이제는 한번 fetch해 온 리소스 데이터에 대해서 FreeResource 같은 함수를 호출할 필요가 없어졌다. 그 리소스를 제공하는 EXE의 실행이 종료되거나 DLL이 Unload될 때 어차피 자동으로 한꺼번에 해제되기 때문이다.

일반적인 읽기 전용 리소스는 그런 간소화의 혜택을 입게 되었다.
그러나 메뉴의 경우는 모듈에 내장된 메뉴 데이터의 포인터만 얻어 오는 걸로 끝이 아니라, 그 데이터를 토대로 메뉴 연결 리스트를 별도로 재구성한다. 사용자는 그 연결 리스트의 데이터를 변경함으로써 메뉴에 별도의 항목을 추가하거나 삭제하고, 체크 표시나 disable 처리를 할 수 있다.

그렇기 때문에 LoadIcon, LoadCursor 등의 리턴값은 Free를 할 필요가 없지만, LoadMenu 핸들의 리턴값은 반드시 DestroyMenu를 해 줘야 한다. (물론, 아이콘 같은 리소스라 해도 모듈 내장이 아니라 직접 동적으로 생성한 놈이라면 Destroy*함수를 호출해서 수동으로 소멸해야 하는 건 변함없음.)

HMENU는 내부적으로 딱히 reference counting을 하지는 않는 단순한 구조이다.
윈도우와 연결되어 있는 메뉴는 윈도우가 소멸될 때 같이 자동으로 소멸되며(물론 부메뉴들도 재귀적으로 다 같이), 한 메뉴 인스턴스가 여러 윈도우에서 공유되지는 않는다. '이동', '닫기' 같은 명령이 있는 시스템 메뉴가 있는데, 필요하다면 사용자가 이 메뉴 역시customize할 수 있다.

3. API 디자인

(1) Windows API의 설계 관점에서 흥미로운 것은, 정수로 식별하는 ID를 받는 곳에다가 필요에 따라 메뉴 핸들도 같이 집어넣게 한 게 종종 보인다는 점이다.
CreateWindowEx 함수의 경우, HMENU는 생성하려는 윈도우가 팝업 같은 메이저 윈도우이면 메뉴 핸들이고, 메뉴를 갖는 게 의미가 없는 자그마한 마이너 자식 윈도우이면 정수 ID를 의미한다.

물론 메뉴 핸들과 ID가 동시에 쓰일 일은 없는 건 사실이다. 윈도우의 ID는 대화상자의 차일드 컨트롤들을 식별할 때에나 쓰는 것이니 말이다.
하지만 어째 이 둘을 실제로 공유시킬 생각을 했는지 궁금하다. 어지간하면 그냥 내부 구조체에다 별도의 멤버를 따로 둘 법도 한데, Windows 1.x 시절의 헝그리 정신을 살려, 메모리 절약을 위해 공용체를 썼는가 보다.

또한 메뉴 API도 AppendMenu나 InsertMenu를 보면, 일반 메뉴 아이템에 대해서는 명령 ID를 전달하는 항목에, MF_POPUP이 지정된 하위 메뉴 아이템에 대해서는 또 HMENU를 typecast하여 전달하게 되어 있다.

(2) CreateMenu와 CreatePopupMenu 함수를 왜 따로 만들어 놨는지 영 이해가 안 된다. HINSTANCE와 HMODULE만큼이나 사실상 의미 없는 구분이 돼 있다.
응용 프로그램의 main 메뉴나 우클릭 팝업 메뉴는 화면에 보이는 형태만 다를 뿐, 부메뉴를 가질 수 있는 재귀적인 형태인 것도 똑같고 내부 자료 구조가 달라야 할 것은 없다.
하긴, 그러고 보니 HCURSOR도 HICON하고 내부적으론 거의 같은 자료구조라고 하지. (핫스팟 위치만 추가됐을 뿐)

(3) 메뉴의 상태를 나타낼 때 MF_GRAYED와 MF_DISABLED를 따로 만들어 놓은 건 개인적으로 무척 기괴하게 여겨진다.
MF_GRAYED는 우리가 흔히 보는 '사용할 수 없는' 메뉴 아이템이다. 흐리게 표시되고 선택도 되지 않는다. 그러나 MF_DISABLED는 선택만 안 될 뿐 흐린 표시는 아니다.
이건 솔직히 말해서 잉여력이 넘치는 구분이다.

그래서 심지어는 MS 내부의 개발자들조차도 이를 혼동해 있다.
고전 테마를 쓰고 있을 때는 MF_DISABLED를 설정한 메뉴가 '일반 글자'로 표시된다.
그러나 Luna나 Aero 같은 테마가 적용되어 있을 때는 이게 MF_GRAYED와 동일하게 '흐린 글자'로 표시된다! 문서화된 바와도 다르고 일관성 없게 동작한다는 뜻이다. 내 말이 믿어지지 않으면 당장 프로그램을 짜서 확인해 보기 바란다.
일상생활에서는 MF_DISABLED는 전혀 신경 쓸 필요 없고 MF_GRAYED만 쓰면 될 것 같다.

(4) RemoveMenu, DeleteMenu, DestroyMenu의 차이가 뭘까?
먼저 DestroyMenu는 HMENU 자체를 완전히 소멸시키는 함수이다. 메뉴와 부메뉴들이 모두 다 사라지고 해당 핸들은 사용할 수 없게 된다.
RemoveMenu와 DeleteMenu는 메뉴 안에 있는 한 항목을 제거한다. 제거할 항목을 순서 인덱스 또는 명령 ID로 지정할 수 있다. 부메뉴를 가진 항목이나 항목 구분용 separator는 명령 ID를 갖고 있지 않으므로 반드시 순서 인덱스만 지정 가능할 것이다.

둘의 차이는 딱 하나. 부메뉴를 가진 항목을 지울 때 부메뉴 핸들을 재귀적으로 destroy하느냐(Delete) 안 하느냐(Remove)이다. 마치 '프로젝트 목록에서 파일 제거'와, '파일 제거 + 실제로 디스크 상에서도 삭제'의 차이와 비슷한 맥락이다.

(5) 사실, Windows의 메뉴 API가 좀 더 객체지향적으로 설계되었다면, HMENU뿐만 아니라 각각의 메뉴 아이템을 나타내는 HMENUITEM 같은 자료형도 또 만들었을 것이다.
지금은 그렇지 않기 때문에 메뉴 아이템을 식별할 때마다 매번 HMENU와 UINT nID, 그리고 nID가 명령 ID인지, 순서 인덱스인지를 나타내는 플래그를 넘겨줘야 한다. 메뉴 항목을 편집하거나, 어디 뒤에 삽입하거나 삭제하는 함수들이 전부 저 인자들을 일일이 받는다. 내가 보기엔 무척 지저분하다.

또한 동일한 기능을 하는 API가 구 API, 그리고 좀 더 기능이 확장되고 구조체를 인자로 받는 신 API가 섞여서 중구난방스러운 것도 어쩔 수 없는 일이다. 가령, 예전에는 CheckMenuItem 같은 함수가 있었지만 지금은 SetMenuItemInfo가 있는 식. 새로운 함수는 범용적이긴 하지만 매번 구조체를 만들어서 초기화해 주는 작업이 몹시 성가신 것도 사실이다.

32비트 Windows부터는 각각의 메뉴 아이템에 대해서 명령 ID와는 별개로 임의의 UINT_PTR 데이터 값을 갖는 게 가능해졌다. 마치 리스트박스에서 item data와 비슷한 맥락이다. 이 값을 읽고 쓰는 함수로 지저분하게 SetMenuItemData 같은 함수를 또 추가하느니, 차라리 메뉴와 관련된 모든 속성을 읽고 쓸 수 있는 SetMenuItemInfo라는 종결자 함수를 만들게 됐을 것이다.

Posted by 사무엘

2013/03/10 19:15 2013/03/10 19:15
, ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/805

1.

본인은 비주얼 C++ 2012로 갈아탄 뒤부터 예전에는 본 적이 없는 이상한 현상을 겪곤 했다. 내가 만들고 있는 프로그램을 IDE에서 곧장 실행하자(Ctrl+F5 또는 F5) 프로세스는 분명히 실행되어 있는데 창이 화면에도, 작업 표시줄에도 전혀 나타나 보이지 않았다.

Spy++를 돌려 보니 프로그램 창이 생기긴 생겼는데 어찌 된 일인지 WS_VISIBLE 스타일이 없이 숨겨져 있다는 걸 알게 되었고, 문제의 원인은 생각보다 금방 발견할 수 있었다.
프로세스에 전달되는 STARTUPINFO 구조체의 wShowWindow 멤버 값은, dwFlags에 STARTF_USESHOWWINDOW 플래그가 있을 때에만 유효하다는 걸 깜빡 잊고 있었던 것이다.

일반적으로 프로그램을 실행할 때 운영체제가 그 구조체에다 ShowWindow 플래그를 안 넣는 적은 사실상 없기 때문에 지금까지 그 로직이 별로 문제가 되지 않았었다. 하지만 비주얼 C++ 2012는 이례적으로 그 구조체의 거의 모든 멤버들을 그냥 0으로만 집어넣은 채 프로세스를 생성하고, 0은 SW_HIDE와 같기에 창이 화면에 나타나지 않았다.

2.

<날개셋> 한글 입력기 외부 모듈을 debug 형태로 빌드한 뒤 디버거를 붙여서 실행해 보면, 때에 따라서는 호스트 프로세스가 종료될 때 memory leak 로그가 뜨는 경우가 종종 있었다. 하지만 이것이 항상 나타나는 건 아니고 leak의 양이 심각하게 많은 건 아니었기 때문에, 본인은 크게 신경 쓰지는 않았다.

그런데 우연히 추가 디버깅을 한 결과, 응용 프로그램에 따라서 아예 COM 개체들의 reference count가 달라지고 TSF 모듈의 소멸자 함수의 실행 여부가 달라지는 걸 발견하였고, 이에 본인은 이 현상에 대해 좀 더 심혈을 기울여 디버깅을 실시하게 되었다.

이건 꽤 특이한 현상이었다. <날개셋> 편집기에서도 leak이 발생했기 때문에 가장 먼저 'TSF A급 지원' 옵션을 꺼 봤다. 그리고 외부 모듈은 아예 날개셋 커널을 로딩하지 않고 아무 기능도 사용할 수 없는 panic 상태로 구동했다. 그렇게 프로그램의 주요 기능들을 다 끄고 절름발이로 만들었는데도 <날개셋> 외부 모듈을 한 번이라도 로딩을 하고 나면 leak이 없어지지 않았다.

이런 식으로 COM 오브젝트의 reference count가 꼬이는 버그는 여간 골치 아픈 문제가 아니기에 각오 단단히 하고 디버깅을 계속할 수밖에 없었다. 그 결과 무척 신기한 점을 발견했다. MFC를 사용하는 GUI 프로그램과, MFC든 무엇이든 대화상자(DialogBox)를 사용하는 프로그램에서는 leak이 안 생기는데, Windows API로 message loop을 직접 돌리면서 윈도우를 구동하는 프로그램에서는 memory leak이 발생한다는 것이었다.

오히려 방대하고 복잡한 MFC를 쓰는 프로그램에서 메모리가 새면 샜지, 왜 더 간단한 프로그램에서 문제가 발견되는 걸까?
이 정도까지 밝혀지니 궁금해 미칠 지경이 됐다. leak이 있는 프로그램과 없는 프로그램을 종료할 때 외부 모듈 개체의 Release 함수가 어떻게 호출되고 reference count가 어떻게 변하는지를 검토했다.

