Search Results for '스윙바이'


1 POSTS

  1. 2020/03/19 우주를 여행하는 원리 by 사무엘

우주를 여행하는 원리

1. 달

우주 발사체를 달에다가 보내는 원리는 개념적으로 이해하기 어렵지 않다. 큰 로켓을 쏴서 발사체를 일단 지구를 도는 상태로 만든 뒤, 살짝 더 가속해서 그 궤도를 원이 아니라 달 근처까지 가는 길쭉한 타원으로 만든다. 그러면 발사체는 달에 근접했을 때 달을 도는 궤도로 끌려가게 된다.

사용자 삽입 이미지

이 경로는 고안자의 이름을 따서 ‘Hohmann transfer orbit (호만 전이 궤도)’이라고 부른다.
그런데 거기까지만 하면 걔는 달을 한 바퀴 뱅 돌면서 8자 궤도만 그렸다가 다시 지구로 돌아와 버린다. 그렇기 때문에 달 근처에서는 또 연료를 분사하여 속도를 줄여서 달의 인력에 끌려가게 해야 한다.

일례로 아폴로 13호 우주선도 아직 달 착륙선을 내리지 않았고 아무 감속을 하지 않은 상태에서 사고가 났으니, 가만히 있기만 하면 지구로 자동 귀환 자체는 가능했다.
단지 그렇게 자연스러운 유턴이 금방 이뤄지는 일이 아니고, 2명분의 보급밖에 없는 달 착륙선 안에서 승무원 3명이 대피한 채로 며칠 동안 무사히 버틸 수 있겠는지가 최대의 문제였던 것이다.

새턴 V 로켓과 그 안의 아폴로 우주선이 발사될 때와 귀환할 때의 크기 차이를 생각해 보면, 지구에서 우주로 나가는 게 우주에서 달로 가는 것보다 더 어렵고 힘들다는 것을 쉽게 유추할 수 있다. 그래도 이게 인간이 지금까지 생각해 낸 가장 ‘경제적인’ 우주 여행 방법이다.

2. 화성

그럼 달보다 더 먼 행성으로 가는 원리는 어떻게 될까?
가령, 달 다음으로 주로 거론되는 곳이 화성인데, 별 차이 없다. 역시 두 행성 사이의 호만 전이 궤도를 이용한다. 지구의 자전 속도와(적도..) 공전 속도를 최대한 얻어서 우주로 날아간 뒤, 지구의 인력을 탈출할 만치만 가속했다가 화성의 공전 속도에 맞추기 위한 최소한의 감속만 한다.

사용자 삽입 이미지

우주 발사체가 이렇게 최적의 기동을 할 수 있게 지구와 화성이 배치되는 때는 대략 780일(2년 2개월)마다 한 번 주기로 찾아온다고 한다.
물론 이때는 달에만 갈 때보다 더 많은 에너지를 분사해서 더 빡세게 가속을 해야 할 것이다. 3~4일이면 가는 달이랑, 최단 거리를 잡아도 7~8개월은 걸리는 화성이 스케일이 같지 않으니 말이다. 구체적으로 필요한 엔진 크기와 연료량은 천체물리학자와 로켓 공학자들이 머리 싸매서 치밀하게 계산해 놓는다.

뭐, 그렇다고 화성 정도를 가기 위해서 로켓 크기가 터무니없이 비현실적으로 커져야 하는 건 아니다. 이동하는 건 다 관성으로 하는 것이니, 거리나 기간보다는 도달해야 하는 속도가 아무래도 화성이 더 높다는 점이 중요하다.

새턴 V 로켓만 해도 달을 넘어 화성까지 염두에 두고 굉장히 크게 만들어지기도 했었다. 지구 저궤도까지 payload 130톤, 달까지 약 43톤, 그 뒤 금성이나 화성까지 32톤이니.. 그리 나쁘지 않은 성능이다.
뭐, 이렇게 경로를 짜고 동선을 정했다 하더라도 화성으로 실제로 가는 건 말처럼 쉬운 일이 아니었기 때문에 미국과 소련 모두 중간에 통신이 두절되어 실패한 미션이 여럿 있었다. 특히 소련은 징크스 급으로 몽땅 실패해 버렸기 때문에 그 뒤로 금성이라는 내행성 담당으로 전업(?)하고, 미국이 화성 담당처럼 역할이 나뉘었다.

말이 나왔으니 말인데, 옛날 Doom 게임의 스토리에서 내가 지금까지도 굉장히 의아하게 생각하는 점은.. 화성으로도 모자라서 왜 하필 "그 작은 포보스와 데이모스라는 화성의 위성에 군사 기지가 있다는 설정을 넣었을까?"이다. 거기는 반지름이 겨우 10km대에 불과하고 동그랗게 형체도 제대로 갖추지 못한 그냥 돌덩어리인데..??