그리고 드디어 leak이 있는 프로그램과 없는 프로그램의 차이가 밝혀졌다.
MFC는 프로그램 창이 WM_CLOSE 메시지를 받아서 창의 소멸 단계로 들어서기 전에, 프로그램 창을 강제로 한번 감춰 주고 있었다( ShowWindow(SW_HIDE) ). CFrameWnd::OnClose()에서 CWinApp::HideApplication을 호출함. 이걸 함으로써 운영체제의 TSF 시스템 내부는 객체에 대한 Release가 일어나고 메모리 해제가 완전히 이뤄졌다. 소스가 없는 대화상자도(DialogBox 함수) 잘은 모르지만 종료될 때 비슷한 call stack을 갖는 Release 호출이 있었다.

그 반면 창이 없어질 때 따로 별다른 처리를 하지 않는 프로그램에서는 외부 모듈 개체의 reference count가 1 남게 되었고, 이것이 memory leak으로 이어졌다. MS에서 직접 만든 다른 입력 프로그램들도 마찬가지다. 도대체 왜 그럴까?.

MFC가 WM_CLOSE에서 자기 창을 감추는 이유는 그냥 자식 윈도우들이 순서대로 닫히는 모습이 사용자에게 티가 나 보이지 않게 하고, 겉보기로 창이 당장 없어져 버렸으니 프로그램 종료에 대한 사용자 반응성을 향상시키려는 목적으로 보인다. 그게 반드시 필수는 아니다. 내가 보기에 그렇게 하지 않는 게 잘못이라 볼 수는 없다.

OS별로 살펴보니, 이런 leak은 윈도우 XP와 비스타에서는 없었다가 그 후대인 7과 8에서 생겼다. 즉, XP/Vista에서는 hide를 안 해 줘도 원래 leak이 없는데 7부터는 hide를 해 줘야 한다는 뜻. 아무튼 난 여러 모로 윈7의 문자 입력 체계가 별로 마음에 안 든다. 이쪽 부분 담당자가 갑자기 바뀌었는지, 혹은 대대적인 리팩터링을 한 후유증이기라도 한지 자잘한 버그들이 너무 많이 들어갔기 때문이다.

결국 이것은 IME 문제가 아니라 운영체제 내지 응용 프로그램의 문제라는 결론을 내리고 편집기의 소스를 고쳤다. 문제를 피해 가는 법을 발견하긴 했으나 뒷맛이 개운하지 못하다.

* Windows 환경에서의 4대 디버깅 도구와 테크닉

  • 문자열을 printf 스타일로 포맷하여 OutputDebugString 함수로 전달하는 TRACE 함수 (디버거 로그)
  • 별도의 디버거 로그가 아니라 그냥 화면 desktop DC에다가 로그를 찍는 깜짝 함수
  • 프로그램이 특이한 환경에서 뻗을 때 call stack을 확인할 수 있는 miniDumpWriteDump와 SetUnhandledExceptionFilter 함수
  • memory allocation number에다가 breakpoint를 거는 _crtBreakAlloc 변수. 정체불명의 memory leak 잡을 때 필수

Posted by 사무엘

2013/03/02 19:24 2013/03/02 19:24
, , ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/802

마이크로소프트 Windows라는 운영체제는 GUI 요소인 '창'(window)에서 모티브를 따서 작명되었다. 그 이름이 암시하듯, Windows는 창을 만들고 제어하는 것이 프로그래밍에서 큰 비중을 차지하며, 창과 창끼리의 의사소통은 메시지라는 놈을 통해서 행해진다. 이건 프로그래머라면 이미 다 잘 아는 내용일 것이다.

메시지는 굳이 GUI를 만들지 않더라도 응용 프로그램간에 데이터를 공유하고 스레드 동기화가 갖춰진 통신을 하는 데 상당히 유용한 수단이다. 오늘날 같은 보호 모드 멀티태스킹/멀티스레드 환경에서도 과거의 16비트 시절 같은 직관적인 통신 메커니즘을 제공하기 위해 운영체제가 밑에서 알아서 신경 써 주는 게 많기 때문이다. 그래서 그 기능만 쓰라고 message-only 윈도우라는 것도 있다.

메시지는 자신이 어떤 메시지인지를 나타내는 정수와, 덧붙일 수 있는 추가 숫자 정보 두 종류로 구성된다. 일명 wParam, lParam인데, 16비트 시절에는 메시지, wParam, lParam의 크기가 각각 16, 16, 32비트였다. 그것이 32비트 기계에서는 모두 32비트 크기로 확장되었고, 64비트에 와서는 msg만 그대로이고 나머지 둘은 64비트로 더 커졌다.

이론적으로 아무 숫자나 담아서 메시지로 전달할 수 있다. 그러나 운영체제는 내부적으로 다음과 같은 방식으로 메시지의 용도를 정해 놓고 있다. 이는 마치 운영체제가 메모리 주소의 용도를 영역별로 나눠서 정해 놓은 것과 동일한 맥락이다. (MS-DOS 호환용, 응용 프로그램용, 커널용 등)

첫째, 0부터 WM_USER-1까지 총 1024개의 메시지는 시스템 메시지로서 그 의미가 예약되어 있다.
0인 WM_NULL은 의도적으로 아무 일도 하지 않는 메시지로 비워 놨지만, 그 뒤부터 WM_CREATE(1), WM_DESTROY(2) 같은 것은 아마 윈도우 1.0 시절부터 있었을 기초 메시지들이다..

글자 입력란에는 cursor라고 하여, 공식적으로는 caret이라고 불리는 반전 사각형이 깜빡거린다. 이건 WM_TIMER로 구현했을 법도 해 보이는데 Spy++ 같은 프로그램으로 확인해 보면 그렇지 않다. 메시지 코드는 0x118이고 winuser.h에 WM_* 형태로 문서화되지 않은 비공개 내부 메시지에 따라 동작한다. 신기하지 않은가? (그 주변의 0x117이나 0x119대엔 당연히 공개된 WM_*메시지들이 꽉 차 있음.) 게다가 의미가 뭔지는 모르겠지만 wParam과 lParam에도 그냥 0이 아니라 뭔가 메모리 주소처럼 보이는 값들이 있다.

사용자는 0x1000 이내의 영역에 있는 숫자에다가 나만의 의미를 부여해서는 안 된다. 지금은 쓰이지 않아도 나중에 운영체제가 찜할 가능성이 있다. 가령, 마우스 휠의 움직임을 감지하는 WM_MOUSEWHEEL은 윈도우 98에서 정식으로 새로 추가되었고, 터치스크린 입력을 감지하는 WM_TOUCH 같은 메시지는 윈도우 7에서 추가되었다.

이런 식으로 Windows가 버전업되면서, 메시지가 미래에 자꾸 추가될 수 있다. 개인적으로 최소한 4096개도 아니고 1024는 공간이 너무 부족하지 않나 하는 생각도 든다. 나중에는 이 공간이 메시지들로 다 차 버리고, 추가 메시지는 WM_EXTEND_MSG 같은 최후의 메시지 하에서 부가 정보는 wParam과 lParam에 담겨 오게 되지 않을까? =_=;;

운영체제 메시지 중에는 WM_SETTEXT, WM_GETTEXT이라든가 심지어 WM_COPYDATA처럼 포인터를 통한 데이터 전달이 필요한 것도 있다. 운영체제의 SendMessage 함수는 그런 메시지를 다른 프로세스에다가 보내라고 사용자가 요청할 경우, 자체적으로 공유 메모리를 생성하여 메모리 주소 변환을 하고, 텍스트의 경우 심지어 ANSI/유니코드 변환까지 자동으로 한다. 그러니, lParam을 포인터로 인식하는 시스템 메시지에다가 엉뚱한 숫자를 집어넣어서 보냈다간 큰일난다. 아울러 포인터를 전달해야 하는 메시지는 SendMessage로만 전달 가능하지, PostMessage로는 되지 않게 운영체제가 막는다.

또한 일부 메시지는 반드시 특정 방법만 이용하여 생성해야 하는 것도 있다. 가령, WM_PAINT는 invalidate region을 만드는 함수를 호출해서 운영체제가 생성하도록 해야 하지, 응용 프로그램이 메시지 자체만을 인위적으로 만들어 내서는 안 된다. 실제로 실험을 해 보지는 않았지만, 없는 WM_PAINT를 페이크로 사칭하여 생성하는 것은 운영체제가 아마 안전을 위해 금지하지 않을까 싶다.

요컨대 WM_USER 이내의 메시지는 용도가 운영체제에 의해 예정되고 그에 따른 특수 처리가 추가될 여지가 있는 영역이므로, 사용자가 사칭하거나 조작해서는 안 된다.

그 다음 둘째 계층은 WM_USER부터 WM_APP까지 3만여 개 남짓한 영역이다.
이 메시지는 각 윈도우들이 자체적으로 의미와 용도를 마음대로 정해서 쓸 수 있다. 즉, 윈도우 클래스(RegisterClass)별로 의미가 완전히 private하다.

내가 뭔가 새로운 커스텀 컨트롤을 개발해서 이 컨트롤을 조작하는 수단을 윈도우 메시지라는 형태로 제공하고 싶다면, 각종 커스텀 메시지들을 (WM_USER + xxx)의 형태로 정의하면 된다.
임의의 크기의 데이터를 다른 프로세스끼리 전달하려면 프로그래머가 알아서 주소 marshalling를 하든가, WM_COPYDATA로 주고받을 구조체 스펙을 정하든지, 아니면 짤막한 문자열만 잠시 주고받으려면 atom에다 등록하여 atom 번호만 주고받든지 해야 한다. 뭐, atom은 오늘날에 와서는 거의 구닥다리 메커니즘으로 전락하긴 했지만.

리스트 박스나 콤보 박스는 Windows 1.0 시절부터 있었던 워낙 붙박이이다 보니 LB_ADDSTRING이나 CB_GETCURSEL 같은 메시지는 놀랍게도 앞의 시스템 메시지 영역에 들어있다. 그러니 그 메시지는 값만 보고도 대상 윈도우가 뭔지 볼 필요도 없이 문맥 독립적으로 용도를 추측할 수 있다. 대상 윈도우가 무엇이든 간에 LB_ADDSTRING의 lParam에는 언제나 포인터가 들어있다고 가정할 수 있다.

그러나 사용자 메시지부터는 얘기가 달라진다. WM_USER+1이라는 값을 갖는 메시지는 어느 윈도우가 받느냐에 따라서 처리가 완전히 달라진다. 붙박이 시스템 컨트롤 말고, 32비트 시절에 나중에 도입된 공용 컨트롤도 이제는 아이템을 추가하고 삭제하는 등의 자신의 메시지들은 시스템 영역에 있지 않고 이 사용자 영역에 있다.

따라서 메시지가 하는 일에 따라 부가정보를 변조하는 hook 같은 걸 만든다면, 메시지의 값만 볼 게 아니라 그 메시지를 받는 대상 윈도우의 클래스 이름도 확인해야 한다. 이건 철저하게 문맥 의존적인 메시지인 셈이다.

운영체제(시스템) 메시지, 그리고 사용자 메시지 이렇게 둘이 갖춰지면 끝인 것 같은데 플랫폼 SDK를 보니 셋째 계층인 WM_APP라는 것도 있다. 이건 도대체 뭘까?
이것은 내부적인 처리 방식의 차이에 따른 구분이 아니라 그냥 용도에 따른 명분상의 구분이다.

결론부터 말하자면 이 계층은 응용 프로그램이 어떤 컨트롤에다 서브클래싱을 한 뒤, 응용 프로그램이 새로운 윈도우 프로시저에다 보내 주는 '반사'(reflect) 메시지를 여타 메시지들과 구분하기 위해 존재하는 영역이다. 에디트 컨트롤을 예로 들면, 글자색과 배경색을 바꾼다거나 25자리 제품 시리얼 번호를 입력받는데 5자리마다 '-'를 자동으로 추가하는 것 같은 자잘한 동작 방식을 변경하고 싶을 때 서브클래싱을 이용한다.

일반적으로 컨트롤은 어떤 일이 일어났다는 통지를 부모 윈도우에다 WM_COMMAND(붙박이 컨트롤)나 WM_NOTIFY(공용 컨트롤)의 형태로 보내 주는데, 그때 해야 하는 처리가 천편일률적으로 정해져 있기 때문에 부모 윈도우가 아니라 해당 컨트롤의 서브클래스 프로시저 자신이 도로 받아서 알아서 하게 하고 싶을 때가 있다.

이때 그 통지 메시지는 WM_APP 이후의 영역으로 더해서 보내고, 그 메시지에 대한 처리를 내 custom 윈도우 프로시저에다 넣으면 된다. 이 영역의 메시지는 WM_USER 영역의 메시지, 즉 기존 컨트롤의 메시지와 겹치지 않는다는 보장이 있기 때문이다.

요컨대 시스템 메시지는 그냥 닥치고 global, WM_USER 메시지가 RegisterClass에 종속이라면, WM_APP 메시지는 CreateWindow 종속이라고 생각하면 된다. WM_USER급 메시지의 경우, 해당 윈도우 클래스가 CS_GLOBAL 스타일이 있다면 그 윈도우를 사용하는 모든 프로그램들에서 global 종속이 보장될 것이다.

다음 넷째 계층은 RegisterWindowMessage 함수를 통해 등록된 custom 메시지들에 배당된다.
운영체제 전체를 통틀어서 uniqueness가 보장되는 나만의 고유 메시지를 만들고 싶으면 아무래도 숫자만으로는 무리가 있다. Windows 메시지가 무슨 방대한 128비트짜리 GUID급도 아니니 말이다. 그래서 문자열로부터 0xC000 ~ 0xFFFF 영역에 있는 숫자를 메시지 값으로 얻어 낸다. 아마 hash 연산 같은 걸 쓰겠지.

단, 같은 문자열을 등록하더라도 돌아오는 숫자는 그때 그때 다르다. 그렇기 때문에 RegisterWindowMessage의 리턴값은 프로그램의 컴파일 시점 때 하드코딩으로 박을 수 없다. C++ 언어로 치면 switch문으로 판단을 할 수 없으며 번거롭지만 if를 써야 한다. 하지만 한번 등록된 값은 운영체제가 부팅되어 있는 한 불변이므로, 전역변수의 초기값으로 지정하는 것 정도는 가능하다.

이 custom 메시지는 상당히 유용하다.
시스템 전체에다 메시지 hook을 걸어서 나만의 처리를 하는 프로그램을 만들었다고 치자. 그리고 hook을 건 응용 프로그램과 여타 프로세스의 주소 공간에 침투한 hook 프로시저 사이에 통신을 해야 하는데 이때 가장 효과적으로 쓰일 수 있는 수단이 바로 custom 메시지이다. 내가 만든 프로그램이니 나만 아는 문자열로 custom 메시지를 생성하고, 그걸로 EXE와 hook DLL이 통신을 하면 된다는 뜻이다.

뭐, EXE로 보낼 때야 그냥 WM_USER나 WM_APP급의 고정된 상수만으로 충분하겠지만, 다른 수많은 임의의 프로세스들을 상대하는 훅 DLL로 보내는 건 여타 메시지들과 전혀 충돌하지 않는 게 보장되는 고유 메시지를 써야 할 테니 말이다.

윈도우 95/NT4 초창기 시절에 WM_MOUSEWHEEL 메시지가 운영체제 차원에서 없었던 시절엔, 마우스 휠을 인식하는 드라이버 내지 추가 프로그램을 실행한 뒤, 휠이 굴렀다는 메시지 값을 RegisterWindowMessage(MSWHEEL_ROLLMSG)로부터 얻게 하던 시절이 있었다. 이 문자열의 값은 다음과 같았다.
#define MSWHEEL_ROLLMSG  _T("MSWHEEL_ROLLMSG")

그리고 오늘날 custom 메시지가 쓰이는 또 다른 대표적인 분야는 시스템 트레이라고 불리는 notification area이다. 트레이에다가 자기 아이콘을 추가하는 프로그램들은 _T("TaskbarCreated")라는 메시지를 받았을 때 아이콘을 다시 등록해 줘야 한다.

운영체제의 셸은 자기가 갖고 있던 아이콘들을 자체 보관하지 않는다. explorer 프로세스가 에러가 나서 뻗었거나 강제 종료되었다가 다시 실행되었다면, 아이콘들이 싹 다 날아가게 된다. 이때 셸은 모든 프로그램들을 대상으로 저 메시지를 보내서, 프로그램들로 하여금 알아서 트레이에다 아이콘을 다시 등록하게 한다. 마치 WM_PAINT 메시지를 받았을 때 창이 알아서 자기 내용을 다시 그려야 하듯이 말이다.

저건 너무 유명한 메시지가 되어 버렸기 때문에 장기적으로는 WM_TASKBAR_CREATED 같은 시스템 메시지로 승격이라도 돼야 하지 않나 싶다. 그리고 응용 프로그램들이 늘어날수록 이런 custom 메시지의 공간도 부족해지지는 않으려나 우려가 된다. 16000여 개만으로 충분하겠지? custom 클립보드 포맷이라든가 스레드별로 할당되는 TLS 슬롯의 개수와 비슷한 맥락으로 공간의 한계가 존재하는 영역이라고 볼 수 있다.

Objective C는 언어 차원에서 생으로 문자열 메시지를 객체들 사이에 주고받는 걸 지원한다. C++ 일반 멤버 함수를 호출하는 것보다 오버헤드는 당연히 훨씬 더 크지만, 함수 프로토타입이 하나 바뀌었다고 프로그램 모듈간의 바이너리 호환성이 박살 난다거나, 재컴파일을 해야 하는 그런 불편함은 없다. 내가 옵C를 잘은 모르지만 Windows의 custom 메시지를 보니 문득 옵C 생각도 났다.

이렇게 윈도우 메시지의 계층 4개를 모두 살펴보았다. 시스템 메시지만 1024개로 영역이 매우 좁아서 WM_USER의 영역이 넓은 편인 반면, 나머지 계층은 16비트 정수에서 1/4에 해당하는 16384개를 사이좋게 나눠 쓰고 있다.
그리고 메시지를 담는 공간 자체는 진작부터 32비트로 커졌지만, Windows는 16비트 크기의 범위를 벗어나는 영역은 여전히 예약만 해 놓고 쓰지 않고 있다.

허나, 개인적인 생각은 이들 중에서 그래도 custom(registered) 메시지가 16비트 이상의 범위로 확장되거나 이동하기 가장 용이한 영역이 아닌가 싶다.
일단 얘는 upper bound가 없는 가장 마지막 계층인 데다, MSG 구조체를 포함해서 메시지 값을 담는 모든 자료형이 32비트 UINT로 이미 다 확장되어 있고, custom 메시지는 언제나 함수가 되돌리는 변수값으로 활용하지 하드코딩이 없으니, 확장에 가장 유동적으로 대처 가능하기 때문이다.

Posted by 사무엘

2013/02/25 08:39 2013/02/25 08:39
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/800

C++의 for each, in 키워드

심각한 뒷북인지 모르겠는데,
본인은 비주얼 C++에서 이런 문법이 가능하다는 걸 아주 최근에야 알게 되었다.

DATA container[N];

for each(DATA elem in container) {
    do_with(elem);
}

저건 언어 차원에서 제공하는 새로운 문법이기 때문에 STL <algorithm>의 for_each 함수와는 다르다.

배열을 순회하기 위한 별도의 임시 변수(일회용 int i나 거추장스러운 포인터)를 선언할 필요 없이, 코드를 굉장히 깔끔하게 만들 수 있어서 좋다. 이것의 주 용도는 C++을 상당한 고수준 언어로 끌어올린 C++/CLI 환경이지만, 네이티브 환경에서도 정적 배열과 STL 컨테이너 정도에서는 아주 요긴하게 쓰일 수 있다.

DATA가 int 같은 아주 기본적인 자료형이라면 그냥 저렇게 써 주면 되고, 개당 수십~수백 바이트씩 하는 무거운 구조체라면 const DATA&를 하면 된다. 그리고 순회 중인 배열 자체의 데이터를 루프 안에서 고쳐야 한다면 물론 DATA&라고 써 주면 된다.
저건 C++11 같은 급도 아니고, 생각보다 굉장히 오래 된 비주얼 C++ 2005에서부터 지원되기 시작했다고 한다.

컴파일러가 언어 표준에 없는 변칙 문법이나 키워드를 지원하는 것은 특정 CPU나 운영체제에 종속적인 기능을 추가로 제공하기 위해서이다.
하지만 for each는 그런 범주에 속하지 않으며, 전통적인 C/C++ 언어의 토큰 나열과 비교했을 때 문법도 굉장히 이질적이다. 그럼에도 불구하고 비주얼 C++이 이것을 제공하는 것이 신기하기 그지없다.

그리고 또 하나 생각할 점은, 저기서 each와 in은 문맥 의존적인 임시 예약어(키워드)라는 것이다. for 다음에 이어졌을 때만 키워드이며, 다른 곳에서는 사용자가 each나 in을 일반적인 변수/함수명으로 얼마든지 쓸 수 있다는 뜻.

언어 설계 차원에서 C/C++은 원래 임시 예약어라는 게 없는 언어이다. 한번 예약어로 찜해진 단어는 그 어떤 곳에서도 명칭으로 결코 쓰일 수 없다. 다른 구문이나 수식을 파싱하는 데는 문맥 의존적인 어려운 문법이 많지만, 예약어 식별만은 단순하게 만들려고 했는가 보다.

그 반면, 파스칼은 begin, end, if, for 같은 단어야 절대적인 예약어이겠지만 forward(함수 전방 선언용)를 포함해 몇몇 키워드는 일정 문맥에서 별도의 의미를 갖는 임시 예약어이다. 그리고 객체지향 개념이 추가된 오브젝트 파스칼의 경우 virtual 같은 함수 modifier, 그리고 클래스 내부에서 public/protected 같은 멤버 접근성 modifier도 임시 예약어이다. C++은 그렇지 않다.

비주얼 C++은 for each, in뿐만 아니라 abstract, override, delegate 등 몇몇 비표준 임시 예약어를 더 두고 있기도 한데, 이것은 대개가 C++/CLI용이고 네이티브 환경에서는 쓰일 일이 별로 없다. 일반적인 경우라면 비표준 확장 예약어는 앞에 __를 붙여서 명칭 충돌의 여지를 없앤 뒤에 절대적인 예약어로 추가하는 게 관행일 텐데, 저것들은 그렇게 하지 않았다.

끝으로, for each, in에다가 2차원 배열을 넘겨 주면 어떻게 될까 궁금해서 시도를 해 봤는데, 이때도 각 원소들이 하나씩 순서대로 순회되더라.
각 배열을 배열의 포인터로 받으면서 1차원적으로 순회되지는 않는가 보다.

비주얼 C++ 2010은 인텔리센스 컴파일러와 실제 컴파일러의 동작이 서로 다르기라도 했는지, IDE에서는 이때 each 변수가 2차원 배열과 서로 호환이 되지 않는다고 빨간줄 에러를 뱉은 반면, 실제 컴파일은 됐다.
2012에서는 그것이 개선되어 IDE에서도 빨간줄이 생기지 않는다.

Posted by 사무엘

2013/02/16 08:17 2013/02/16 08:17
, , ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/796

※ 윈도우 프로그래머라면 누구나 다 알 만한 내용에 대한 정리이다.
보면 아시겠지만 1~5까지 등장하는 기술들은 서로 동등한 차원의 관계에 있는 것들이 아니다.