거기 표면은 그냥 무중력 상태나 마찬가지이며 탈출 속도도 엄청나게 낮다. 야구공 하나만 힘껏 던져도 우주로 날아가 버리고 다시 떨어지지 못할 텐데.. 이런 장소에서 Doom 게임 같은 거대한 던전을 만드는 것도 당연히 절대 불가능하다.
그 시절에 존 카맥 아재가 게임에서 스토리는 별로 중요한 요소가 아니라고 딱 잘라 말하긴 했지만.. 저 정도면 너무 노골적이고 성의 없는(?) 고증 무시인 것 같다..;;

3. 더 먼 외행성

그런데 이런 식으로 연료 소모를 최소화하고 나머지는 몽땅 타 행성의 중력과 관성만 이용해서 움직인다 하더라도 화성을 넘어 더 먼 행성으로 가는 것엔 한계가 있었다.
우주 속도(혹은 탈출 속도)에는 지구의 중력을 벗어나기 위해 필요한 속도만 있는 게 아니다. 태양계에서 중력의 끝판왕은 당연히 태양이며, 이는 우주 발사체도 예외가 아니다.

지구의 지표면에서 하늘로 공을 던지면 공이 얼마 못 가 땅으로 떨어지듯, 태양으로부터 멀어지라고 외행성을 향해 한번 가속을 한 것이 영원히 지속되지는 못한다. 우주 공간이니 마찰이나 공기 저항 따위는 없지만, 중력의 끝판왕 태양이 뒤에 버티고 있기 때문이다. 발사체의 속도는 아주 서서히 감소하며, 결국은 태양으로 끌려오게 된다.

지표면에서 지구를 벗어나기 위해 필요한 탈출 속도는 11.2km/s이지만 태양까지 벗어나기 위해 얻어야 하는 탈출 속도는 42.1km/s나 된다.
이런 식으로 계산을 해 보니, 현재 인간의 현실적인 로켓 기술력으로(엔진 출력, 연료 탑재량) 호만 전이 궤도 방식으로만 발사체를 쏘면.. 정말 끽해야 목성 정도까지밖에 못 간다는 결론이 도출되었다. 태양계는 우리가 책에서 보는 것보다 훨씬 더, 상상하기 어려울 정도로 광대 광활 방대 공허한 공간이다.

저 탈출 속도라는 건 공을 던지거나 대포를 쏠 때처럼 추가적인 동력 공급이 없이 원큐로만 속도를 낼 때 그 정도가 돼야 탈출 가능하다는 뜻이다. 저건 당연히 현실에서 낼 수 없는 속도이기 때문에 현실에서는 저것보다 훨씬 느린 대신에 지속적인 동력 공급이 되는 로켓을 쏘는 것이다.
그리고 그렇게 느린 로켓도 발사 직후에는 가속도가 거의 4G에 달해서 전투기 조종사 급의 훈련을 받지 않은 일반인은 견디기 어렵다. 그리고 발사된 우주선은 일단 지구를 벗어나는 것에 진을 대부분 빼 버린 뒤이기 때문에 또 큰 힘을 쓸 여력이 그리 남아 있지 않게 된다.. ㅡ,.ㅡ;;

물론 목성은 자체적인 중력이 지구보다도 훨씬 더 크고 태양으로부터도 충분히 멀기 때문에, 자기 표면에서 자기 자신에 대한 탈출 속도가 태양에 대한 탈출 속도보다 더 크게 된다. (전자 59.6km/s, 후자 18.5km/h) 스포츠에다 비유하자면 마치 자국 국가대표로 뽑히는 게 올림픽에서 메달을 따는 것보다 더 어려운 일처럼 되는 셈이다.

아무튼, 이 와중에 우주선이 태양으로부터 더 멀어지는 속력을 얻기 위해서 과학자들이 선택한 방법은 바로 ‘스윙바이’이다. 공전하는 주변 행성을 적절한 각도로 스침으로써 확 꺾여 지나가는 것..

사용자 삽입 이미지

파이어니어, 보이저, 뉴 호라이즌스처럼 태양계 밖으로 나간 외행성 탐사선들은 다 화성과 목성을 맴돌면서 목성으로부터 힘을 받아서 초속 15~20km대의 속도를 얻었다.

세상에 공짜는 없으며 운동량은 언제나 등가 교환된다. 얘들은 개념적으로 이미 태양을 공전하고 있는 타 행성으로부터 운동 에너지를 얻은 셈이며, 이런 스윙바위를 상대해 준 행성은 우주선이 에너지를 얻은 만큼 운동 에너지를 잃고 공전 속도가 ‘감소’한다.
하지만 우주선이랑 그 행성은 무게 차이가 뭐.. 10 다음에 0이 수십 개 붙을 정도로 차이가 나니 행성의 상태 변화는 관측조차 가능하지 않을 것이다.

지구 같은 경우 자전을 함으로써 물질을 순환시키고 자기장도 생성해서 살아 있는 행성 상태가 유지되고 있는데, 자전에 이어 행성의 공전도 이렇게 우주선의 가속에 활용되고 있다는 게 매우 흥미롭다. 돛단배가 돛을 잘 달면 느리게나마 바람을 거슬러 항해도 할 수는 있다고 하는데.. 스윙바이도 뭐 그런 얘기 같다. 보이저 호들은 행성들의 공전면과 무관한 그 아래나 위로도 잘만 방향 전환을 했으니..