1. 윈 API

kernel32, gdi32, user32를 주축으로 운영체제가 응용 프로그램에다 자신의 기능을 제공하는 가장 원초적인 매체이다. 우리에게 친근한 CreateWindowEx, DispatchMessage, CreateFile 등등등! 20년에 달하는 역사를 자랑하며, Windows라는 운영체제와 PC 데스크톱 애플리케이션이라는 영역 자체가 존속하는 한 결코 없어지지 않는다. 과거의 도스 API는 그냥 인터럽트 호출을 그대로 노출하던 반면, 윈도우 API는 C언어 함수 호출 형태를 근간으로 만들어져 있다.

2. MFC

윈 API만 쓰면 생산성이 크게 떨어지고 불편한 관계로, 1990년대 초에 응용 프로그램의 주 개발 언어가 C에서 C++로 넘어가던 시기에 기존 API를 C++ 라이브러리 형태로 적당히 wrapping하기 위해 이 물건이 개발되었다.
생성자와 소멸자, 오버로딩과 상속, message map 같은 것들 덕분에 생API보다야 개발 생산성이 크게 향상되는 건 사실이나, 이걸 제대로 쓰려면 윈 API도 알아야 되고 객체지향 이념과 MFC가 새로 도입된 개념까지 다 알아야 하기 때문에 초기 학습자의 부담이 커진다. 또한 MFC 자체가 부과하는 오버헤드도 만만찮다.

MS C 7.0의 다음 버전인 비주얼 C++ 1.0때부터 application frameworks라는 이름으로 존재하고 있었다. 16비트 시절부터 존재했으니 역사가 제법 길다.

3. COM

함수 호출 규약, 메모리 할당과 해제 방식, 문자열의 처리 방식, 특정 기능이 담겨 있는 객체를 식별하고 외부에 노출하는 방식 같은 아주 기본적인 바이너리 수준에서의 소프트웨어 컴포넌트 제조 규격을 범언어적으로 통일하는 스펙이다. 가령, 윈API가 DLL 로딩을 위해 전통적으로 지저분한 LoadLibrary(파일명), GetProcAddress나 import library 같은 저수준 방법을 썼다면, COM의 사고방식으로는 CoCreateInstance와 깔끔한 class ID만으로 끝인 것이다.

이건 1990년대 중반의 32비트 윈도우 이래로 도입되었다. 지금은 옛날보다야 중요도가 크게 떨어진 게 사실이지만 DirectX, 탐색기 셸, 드래그 드롭 같은 일부 분야의 API는 이 COM 방식으로 제공되기 때문에 프로그래머아면 COM의 개발 취지와 기본 개념 정도는 알 필요가 있다. 한편, MFC도 이런 COM 규격을 만족하는 컴포넌트를 새로 구현하는 데 쓰이는 공통 필수 기능을 지원한다.

4. GDI+

클래식 윈 API 중에서 GDI 계층을 계승하는 그래픽 라이브러리로, MS가 제공하는 API로는 드물게 C와 더불어 순수 C++ 기반으로 만들어졌다. 또한 사용하는 자료형이나 명칭들이 윈 API와는 완전히 다르며 서로 관련이 없다는 특징이 있다. 비록 GDI+는 기존 GDI보다 느리고 오버헤드가 크지만, 알파 블렌딩, 그러데이션 같은 최신 그래픽 카드를 활용하는 고급 그래픽 기능에 더욱 특화되어 있으며, 일부 그리기 기능은 반드시 GDI+만 써야 가능한 것도 있다.

가령, 안티앨리어싱이 적용된 글자를 찍는 건 재래식 GDI로도 가능하지만 안티앨리어싱이 적용된 선을 그리는 건 GDI+를 써야만 가능하다. 그리고 윈도우 비스타/7의 glass 영역에다가 알파 채널이 적용된 그림/글자를 제대로 그리는 것도 역시 GDI+로만 가능하다.

5. .NET

기계어가 아닌 바이트코드 가상 기계(common language runtime)를 기반으로 하면서, 운영체제 API를 객체지향 위주로 완전히 새로 설계한 윈도우 프로그래밍 플랫폼이다. 예전에는 비주얼 베이직이 얼추 이런 개발 환경을 지향하고 있었지만 닷넷은 그보다 스케일이 범언어적으로 훨씬 더 커졌다. .NET 환경에서의 주력 개발 언어인 C#은 최신 언어답게 디자인이 깔끔하고 빌드 생산성이 우수하다. 하지만 네이티브 기계어 프로그램만치 빠르거나 운영체제 내부를 세밀하게 지어하지는 못하며, 닷넷 프레임워크 위에서만 돌아갈 수 있다는 한계도 있다.

.NET에서는 기본 그래픽 API가 GDI+이다. 둘 다 윈도우 XP부터는 기본 내장이고, 윈도우 98부터 2000/ME까지는 운영체제에 배포판을 추가 설치해서 쓸 수는 있다. 다만, 윈95는 지원을 끊었다.
윈도우 8에서는 닷넷조차도 다른 언어와 플랫폼으로 대체되었는지 WinRT라는 플랫폼이 등장하며, C++ 언어도 C++/CX라고 대대적으로 칼질이 가해졌다. 이게 앞으로 6번으로 추가되어야 할 듯하다.

맥 OS는 운영체제의 API가 저런 식의 내력을 거친 게 있으려나 궁금하다. 코코아, 카본 같은 건 어느 위상에 속할까?

Posted by 사무엘

2013/01/03 08:38 2013/01/03 08:38
, , ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/778

들어가는 말

  • 프로젝트 단위: 말 그대로 한 개의 결과물을 생성하는 것을 목표로 하는 한 비주얼 C++ 프로젝트당 하나씩만 생성되는 파일이다. 리소스는 특수한 경우가 아니면 보통 프로젝트마다 하나만 있기 때문에, per-프로젝트인 것으로 간주된다.
  • configuration 단위: 한 프로젝트 내에서 debug나 release 별로 따로 생성되고, x86이나 x64 같은 플랫폼별로 다 따로 생성되는 파일이다.
  • 소스 단위: 번역 단위(translation unit)별로 다 제각각 생성되는 파일이다. configuration에도 물론 종속적이며, 다 따로 생성된다.

※ 프로젝트를 열면 생성되는 것

APS (프로젝트 단위)

전통적인 윈도우용 실행 파일(EXE/DLL)을 빌드하기 위해서는 잘 알다시피 컴파일된 코드뿐만 아니라 리소스도 같이 들어가는데, 그 리소스를 명시해 주는 '리소스의 소스', 일명 리소스 스크립트는 바로 *.rc 파일이다. 그리고 *.rc와 일반 소스 코드 *.cpp는 resource.h에 정의된 심벌들을 통해 동일 리소스를 식별하게 된다.

그런데 매번 일반 텍스트 형태로 된 rc 파일을 resource.h와 엮어서 파싱하자니 불편하다. 리소스 스크립트는 텍스트 에디터를 써서 사람이 손으로 편집한 뒤 컴파일하기에는 적합하지만, IDE 같은 소프트웨어가 자동으로 다뤄 주기에는 비효율적인 구조인 것이다.

그래서 비주얼 C++은 리소스 ID까지 포함하여 리소스 스크립트의 바이너리 representation을 따로 만들어 두고 지낸다. APS 파일이 존재하고 이게 RC나 H 같은 텍스트 소스에 비해 outdate되지 않았다면, 프로그램은 매번 텍스트를 파싱하는 게 아니라 APS 파일을 곧장 읽는다.

비주얼 C++에서 프로젝트를 처음으로 열어서 리소스 뷰로 리소스들을 처음 열람하면, 프로그램이 리소스 컴파일러를 가동해서 뭘 파싱하면서 시간이 오래 걸린다. 하지만 다음에 열 때부터는 리소스가 곧바로 빨리 열리는데, 이것이 바로 APS 파일 덕분이다.

CLW (프로젝트 단위) deprecated

이것은 비주얼 C++ 4~6 사이에, 그 이름도 유명한 MFC Class Wizard (클래스 마법사) 때문에 도입되었던 부가정보 파일이다.
MFC 클래스에서 파생된 윈도우 클래스 같은 데서 메시지 핸들러(마법사의 용도가 굳이 메시지 핸들러뿐인 건 아니지만)를 추가하려면 일단 헤더 파일에 afx_msg void OnXXXX가 추가되어야 하고, 메시지 맵 BEGIN_MESSAGE_MAP() 밑에 ON_MESSAGE_***가 추가되어야 하고, 끝으로 소스 파일에 해당 멤버 함수의 몸체가 추가되어야 한다.

그런데 이 일을 모든 소스 코드를 일일이 파싱하면서 추가 지점을 찾아서 하기란 여간 어려운 일이 아닐 수 없다.
C++은 선언 따로, 정의 따로이고(C#, 자바는 그렇지 않다) 정의부가 반드시 어느 번역 단위에 존재해야 한다는 제약이 전혀 없다. FM대로 하는 건 15년 전의 펜티엄 컴으로는 무리였다.

그래서 편의상 클래스의 선언부와 메시지 맵의 주변엔 클래스 마법사만이 식별하는 문자열이 들어간 주석이 있고, 클래스 마법사는 그 구간을 대상으로만 작업을 신속하게 했다. 그리고 그걸로도 부족해서 클래스 마법사의 파싱 결과가 CLW 파일에 들어갔다. 식별자 주석을 건드리면 클래스 마법사가 제대로 동작하지 못했다.

21세기에 나온 비주얼 C++ .NET과 그 이후 버전은 CLW 파일을 만들거나 사용하지 않으며, 클래스 마법사 주석 없이도 멤버 함수나 핸들러의 추가를 그럭저럭 정확하게 해낸다. 사실 클래스 마법사 자체가 비주얼 C++ 200x에서는 사라졌다가 2010에서부터 부활했다.

※ 빌드하면 생성되는 것

OBJ (소스 파일 단위)

비주얼뿐만이 아니라 전세계의 어느 C/C++ 컴파일러를 돌리더라도, 소스 코드를 컴파일하면 이것이 매 소스, 즉 번역 단위별로 생성된다. 소스 코드를 번역한 기계어 코드가 obj 파일 포맷에 맞게 들어있는데, 때로는 기계어 코드뿐만 아니라 각종 디버깅 정보와 링크 때 링커가 참고할 만한 메타데이터도 잔뜩 가미된다.

static library라고 불리는 LIB는 별개의 포맷이 아니라, 그냥 여러 번역 단위들을 컴파일한 obj들의 컬렉션일 뿐이다. obj를 단순히 lib로 합치기만 할 때는 링크 에러가 나지 않는다(즉, 선언된 심벌들이 반드시 정의되어야 할 필요가 없다.)

RES (configuration 단위)

리소스 스크립트를 컴파일하여 생성되는 결과물이다. 리소스 스크립트의 바이너리 최적화 형태인 APS와 무엇이 다르냐고 물으신다면, 차이가 적지 않다.
APS는 리소스 스크립트 파일의 표현 형태만 메모리 친화적으로 바꾼 것이기 때문에 ID_RADIO1 같은 상수 명칭의 문자열 원형과 심지어 조건부 컴파일을 위한 스펙까지 다 보존되어 있으며, 참조하는 비트맵 같은 데이터 파일도 파일명 형태로 존재한다. APS 파일로부터 RC 파일과 resource.h 파일을 복원해 낼 수 있다.

그러나 RES는 상수는 다 숫자로 박히고 참조하는 데이터 파일도 모두 내부에 embed되었으며, 이 상태 그대로 실행 파일에다 링크되어 들어가기만 하면 되는 상태인 것이다.

PCH (configuration 단위)

pre-compiled header인 stdafx.h와, 이에 대응하는 번역 단위인 stdafx.cpp를 컴파일하여 얻은 각종 컴파일 context들, 즉 함수와 클래스 선언, #define 명칭 등등을 바이너리 형태로 보관하고 있는 파일들이다. 이게 있으면 stdafx.h를 인클루드하라는 명령은 실제 헤더 파일을 파싱하는 게 아니라 그냥 pch 파일을 참조하는 것으로 대체된다.

컴파일러의 버전이 올라가고 각종 플랫폼 SDK의 크기가 커질수록 이 파일의 크기도 야금야금 커져 왔다. 이거 없이는 C++은 살인적인 인클루드질 때문에, 느린 빌드 속도를 도저히 감당할 수 없다.

PDB (configuration 단위)

빌드 결과 만들어진 EXE/DLL에서 기계어 코드의 어느 부분이 어느 소스의 몇째 줄에 대응하는지(소스 코드 자체는 없고 소스의 경로만), 이 함수에서 이 지역변수의 이름이 무엇인지 등을 담고 있는 디버그 정보 데이터베이스이다.

디버그 모드가 아니라 릴리스 모드로 빌드한 최적화된 실행 파일이라도, PDB 파일을 참조하게 하는 최소한의 정보만이라도 남겨 두면, 나중에 프로그램이 뻗는다거나 할 때 소스상으로 최소한 어느 지점에서 뻗었는지를 개발자의 컴에서 확인해 볼 수 있다. 개발자의 컴엔 직전에 이 바이너리를 빌드하면서 같이 생성된 PDB 파일이 존재하기 때문이다.

ILK (configuration 단위. 대개 디버그 빌드에서만)

증분 링크(incremental link)를 위한 context 정보가 들어있다.
이것은 프로그램의 빌드 속도를 올리기 위한 테크닉이다. 매번 링크를 처음부터 일일이 새로 하는 게 아니라, 처음에 빌드할 때 바이너리를 좀 여분을 둬서 듬성듬성 큼직하게 만들어 두고, 다음부터는 바뀐 obj 파일 내용만 기존 바이너리의 자기 지점에다 대체하는 방식으로 빌드를 신속하게 끝낸다. 혹은 뒷부분에다가 새로운 빌드 내용을 계속 추가해 넣기만 하고, 예전 빌드 내용을 무효화시키는 방법도 쓴다.

요즘 디버그 빌드가 단순히 최적화를 안 한 것 이상으로 릴리스 빌드보다 빌드된 바이너리의 크기가 유난히 큰 이유가 여기에 있다. 게다가 Edit and continue 기능을 위해서도 여분 공간이 필요하기 때문에 크기가 커질 수밖에 없다. 디버그 빌드 바이너리를 바이너리 에디터로 들여다보면, 온통 0xCC (no op)으로 도배가 되고 내부가 헐렁함을 알 수 있다.

MS 오피스도 2007 이전 버전을 보면 방대한 워드/엑셀 문서를 편집할 때 바뀐 내용만 짤막하게 저장하는 옵션이 있었다. 그게 일종의 증분 저장 기능이다. 지금은 그게 보안상으로 문제가 되기도 하고 문서 파일 포맷이 크게 바뀌었으며, 굳이 증분 저장을 안 써도 될 정도로 PC 성능이 좋아졌다고 여겨져서 그런 기능이 없어졌지만 말이다.
증분 링크는 보통은 디버그 모드 빌드에서만 쓰인다.

VC???.idb (configuration 단위. 대개 디버그 빌드에서만)

ILK 파일과 마찬가지로 빌드 시간의 단축을 위해 존재하는 파일이다.
디버그 모드로 빌드를 해 보면, 헤더 파일이 바뀌었더라도 해당 헤더를 인클루드하는 cpp 파일들이 전부 리빌드되는 게 아니라 가끔 'Skipping.. (no relevant changes detected)'이러면서 넘어가는 파일도 있다. 그리고 대체로 이런 컴파일러의 판단이 맞다. 헤더 파일을 고쳤더라도 클래스의 선언부 같은 크리티컬한 부분이 아니라 그냥 주석 같은 trivial한 부분만 바뀌었기 때문에 굳이 리빌드가 필요하지 않다는 걸 어떻게 판단할까?

컴파일러가 제공하는 Enable Minimal Rebuild (/Gm) 옵션 때문에 가능하다. 이게 지정되면 빌드 과정에서 프로젝트명이 아니라 고정된 이름의 의존성 판단용 부가정보 파일이 생긴다. ???는 해당 비주얼 C++의 버전이다. 2008의 경우 90, 2010의 경우 100.

정리하자면, 빌드와 함께 생성되는 파일들 중, 실제로 링커에 의해 EXE/DLL 따위를 만드는 데 동원되는 파일은 OBJ, RES이다.
빌드 시간을 단축시키는 데 쓰이는 파일은 PCH, IDB, ILK이다.
PDB는 프로그램의 문제 추적을 위해 추후에 쓰이는 파일이다.

※ 편의 기능 + 빌드

SBR (소스 파일 단위), BSC (configuration 단위)

자, 이 파일은 빌드를 하면 생성되지만, 프로그램의 빌드나 디버깅을 위해서 반드시 생성해야만 하는 파일은 아니다.
방대한 양의 소스 코드를 컴파일하고 나면 컴파일러는 그 소스 코드의 모든 내부 구조에 대해서 알게 된다. 그걸 알아야만 기계어 코드를 생성할 수 있을 테니까.

컴파일이 끝났다고 그 정보를 그냥 버리는 건 아깝기 때문에, 일정한 파일 포맷을 제정하여 이것을 소스 코드에 대한 browsing에 활용할 수 있다. 가령, 이 클래스 멤버 함수의 정의는 어디에 있고, 이 함수가 호출하는 함수와, 이 함수를 호출하는 함수와의 그래프 관계는 어떻고 하는 것 말이다. 소스 코드가 텍스트라면, browse 정보는 정교하게 짜여진 색인인 셈이다.

이 개념과 파일 포맷은 비주얼 C++의 아주 초창기 시절부터 존재했다.
그리고 비주얼 C++은 버전 6까지는, 프로젝트를 빌드할 때 browse 정보도 같이 이렇게 덤으로 빌드되게 해서 browse 정보를 조회하는 기능을 갖추고 있었다. SBR과 BSC의 관계는 C/C++ 소스 코드에서 OBJ와 EXE의 관계와 정확히 같다. 한 번역 단위를 컴파일하면 한 SBR이 생겼고, SBR들을 뭉쳐서 BSC 파일이 생성되었다.

물론 이렇게 하면 빌드 시간이 더욱 길어졌고, 굳이 browse 기능을 쓰지 않는 사람도 있었기 때문에 이 기능은 철저히 선택사항이었다. 그리고 닷넷부터는 이 정보를 만들지 않더라도, 뒤에서 설명할 인텔리센스 정보만으로 IDE 차원에서 browse 대체 기능을 갖추기 시작했다.

※ 인텔리센스

NCB (프로젝트 단위) deprecated

sbr/bsc보다는 나중에, 시기적으로는 clw와 비슷한 타이밍(비주얼 C++ 4)에 만들어진 파일 포맷이다.
바야흐로 비주얼 C++ 4에서는 최초로 Class View라는 게 생겨서 프로젝트에 존재하는 모든 클래스와 멤버, 전역 변수/함수들을 표시하는 기능이 추가되었다. ncb는 browse 정보를 만드는 것만치 소스를 심도 있게 일일이 다 까 보지는 않고, 그보다는 단순하게 코드를 파싱하여 해당 기능을 빠르게 구현하는 데 필요한 부가 정보를 저장했다.

Class View가 도입되었던 초창기에는 소스 코드를 매번 빌드는 아니어도 저장을 해야만 컨텐츠가 업데이트되었다. 그나마 저장하지 않고도 실시간으로 업데이트가 되기 시작한 건 VC 6부터이다.
그리고 VC 6에서는 잘 알다시피 초보적인 수준의 인텔리센스 및 멤버 표시/자동 완성 기능이 구현되었고, 그 정보 역시 ncb 파일에다 저장되었다. 당연히 같은 프로젝트를 만들어도 ncb 파일의 크기는 더욱 커지게 됐다.

비주얼 C++이 버전업되면서 인텔리센스는 성능이 더욱 강력해졌다. 바로 닷넷에서부터는 #define 심벌이 추가로 인텔리센스의 혜택을 입기 시작했으며 템플릿도 제대로 지원되기 시작했다. 오동작 빈도도 더욱 줄었다.

그러나 이 모든 것은 여전히 10년 전의 ncb 파일을 기반으로, 진품이 아닌 가짜 parser를 임기응변 식으로 확장하면서 구현된 것이기 때문에, 어느 수준 이상의 정확도를 낼 수는 없었으며 복잡한 C++ 문법의 모든 것을 수용하는 데에도 근본적인 한계가 있었다.

가령, 클래스 멤버 함수의 선언이 복잡한 #define 매크로 안에 숨어 있으면 Class View에 이것이 제대로 나타나지 않았다. 갑자기 빌드 configuration이나 플랫폼을 확 바꿔 버리면 인텔리센스가 멘붕을 일으켰으며, 복잡한 조건부 컴파일 구간에 숨어 있는 코드도 인텔리센스가 상황 파악을 제대로 못 하는 경우가 많았다. 멘붕의 정도가 심하면 인텔리센스가 아예 동작을 멎어 버리기도 했기 때문에, 수시로 ncb 파일을 지우고 다시 만들어 주는 건 필수 작업이었다.

SDF (프로젝트 단위), IPCH (configuration 단위)

위와 같은 기존 ncb 기반 인텔리센스의 문제를 극복하고자 비주얼 C++ 2010은 안 그래도 C++11 때문에 문법도 대폭 확장해야 하는데 이 기회에 인텔리센스 엔진을 완전히 갈아 엎었다. SQL server compact edition이라는 전문 DB 엔진을 쓰기 시작했다.

2010부터는 가짜 parser가 아니라 진짜 컴파일러와 똑같은 수준의 parser가 background에서 모든 소스와 헤더 파일들을 일일이 파싱하여 실시간으로 심벌 정보를 고친다. 정확한 문맥을 파악하고 있기 때문에 100% 정확한 인텔리센스가 제공되며, 예전처럼 좀 오동작한다 싶어도 잠시 기다려서 파싱 정보가 갱신되고 나면 곧장 똑바로 동작하기 시작한다.

다만, 이런 첨단 기술이 공짜로 된 건 아니기 때문에, 어지간한 C++ 프로젝트는 이제 인텔리센스 파일만 수십~100수십 MB씩 디스크를 쳐묵쳐묵 하는 대가를 감수해야 한다. 어느 프로젝트를 열든지 동일하게 공유되는 MFC나 플랫폼 SDK의 인텔리센스 정보는 여러 프로젝트들이 한데 공유만 할 수 있어도 인텔리센스의 용량이 크게 줄어들 텐데, 무척 아쉽다.

그래도 비주얼 C++ 제작진에서 일말의 배려를 했다 싶은 대목은, 인텔리센스 DB 파일이 생성되는 곳만 한 곳에 따로 대체 지정이 가능하다는 것이다. 프로젝트-옵션이 아니라 도구-옵션에서 “텍스트 편집기-C/C++/고급”으로 가면 fallback location을 지정하는 옵션이 있으며, 이것만 해 주면 비주얼 C++로 만드는 모든 프로젝트들의 인텔리센스 DB는 거기 아래로 한데 모이게 된다.

이렇듯, 비주얼 C++ IDE나 컴파일러가 생성하는 보조 파일들의 용도와 배경에 대해서 공부하면 C/C++ 언어의 특성을 알 수 있고, 프로그래밍 언어에 대한 비판적인 안목, 그리고 언어의 비효율을 극복하고 조금이라도 개발 도구의 생산성을 올리기 위해 해당 제작진이 어떤 꼼수를 동원했는지에 대해서도 알 수 있다.