4. 내행성 (특히 수성)

스윙바이의 진짜 묘미는.. 태양으로부터 멀어지는 외행성에 갈 때 가속용으로만 쓰이는 게 아니라는 것에 있다. 반대로 지구보다 태양에 더 가까이 갈 때도 쓰인다.

사용자 삽입 이미지

뭐, 금성이야 지구와 가깝고 중력이나 공전 속도도 별 차이가 없기 때문에 가는 것(궤도 진입) 자체는 크게 어렵지 않다. 서로 가까워지는 타이밍에 맞춰서 호만 전이 궤도대로 가감속만 해 주면 된다. 단지 착륙의 경우, 내부 표면 환경이 완전히 헬이니 거기서 버티는 게 어려울 뿐이다.

하지만 수성은 탐사선을 보내는 것이 다른 모든 행성들보다 압도적으로 어렵고 난감한 행성이다. 그 이유를 이론과 감으로 완전히 이해하고 있어야 훌륭한 천체물리학 전공자라고 일컬을 수 있을 것이다.;; (본인은 그렇지 않음)
얘는 태양과 가장 가깝다는 특성상, 평균 공전 속도가 다른 모든 행성들보다 압도적으로 더 빠르다. (수성 47.8km/s, 지구 29.7km/s)

이런 수성에 지구의 공전 속도를 유지하면서 날아간 우주 발사체가 수성을 향해 접근하면 계속해서 속도가 붙어서 거의 61km/s에 이른다고 한다. 까놓고 말해 태양을 향해 추락하는 거나 마찬가지인데, 거기에다 수성의 중력으로 인한 가속까지 추가되기 때문이다.

그런데 수성은 매우 작고 가벼워서 탈출 속도도 낮은 행성이다. 태양을 바로 옆에 두고서 우주선이 딱 이런 작고 빠르기까지 한 행성의 궤도에 진입해서 위성 노릇을 하는 것은 매우 어렵고 부자연스러운 일이다. 조금이라도 수틀리면 우주선은 수성을 이탈해서 태양을 도는 궤도로 끌려가 버리기 때문이다.

이런 일을 막으려면 수단과 방법을 가리지 말고 지금까지 얻었던 속도를 팍팍 줄여야만 하는데.. 정말 엄청난 양의 감속을 해야 하는 관계로 로켓 엔진만으로 감당하는 것은 도저히 무리이다. 초속으로만 따지니 감이 잘 안 잡힐 텐데, 초속 1km는 시속 3600km이다..;;; 아무리 공기 저항이 없는 공간이라 해도 절대 만만찮은 운동량이다.

그래서 수성으로 가는 우주선들은 지구, 금성, 그리고 심지어 수성 그 자체도 근접 비행하면서 스윙바이를 통해 속도를 줄이고 또 줄였다. 한 번이 아니라 여러 번 했다. 이는 마치 급경사를 곧장 오를 수 없어서 빗면, 똬리굴 등으로 우회하는 것과 비슷한 원리 같다.
이 때문에 수성 탐사선은 지구에서 발사된 후 수성 궤도에 진입하는 데 거의 7~8년씩이나 걸리곤 했다. 시간이 오래 걸리지만 이 방법 말고는 선택의 여지가 없기 때문이다.

외행성은 태양으로부터 끊임없이 멀어지기 위해서, 내행성(수성)은 태양과 가까이 있으면서 태양에 끌려가지 않기 위해서.. 다들 주변 행성의 공전력을 끌어들이는 것을 알 수 있다.

다만, 태양에 끌려갔다고 해서 우주선이 그대로 태양 표면의 플라즈마 불바다로 풍덩~ 직선 최단 거리 자유 낙하하는 건 아니다. 걔네들은 지구의 공전으로부터 이미 받아 있는 속도도 호락호락한 편이 아니다. 그렇기 때문에, 그런 물체들은 어지간해서는 태양과 가까워지면서 각속도가 붙어서 태양을 뱅글뱅글 도는 형태로 귀착된다.

내 경험상 천체의 운동이나 우주 비행 궤적은 여러 모로 직관적인 직선 최단 거리라는 게 별로 통용되지 않는 분야이더라. 직교좌표가 아닌 극좌표를 생각해야 할지도?? 그렇다고 여객기 항로처럼 무슨 구면기하학이 적용되는 영역도 아닌데.. 다만, 이 바닥은 지구 대기권의 항공역학과 달리 마찰이나 공기의 저항 따위를 고려할 필요가 없는 건 일면 장점이다. =_=;;

Posted by 사무엘

2020/03/19 08:35 2020/03/19 08:35
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1730


블로그 이미지

철도를 명절 때에나 떠오르는 4대 교통수단 중 하나로만 아는 것은, 예수님을 사대성인· 성인군자 중 하나로만 아는 것과 같다.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2020/07   »
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  

Site Stats

Total hits:
1410102
Today:
145
Yesterday:
617