Posted by 사무엘

2012/10/16 08:30 2012/10/16 08:30
,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/744

문자의 집합인 문자열(string)은 어지간한 프로그래밍 언어들이 기본으로 제공해 주는 기본 중의 기본 자료형이지만, 그저 기초라고만 치부하기에는 처리하는 데 내부적으로 손이 많이 가기도 하는 자료형이다.

문자열은 그 특성상 배열 같은 복합(compound) 자료형의 성격이 다분하며, 별도의 가변적인 동적 메모리 관리가 필요하다. 또한 문자열을 어떤 형태로 메모리에 저장할지, 복사와 대입은 어떤 형태로 할지(값 내지 참조?) 같은 전략도 구현체에 따라서 의외로 다양하게 존재할 수 있다.

그래서 C 언어는 컴퓨터 자원이 열악하고 가난하던 어셈블리 시절의 최적화 덕후의 정신을 이어받아, 언어 차원에서 따로 문자열 타입을 제공하지 않았다. 그 대신 충분히 크게 잡은 문자의 배열과 이를 가리키는 포인터를 문자열로 간주했다. 그리고 코드값이 0인 문자가 문자열의 끝을 나타내게 했다.

그 이름도 유명한 null-terminated string이 여기서 유래되었다. 오늘날까지 쓰이는 역사적으로 뿌리가 깊은 운영체제들은 응당 어셈블리나 C 기반이기 때문에, 내부 API에서 다 이런 형태의 문자열을 사용한다.
그리고 파일 시스템도 이런 문자열을 사용한다. 오죽했으면 이를 위해 MAX_PATH (=260)같은 표준 문자열 길이 제약까지 있을 정도이니 말 다 했다. 그렇기 때문에 null-terminated string은 앞으로 결코 없어지지 않을 것이며 무시할 수도 없을 것이다.

딱히 문자열만을 위한 별도의 표식을 사용하지 않고 그저 0 문자를 문자열의 끝으로 간주하게 하는 방식은 매우 간단하고 성능면에서 효율적이다. 지극히 C스러운 발상이다. 그러나 이는 buffer overflow 보안 취약점의 근본 원인을 제공하기도 했다.

또한 이런 문자열은 태생적으로 문자열 자기 내부엔 0문자가 또 들어갈 수 없다는 제약도 있다. 하지만 어차피 사람이 사용하는 표시용 문자열에는 코드 번호가 공백(0x20)보다 작은 제어 문자들이 사실상 쓰이지 않기 때문에 이는 그리 심각한 제약은 아니다. 문자열은 어차피 문자의 배열과는 같지 않은 개념이기 때문이다.

문자열을 기본 자료형으로 제공하는 언어들은 대개 문자열을 포인터 형태로 표현하고, 그 포인터가 가리키는 메모리에는 처음에는 문자열의 길이가 들어있고 다음부터 실제 문자의 배열이 이어지는 형태로 구현했다. 그러니 문자열의 길이를 구하는 요청은 O(1) 상수 시간 만에 곧바로 수행된다. (C의 strlen 함수는 그렇지 않다)

그리고 문자열의 길이는 대개 machine word의 크기와 일치하는 범위이다. 다만, 과거에 파스칼은 이례적으로 문자열의 크기를 16비트도 아닌 겨우 8비트 크기로 저장해서 256자 이상의 문자열을 지정할 수 없다는 이상한 한계가 있었다. 더 긴 문자열을 저장하려면 다른 특수한 별도의 자료형을 써야 했다.

과거에 비주얼 베이직은 16비트 시절의 버전 3까지는 “포인터 → (문자열의 길이, 포인터) → 실제 문자열”로 사실상 실제 문자열에 접근하려면 포인터를 이중으로 참고하는 형태로 문자열을 구현했다. 어쩌면 VB의 전신인 도스용 QuickBasic도 문자열의 내부 구조가 그랬는지 모르겠다.

그러다가 마이크로소프트는 훗날 OLE와 COM이라는 기술 스펙을 제정하면서 문자열을 나타내는 표준 규격까지 제정했는데, COM 기반인 VB 4부터는 문자열의 포맷도 그 방식대로 바꿨다.

일단 기본 문자 단위가 8비트이던 것이 16비트로 확장되었다. 마이크로소프트는 자기네 개발 환경에서 ANSI, wide string, 유니코드 같은 개념을 한데 싸잡아 뒤죽박죽으로 재정의한 것 때문에 문자 코드 개념을 좀 아는 사람들한테서 많이 까이고 있긴 하다. 뭐, 재해석하자면 유니코드 UTF16에 더 가깝게 바뀐 셈이다.

OLE 문자열은 일단 겉보기로는 null-terminated wide string을 가리키는 포인터와 완전히 호환된다. 하지만 그 메모리는 OLE의 표준 메모리 할당 함수로만 할당되고 해제된다. (아마 CoTaskMemAlloc) 그리고 포인터가 가리키는 메모리의 앞에는 문자열의 길이가 32비트 정수 형태로 또 들어있기 때문에 문자열 자체가 또 0문자를 포함하고 있을 수 있다.

그리고 문자열의 진짜 끝부분에는 0문자가 1개가 아니라 2개 들어있다. 윈도우 운영체제는 여러 개의 문자열을 tokenize할 때 double null-termination이라는 희대의 괴상한 개념을 종종 사용하기 때문에, 이 관행과도 호환성을 맞추기 위해서이다.

2중 0문자는 레지스트리의 multi-string 포맷에서도 쓰이고, 또 파일 열기/저장 공용 대화상자가 사용하는 확장자 필터에서도 쓰인다. MFC는 프로그래머의 편의를 위해 '|'(bar)도 받아 주지만, 운영체제에다 전달을 할 때는 그걸 다시 0문자로 바꾼다. ^^;;;

요컨대 이런 OLE 표준 문자열을 가리키는 포인터가 바로 그 이름도 유명한 BSTR이다. 모든 BSTR은 (L)PCWSTR과 호환된다. 그러나 PCWSTR은 스택이든 힙이든 아무 메모리나 가리킬 수 있기 때문에 그게 곧 BSTR이라고 간주할 수는 없다. 관계를 알겠는가? BSTR은 SysAllocString 함수를 통해 생성되고 SysFreeString 함수를 통해 해제된다.

'내 문서', '프로그램 파일' 등 운영체제가 특수한 용도로 예정하여 사용하는 디렉터리를 구하는 함수로 SHGetSpecialFolderPath가 있다. 이 함수는 MAX_PATH만치 확보된 메모리 공간을 가리키는 문자 포인터를 입력으로 받았으며, 특수 폴더들을 CSIDL이라고 불리는 일종의 정수값으로 식별했다.

그러나 윈도우 비스타에서 추가된 SHGetKnownFolderPath는 폴더들을 128비트짜리 GUID로 식별하며, 문자열도 아예 포인터의 포인터 형태로 받는다. 21세기에 도입된 API답게, 이 함수가 그냥 메모리를 따로 할당하여 가변 길이의 문자열을 되돌려 준다는 뜻이다. 260자 제한이 없어진 것은 좋지만, 이 함수가 돌려 준 메모리는 사용자가 따로 CoTaskMemFree로 해제를 해 줘야 한다. SysFreeString이 아님. 메모리만 COM 표준 함수로 할당했을 뿐이지, BSTR이 돌아오는 게 아닌 것도 주목할 만한 점이다.

예전에 FormatMessage 함수도 FORMAT_MESSAGE_ALLOCATE_BUFFER 플래그를 주면 자체적으로 메모리가 할당된 문자열의 포인터를 되돌리게 할 수 있는데, 이놈은 윈도우 NT 3.x 시절부터 있었던 함수이다 보니, 받은 포인터를 LocalFree로 해제하게 되어 있다.

이렇게 운영체제 API 차원에서 메모리를 할당하여 만들어 주는 문자열 말고, 프로그래밍 언어가 제공하는 문자열은 메모리 관리에 대한 센스가 추가되어 있다. 대표적인 예로 MFC 라이브러리의 CString이 있다.

CString 자체는 BSTR과 마찬가지로 언뜻 보기에 PCWSTR 포인터 하나만 멤버로 달랑 갖고 있다. 그래서 심지어 printf 같은 문자열 format 함수에다가 "%s", str처럼 개체를 명시적인 형변환 없이 바로 넘겨 줘도 괜찮다(권장되는 프로그래밍 스타일은 못 되지만).

그런데 그 포인터의 앞에 있는 것이 단순히 문자열 길이 말고도 더 있다. 바로 레퍼런스 카운트와 메모리 할당 크기. 그래서 문자열이 단순 대입이나 복사 생성만 될 경우, 그 개체는 동일한 메모리를 가리키면서 레퍼런스 카운트만 올렸다가, 값이 변경되어야 할 때만 실제 값 복사가 일어난다. 이것을 일명 copy-on-modify 테크닉이라고 하는데, MFC 4.0부터 도입되어 오늘날에 이르고 있다. 이는 상당히 똑똑한 정책이기 때문에 이것만 있어도 별도로 r-value 참조자 대입 최적화가 없어도 될 정도이다.

메모리 할당 크기는 문자열에 대해 덧셈 같은 연산을 수행할 때 메모리 재할당이 필요한지를 판단하기 위해 쓰이는 정보이다. MFC는 표준 C 라이브러리에 의존적이기 때문에 이때는 응당 malloc/free가 쓰인다. 재할당 단위는 보통 예전에 비해 배수 단위로 기하급수적으로 더 커진다.

CString이 그냥 포인터와 크기가 같은 반면, 표준 C++ 라이브러리에 존재하는 string 클래스는 비주얼 C++ 2010 x86 기준 개체 하나의 크기가 28바이트나 된다. 길이가 16 이하인 짧은 문자열은 그냥 자체 배열에다 담고, 그보다 긴 문자열을 담을 때만 메모리를 할당하는 테크닉을 쓰기 때문이다. 그리고 대입이나 복사를 할 때마다 CString 같은 reference counting을 하지 않고, 일일이 메모리 재할당과 값 복사를 한다.

글을 맺겠다.
C/C++이 까이는 여러 이유 중 하나는 라이브러리가 지저분하고 동일 기능의 중복 구현이 너무 많아서 혼란스럽다는 점이다. 문자열도 그 범주에 정확하게 속하는 요소일 것이다. 메모리 할당과 해제 자체부터가 구현체 중복이 한둘이 아니니... 어지간히 덩치와 규모가 있는 프레임워크 라이브러리는 그냥 자신만의 문자열 클래스 구현체를 갖고 있는 게 이상한 일이 아니다. 하지만 그건 C/C++이 쓰기 편리한 고급 언어와 시스템 최적화 오덕질이라는 두 토끼를 모두 잡으려다 어쩔 수 없이 그리 된 것도 강하다.

문자열에 대한 이야기 중에서 일부는 내가 예전 블로그 포스트에서도 한 것도 있지만, 이번 글에 처음으로 언급한 내용도 많을 것이다. 프로그래밍 언어 중에는 문자열을 다루기가 기가 막히게 편리한 것이 있는데, 그런 것도 내부적으로는 다 결국은 컴퓨터가 무진장 고생해서 결과물을 만들어 내는 것이다.
컴퓨터가 받아들이고 뱉어내는 문자열들이 내부적으로 어떤 구현체에 의해 어떤 처리를 거치는지를 생각해 보는 것도 프로그래머로서는 의미 있는 일일 것이다.

Posted by 사무엘

2012/10/13 08:26 2012/10/13 08:26
, , , ,
Response
No Trackback , 8 Comments
RSS :
http://moogi.new21.org/tc/rss/response/743

1. C/C++이 빌드가 느린 이유

베테랑 프로그래머라면 이미 다 알기도 하겠지만, C/C++ (특히 C++)은 강력한 대신 정말 만년 굼벵이 언어가 될 수밖에 없는 요인만 일부러 골고루 가진 채 만들어졌다 해도 과언이 아닌 것 같다.

뭐가 굼벵이냐 하면 두 말할 나위도 없이 빌드 속도 말이다. C#, 자바, 델파이 같은 다른 언어나 툴과 비교하면 안습 그 자체. 이건 컴퓨터의 속도만 빨라진다고 해서 극복 가능한 차원의 차이가 아니라 구조적으로 심한 부담과 비효율 때문이다. 이 점에 대해서는 본인도 예전에 여러 글을 블로그에다 언급한 적이 있다.

  • 일단 C++은 태생이 바이트코드 같은 가벼운 가상 기계가 아니라 철저하게 기계어 네이티브 코드 생성 지향이다. 다른 가벼운(?) 언어들과는 위상부터가 다르며, 이 상태에서 최적화까지 가면 부담은 더욱 커진다. 게다가 이 언어는 설계 철학이 컴파일 시점 때 최대한 많은 걸 미리 결정하는 걸 지향하고 있다. 가령, 자바에 inline이라든가 함수 호출 규약, 레지스터, C++ 수준의 static한 템플릿 메타프로그래밍, 혹은 링크 타임 코드 생성 같은 개념이 있지는 않다.
  • 또한 이 언어는 근본적으로 문법이 상당히 문맥 의존적이고 복잡하여, 구문 분석이 어렵다. 단적인 예로 함수 선언과 객체 선언 A b(c); 변수 선언과 단순 연산식 B*c; 형변환 연산과 단순 연산식 (c)+A 가 c가 무엇인지 문맥에 따라 왔다갔다 하면서 완전히 달라진다. 거기에다 C++의 경우 템플릿, 오버로딩, namespace ADL까지 가면 난이도는 정말 안드로메다로. 다른 언어는 O(n log n) 시간 복잡도만으로도 되는 구문 분석 작업이 C++은 반드시 O(n^2)을 쓰지 않으면 안 되는 과정이 있다고 한다.
  • 빌드를 위해 전처리, 링크 같은 복잡한 계층이 존재하며, 특히 링크는 병렬화도 되지 않아 속도를 더욱 올릴 수가 없는 작업이다. 한 모듈에서 참조하는 함수의 몸체가 다른 어느 번역 단위에 있을지는 전혀 알 수 없다!
    그런데 요즘 C++ 컴파일러의 트렌드는 1에서 잠시 언급했듯이 링크 타임 때의 코드 생성과 최적화(인라이닝 포함)여서 이런 병목 지점에서 더욱 많은 작업량이 부과되고 있다. 이런??

이런 특징은 유독 C/C++ 언어만 개발툴/IDE에서 프로젝트를 만들면 온갖 잡다한 보조 데이터 파일들이 많이 생성되는 이유와도 일맥상통한다. 소스 코드를 잽싸게 분석하여 인텔리센스 같은 똑똑한 IDE 기능을 제공하기가 여타 언어들보다 훨씬 더 어렵기 때문이다.

2. 인클루드의 문제점

그런데, 네이티브 코드 생성, 복잡한 문법 같은 것 이상으로 C/C++의 빌드 시간을 더욱 뻥튀기시키고 빌드 작업을 고달프게 하는 근본적인 요소는 전처리 중에서도 다름아닌 #include 남발이다. C/C++은 남이 만들어 놓은 함수, 클래스, 구조체 같은 프로그래밍 요소를 쓰려면 해당 헤더 파일을 무조건 인클루드해 줘야 한다.

일단 이건 문법적으로는 인위적인 요소가 없이 깔끔해서 좋다. 인클루드되는 헤더는 역시 C/C++ 문법대로 작성된 일반 텍스트 파일이며, 내가 짜는 프로그램이 참조하는 명칭들의 출처가 여기 어딘가에는 반드시 있다고 보장됨을 내 눈으로 확인할 수 있다. 그러나 DB 형태로 최적화된 바이너리 파일이 아니라 파싱이 필요한 텍스트 파일이란 점은 일단 빌드 속도의 저하로 이어진다. 이게 문제점 하나.

본격적인 C++ 프로그램을 하나 만들려면 표준 C/C++ 라이브러리뿐만이 아니라 윈도우 API, MFC, 그리고 다른 3rd-party 라이브러리, 게임 엔진 등 갖가지 라이브러리나 프레임워크가 제공하는 헤더 파일을 참조하게 된다. 이것들을 합하면 한 소스 코드를 컴파일하기 위해 인클루드되는 헤더 파일은 가히 수십, 수백만 줄에 달하게 된다.

게다가 이 인클루드질은 전체 빌드를 통틀어 한 번만 하고 끝인 게 아니라, 이론적으로는 매 번역 단위마다 일일이 새로 해 줘야 한다. 헤더 파일 의존도가 개판이 돼 버리는 바람에 헤더 파일 하나 고칠 때마다 수백 개의 cpp 파일이 재컴파일되는 문제는 차라리 애교 수준이다. 문제점 둘.

보통 헤더 파일에는 중복 인클루드 방지를 위한 guard가 있다.

#ifndef ___HEADER_DEFINED_
#define ___HEADER_DEFINED_

/////

#endif

그런데 #if문 조건을 만족하지 못하는 줄들은 단순히 구문 분석과 파싱만 skip될 뿐이지, 컴파일러는 여전히 중복 인클루드된 헤더 파일도 각 줄을 일일이 읽어서 #else나 #endif가 나올 때까지 들여다보긴 해야 한다.

많은 사람들이 간과하는 사실인데(사실 나도 그랬고), 그때는 컴파일 작업만 잠시 중단됐을 뿐, 전처리기는 전체 소스를 대상으로 여전히 동작하고 있다. 중복 인클루드가 컴파일러의 파일 액세스 트래픽을 얼마나 증가시킬지가 상상이 되는가? guard만 있다고 장땡이 아니며, 이게 근본적으로 얼마나 비효율적인 구조인지를 먼저 알아야 한다. 문제점 셋.

그리고 이 #include의 수행 결과를 컴파일러나 IDE로 하여금 예측이나 최적화를 도무지 할 수가 없게 만드는 치명적인 문제는 극단적인 문맥 의존성이다.
헤더 파일은 그저 static한 함수, 클래스, 변수 선언의 집합체가 아니다. 엄연히 C/C++ 소스 코드의 일부를 구성하며, 동일한 헤더라 해도 어떤 #define 심벌이 정의된 상태에서 인클루드하느냐에 따라서 그 여파가 완전히 달라질  수 있다.

극단적인 예로, 한 소스 파일에서 #define 값만 달리하면서 동일 헤더 파일을 여러 번 인클루드함으로써, 템플릿 비스무리한 걸 만들 수도 있단 말이다. 일례로, 비주얼 C++ 2010의 CRT 소스에서 strcpy_s.c와 wcscpy_s.c를 살펴보기 바란다. 베이스 타입만 #define을 통해 char이나 wchar_t로 달리하여 똑같이 tcscpy_s.inl을 인클루드하는 걸로 구현돼 있음을 알 수 있다...;;

물론 인클루드를 실제로 그렇게 변태적으로 활용하는 예는 극소수이겠지만 인클루드는 여타 언어에 있는 비슷한 기능인 import나 use 따위와는 차원이 다른 개념이며, 캐싱을 못 하고 그 문맥에서 매번 일일이 파싱해서 확인해 보는 수밖에 없다. 문제점 넷이다.

이런 문제 때문에 여타 언어들은 텍스트 파싱을 수반하는 인클루드 대신, 별도의 패키지 import 방식을 쓰고 있으며, Objective C도 #include 대신 #import를 제공하고 헤더 파일은 무조건 중복 인클루드가 되지 않는 구조를 채택하여 셋째와 넷째 문제를 피해 갔다.

비주얼 C++도 #pragma once라 하여 #endif를 찾을 것도 없이 중복 인클루드를 방지하고 파일 읽기를 거기서 딱 중단하는 지시자를 추가했다. 이건 비표준 지시자이긴 하지만 전통적인 #ifdef~#endif guard보다 빌드 속도를 향상시키는 테크닉이기 때문에 프로그래머의 입장에서는 사용이 선택이 아닌 필수이다. 물론, 단순히 중복 선언 에러만 방지하는 게 아니라 특정 헤더 파일의 인클루드 여부를 알려면 재래식 #define도 좀 해 줘야겠지만 말이다.

외부에서 기선언된(predefined) 프로그래밍 요소를 끌어오는데, namespace나 package 같은 언어 계층을 거친 명칭이 아니라 생(raw-_-) 파일명의 지정이 필요한 것부터가 오늘날의 관점에서는 꽤 원시적인 작업이다. 개인적으로는 인클루드 파일의 경로를 찾는 메커니즘도 C/C++은 너무 복잡하다고 생각한다.

""로 싸느냐 <>로 싸느냐부터 시작해서, 인클루드가 또 다른 파일을 중첩으로 인클루드할 때, 다른 인클루드 파일을 자기 디렉터리를 기준으로 찾을지 자신을 인클루드 한 부모 파일의 위치로부터 찾을지, 프로젝트 설정에 명시된 경로에서 찾을지 같은 것 말이다…;; 게다가 인클루드 명칭도 #define에 의한 치환까지 가능하다. #include MY_HEADER처럼. 그게 가능하다는 걸 FreeType 라이브러리의 소스를 보면서 처음으로 알았다.

그런데 그러다가 서로 다른 디렉터리에 있는 동명이인 인클루드 파일이 잘못 인클루드되기라도 했다면.. 더 이상의 자세한 설명은 생략. 내가 무심코 선언한 명칭이 어디엔가 #define 매크로로도 지정되어 있어서 엉뚱하게 자꾸 치환되고 컴파일 에러가 나는 것과 같은 악몽이 발생하게 된다! 문제점 다섯.

이것도 어찌 보면 굉장히 문맥 의존적인 절차이기 때문에, 오죽했으면 비주얼 C++ 2010부터는 인클루드/라이브러리 디렉터리 지정을 global 단위로 하는 게 완전히 없어지고 전적으로 프로젝트 단위로만 하게 바뀌었다는 걸 생각해 보자.

C++ 프로젝트에서 MFC의 클래스나 윈도우 API의 함수를 찍고 '선언으로 가기'를 선택하면 afxwin.h라든가 winbase.h 같은 표준 인클루드 파일에 있는 실제 선언 지점이 나온다. 그 방대한 헤더 파일을 매 빌드 때마다 일일이 파싱할 수가 없으니 인텔리센스 DB 파일 같은 건 정말 크고 아름다워진다.

그에 반해 C# 닷넷 프로젝트에서 Form 같은 클래스의 선언을 보면, 컴파일러가 바이너리 수준에서 내장하고 있는 클래스의 껍데기 정보가 소스 코드의 형태로 생성되어 임시 파일로 뜬다…;; 이게 구시대 언어와 신세대 언어의 시스템 인프라의 차이가 아닌가 하는 생각이 들었다.

그래서 이런 C++ 인클루드 체계의 비효율 문제는 어제오늘 제기되어 온 게 아니기 때문에, 컴파일러 제조사도 좀 더 근본적인 문제 회피책을 간구하게 됐다. 그래서 나온 것이 그 이름도 유명한 precompiled 헤더이다. stdio.h나 stdlib.h 정도라면 모를까, 매 번역 단위마다 windows.h나 afx.h를 일일이 인클루드해서 파싱한다는 건 삽질도 그런 삽질도 없으니 말이다..

3. precompiled header의 도입

일단 프로젝트 내에서 "인클루드 전용" 헤더 파일과 이에 해당하는 번역 단위를 설정한다. 비주얼 C++에서 디폴트로 주는 명칭이 바로 stdafx.cpp와 stdafx.h이다. 모든 번역 단위들이 공용으로 사용하는 방대한 양의 프레임워크, 라이브러리의 헤더를 몰아서 인클루드시킨다. 컴파일러 옵션으로는 Create precompiled header에 해당하는 /Yc "stdafx.h"이다.

그러면 그 헤더 뭉치들은 stdafx.cpp를 컴파일할 때 딱 한 번만 실제로 인클루드와 파싱을 거치며, 이 파일들의 분석 결과물은 빠르게 접근 가능한 바이너리 DB 형태인 프로젝트명.pch 형태로 생성된다.

그 뒤 나머지 모든 소스 파일들은 첫 줄에 #include "stdafx.h"를 반드시 해 준 뒤, Use precompiled header인 /Yu "stdafx.h" 옵션으로 컴파일한다. 그러면 이제 stdafx.h의 인클루드는 실제 이 파일을 열어서 파싱하는 게 아니라, 미리 만들어진 PCH 파일의 심벌을 참고하는 것으로 대체된다! 앞에서 제기한 인클루드의 문제점 중 첫째와 둘째를 극복하는 셈이다.

pch 파일이 생성되던 시점의 문맥과 이 파일이 실제로 인클루드되는 시점의 문맥은 싱크가 서로 반드시 맞아야 한다. 그렇기 때문에 소스 코드에도 문맥상의 제약이 걸린다. PCH를 사용한다고 지정해 놓고 실제로 stdafx.h를 맨 먼저 인클루드하지 않은 소스 파일은 Unexpected end of file이라는 컴파일 에러가 발생하게 된다. PCH 개념을 모르는 프로그래머는 C++ 문법에 아무 하자가 없는 외부 소스 코드가 왜 컴파일되지 않는지 이해를 못 할 것이다.

당연한 말이지만 stdafx.h가 인클루드하는 헤더 파일의 내용이 수정되었다면 PCH 파일은 다시 만들어져야 하며, 이때는 사실상 프로젝트 전체가 리빌드된다. 그러므로 stdafx.h 안에는 거의 수정되지 않는 사실상 read-only인 헤더 파일만 들어가야 한다.

인클루드 파일만 수십, 수백만 줄에 달하는 중· 대형 C++ 프로젝트에서 PCH가 없다는 건 상상조차 할 수 없는 일이다. 얼마 되지도 않는(많게 잡아도 200KB 이내) 소스 코드들이 high-end급 컴에서 그것도 네트워크도 아닌 로컬 환경에서 빌드 중인데 소스 파일 하나당 컴파일에 1초 이상씩 잡아 처먹는다면, 이건 인클루드 삽질 때문일 가능성이 매우 높다. 이 경우, 당장 PCH를 사용하도록 프로젝트 설정을 바꾸고 소스 코드를 리팩터링할 것을 심각하게 고려해야 한다. 이건 작업 생산성과 직결된 문제이기 때문이다.

아놔, 이렇게 글을 길게 쓸 생각은 없었는데 너무 길어졌다.
요컨대 C++ 프로그래머라면 자기의 생업 수단인 언어가 이런 구조적인 비효율을 갖고 있다는 걸 인지하고, 상업용 컴파일러 및 개발툴이 이를 극복하기 위해 어떤 대안을 내놓았는지에 대해 관심을 가질 필요가 있다.

자바, C#, D 등 C++의 후대 언어들은 C++과 문법은 비슷할지언정 이 인클루드 체계만은 어떤 형태로든 제각각 다 손을 보고 개량했음을 알 수 있다. 아까도 언급했듯, 하다못해 Objective C도 중복 인클루드 하나만이라도 자기 식으로 정책을 바꿨지 않던가.

한 가지 생각할 점은, C/C++은 태생이 이식성에 목숨을 걸었고, 언어의 구현을 위해 바이너리 레벨에서 뭔가 이래라 저래라 명시하는 것을 극도로 꺼리는 언어라는 점이다. 그래서 대표적으로 C++ 함수 decoration이 알고리즘이 중구난방인 아주 대표적인 영역이며, 함수 calling convension도 여러 규격이 난립해 있고 모듈/패키지 같은 건 존재하지도 않는다. 그런 차원에서, 비록 비효율적이지만 제일 뒤끝 없는 텍스트 #include가 여전히 선호되어 온 건지도 모르겠다.

4. 여타 언어의 인클루드

여담이다만, 본인은 베이직부터 쓰다가 C/C++로 갈아탄 케이스이기 때문에 인클루드라는 걸 처음으로 접한 건 C/C++이 아니라 퀵베이직을 통해서였다.

'$INCLUDE: 'QB.BI'

바로, 도스 API를 호출하는 인터럽트 함수와 관련 구조체가 그 이름도 유명한 저 헤더 파일에 있었기 때문이다.

C/C++에 전처리기가 있는 반면, 베이직이나 파스칼 계열 언어는 개념적으로 그런 전처리기와 비슷한 위상인 조건부 컴파일이나 컴파일 지시자는 주석 안에 메타커맨드의 형태로 들어있곤 했다. 그러나 여타 프로그래밍 요소를 끌어다 오는 명령은 메타커맨드나 전처리기가 아니라, 엄연히 언어 예약어로 제공하는 게 디자인상 더 바람직할 것이다.

그리고 파워베이직은 퀵베이직 스타일의 인클루드 메타커맨드도 있고, 파스칼 스타일의 패키지 지정 명령도 둘 다 갖추고 있었다.

Posted by 사무엘

2012/09/21 19:25 2012/09/21 19:25
,
Response
No Trackback , 5 Comments
RSS :
http://moogi.new21.org/tc/rss/response/735

프로그래밍 언어가 제공하는 기본 라이브러리에는 단순히 자주 쓰이는 자료 구조나 알고리즘 외에도, 운영체제에다 요청을 해야 지원받을 수 있는 기능이 일부 있다. 메모리를 할당하거나 파일을 읽고 쓰는 작업이 대표적인 예이다. C/C++ 라이브러리라 해도 그런 기능은 궁극적으로 Windows API 같은 저수준 API를 호출함으로써 제공하는 셈이다.

그러니 프로그래머로서는 굳이 이식성을 염두에 두고 작성하는 코드가 아니라면, 언어가 제공하는 API보다 운영체제가 제공하는 API를 직통으로 쓰는 게 성능면에서 낫지 않나 하는 생각을 하게 된다.
이게 완전히 잘못된 생각은 아니다. 그러나 그렇지 않은 경우도 있으므로 주의해야 한다.

예를 들어, 윈도우 API에 있는 ReadFile/WriteFile과, C 라이브러리에 있는 fread와 fwrite를 생각해 보자.
C 라이브러리의 소스를 보신 분은 있겠지만, 일례로 fwrite는 내부적으로 _write 함수를 호출하는 형태이고, 두 함수만 해도 소스 코드가 수백 줄에 달한다. 뭔가 추상화 계층을 거치는 게 있고 복잡하다. 그러면서 _write 함수의 한쪽 구석에 결국은 WriteFile 함수를 호출하는 부분이 있다. fwrie가 WriteFile 직통보다 빠를래야 빠를 수가 없어 보인다.

그런데 윈도우 환경에서 프로그래밍을 오래 해 본 분은 경험적으로 아시겠지만, 몇 바이트짜리 소량의 I/O를 수백, 수천 번씩 반복해서 시켜 보면 fread/fwrite가 ReadFile/WriteFile보다 훨씬 더 빠르게 수행된다.
그렇다. C 함수는 내부적으로 버퍼링? 캐싱?을 해서 소량의 I/O는 뭉쳤다가 몰아서 한꺼번에 하는 반면, 운영체제 API는 곧이곧대로 매번 오버헤드를 감수하면서 I/O를 직통으로 하기 때문이다.

물론, 요즘은 운영체제가 자체적으로 디스크 캐싱을 다 하는 게 대세이지만, C 함수는 더 상위 계층에서도 캐싱을 하는 걸로 보인다. 이게 성능 차이가 굉장히 많이 난다.
<날개셋> 한글 입력기에서 1년 전쯤에 공개된 지난 6.2 버전의 README를 보면, 편집기의 파일 저장 및 변환기의 변환 속도가 훨씬 더 빨라졌다고 적혀 있다. 이것의 비결이 바로 저 특성을 이용해서 파일 I/O 속도를 향상시킨 것이었다.

메모리 할당도 마찬가지이다.
운영체제는 프로세스마다 heap이라는 가상 메모리를 둬서 프로그램이 다수의 작은 메모리 덩어리를 동적으로 요청할 때 빨리 빨리 반응할 수 있게 하고 있다. 연결 리스트나 트리 같은 자료구조는 메모리 할당이 잽싸게 안 되면 성능이 크게 떨어질 테니 말이다.
(이때 heap은 자료 구조 heap하고는 전혀 관계 없는 개념이므로 혼동하지 말 것.) 그래서 윈도우 운영체제에서 C 라이브러리의 malloc 계열 함수는 HeapAlloc이라는 API 함수를 호출하는 상위 계층이다.

내 경험상으로는 요즘의 NT 커널 윈도우는 HeapAlloc와 malloc, 그리고 HeapFree와 free가 성능 차이가 거의 느껴지지 않는다. 그러나 과거의 윈도우 9x 시절에는 그렇지 않았다.
“윈도우 9x에서는 이 함수는 진짜로 작은 메모리 블록에만 최적화되어 있기 때문에, 이걸로 수 MB에 달하는 메모리를 한꺼번에 여러 번 할당하면 성능이 크게 떨어지고 프로그램이 느려짐. 그 경우엔 다른 메모리 할당 함수를 쓰기 바람.”이라는 경고문이 MSDN에 명시되어 있었다.

내부적으로 그 함수가 어떻게 구현되어 있는지는 잘 모르겠지만, 내가 테스트 해 보니 진짜 그랬다. 9x에서는 프로그램이 뻗은 게 아닌가 싶을 정도로 도저히 견딜 수 없이 느려졌다.
이때에도 윈도우 API가 아닌 C 라이브러리의 malloc 함수는 랙 없이 잘 동작했다. 대용량 메모리 할당 요청이 왔을 때 가상 메모리 주소를 다시 잡는 등 대비가 되어 있어서 그런 것 같다.

원론적으로야 추상화 계층이 있는 언어 API보다는 운영체제 API 직통이 더 빠를 수밖에 없는 게 맞다. 사실, Windows API로도 모자라서 NTDLL처럼 아예 문서화되어 있지도 않은 곳에 있는 native API를 사용하는 프로그램이 있기도 하고 말이다.

그러나 프로그램의 이식성까지 희생하면서 굳이 직통 API를 쓰고자 한다면, 위에서 예를 들었듯이, 그 API의 특성을 잘 알고 쓰는 게 무엇보다도 중요하다고 하겠다. C++ 라이브러리야 객체지향 구현을 위해서 bloat되는 게 불가피하다고 쳐도, 그보다는 더 단순한 C 라이브러리의 추상화 계층은 그저 불필요한 잉여밖에 없는 건 아닐 것이기 때문이다.

Posted by 사무엘

2012/08/20 08:25 2012/08/20 08:25
, ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/722

« Previous : 1 : ... 16 : 17 : 18 : 19 : 20 : 21 : 22 : 23 : Next »

블로그 이미지

그런즉 이제 애호박, 단호박, 늙은호박 이 셋은 항상 있으나, 그 중에 제일은 늙은호박이니라.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2024/04   »
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30        

Site Stats

Total hits:
2665449
Today:
687
Yesterday:
1937