심우주 통신망

인류는 19세기에 전깃줄을 이용한 전화라는 유선 통신 기술을 발명해 냈으며, 20세기 초에는 아예 전자기파를 이용한 장거리 무선 통신 기술까지 개발했다.
그리고 1960년대에는 통신 위성 덕분에 아예 둥근 지구의 반대편으로 전화와 TV의 전파를 실시간으로 주고 받는 게 가능해졌다. 위성 생중계가 최초로 시작된 올림픽이 1964년의 도쿄 올림픽이었다고 그런다.

그러니 유선 전화에 전혀 의존하지 않는 무선 전화도 오래 전부터 있긴 했다. 단지 기계값과 시간 당 통화료가 아주 비싸기 때문에 자동차나 선박에 장착되는 사치품 내지 아주 특수한 물건으로 취급되었을 뿐이다.
그러던 것이 1990년대 말부터는 그냥 전국민 1인 1휴대전화 시대가 시작됐다. 이를 위해서 전국 곳곳에 휴대전화 기지국이 건설되었으며, 각종 건물과 지하철 내부에도 중계기가 설치되었다.

전깃줄 중에 진짜로 전기를 보내는 용도로만 사용되는 굵은 송전선은 지상의 산들과 철탑 위로 아주 높고 길게 뻗어 있다. 요즘 만드는 도시들 내부에서는 지중화되어서 지하로 지난다.
다음으로, 동축 케이블이니 광섬유 케이블이니 하는 이름으로 데이터 통신을 담당하는 전깃줄들은 대륙과 대륙을 연결해야 하기 때문에 바다 밑으로 쫙 깔려 있다. 해저 지진이 나서 이런 케이블이 파손되면 주변 국가들의 인터넷 속도가 느려지는 사태가 발생한다.

인간이 지난 수십 년 동안 지구 곳곳에 깔아 놓은 통신 인프라를 생각하면 경이로움마저 느껴진다. 민간보다는 군용에 더 가까운 레이더(radar) 관련 기술도 말이다. 따지고 보면 레이더의 발명은 비행기의 발명 그 자체만큼이나 비행기의 운용· 관제 방식과 공중전의 양상을 근본적으로 바꿔 놓았다.

2차 세계 대전 당시에 일본에서는 자국인 과학자/공학자가 아주 훌륭한 레이더용 안테나(야기-우다 안테나)를 발명했는데, 그걸 군부에서 제대로 활용하지 않는 병크를 저질렀다. 그래서 정작 적국인 연합국(영국)이 그 기술을 활용해서 전쟁에서 일본을 관광 태웠다는 안습한 일화까지 전해진다.
레이더도 원래 레이저(laser)처럼 복잡한 단어들 이니셜로 만들어진 단어이지만, 지금은 그 자체가 새로운 형태소처럼 쓰인다.

그런데 경이로운 통신 기술은 지구 대 지구 스케일만 있는 게 아니다. 지구 대 우주 분야도 있다.
까놓고 말해 달에 착륙한 아폴로 11호 승무원들의 활동 동영상은 어떻게 해서 지구로 실시간 중계될 수 있었을까?
뉴 호라이즌스 호가 보낸 명왕성 사진은 어떻게 해서 지구로 잘 전달될 수 있었을까?
신호가 가는 데 편도로만 17시간이 넘게 걸린다는 보이저 탐사선은 어떻게 지금도 지구와 교신이 되고 있을까?

우주로 나가려면 적도 근처에다 우주 센터와 발사대를 만들고 로켓만 죽어라고 쏴 올릴 게 아니라, 로켓에 실린 탐사선이 보내 주는 정보를 넙죽넙죽 잘 받기 위한 통신 시설도 반드시 개발해야 한다. 그래서 미국 NASA에서는 진작부터 Deep Space Network(심우주 네트워크)라는 이름으로 전파 수신용 거대한 접시형 안테나 기지를 만들었다.

사용자 삽입 이미지

20세기 초· 중반까지만 해도 우주는커녕 지구 표면의 남극이나 에베레스트 산 정상을 탐험하는 사람들과도 실시간 무선 통신이 가능하지 않았으며 그들의 생사를 곧장 확인할 수 없었다. 주변 풍경 인증샷은 탐험가들이 카메라로 찍은 뒤에 무사 귀환할 때까지 필름을 반드시 잘 간수해야만 전해질 수 있었다!

아폴로 우주선의 달 탐사가 그런 식으로 답답하게 진행되지 않고 전세계 텔레비전으로 전파를 타고 생중계된 것은 매우 다행스러운 일이 아닐 수 없다.
이런 안테나 기지는 로켓이 실제로 발사되고 수많은 관중들이 몰리는 우주 센터보다는 존재감이 훨씬 덜하다. 하지만 이런 시설에서 일하는 사람들도 우주 탐사의 숨은 일등공신이라 불리기에 전혀 손색이 없을 것이다.

NASA 내부에서 이 안테나 기지를 관리하는 부서는 '제트 추진 연구소'이다. 이름만 봐서는 만년 발사체 연구만 할 것 같은 곳에서 통신망까지 연구한 것은 우연이 아니라 하겠다. 우리나라의 인터넷 인프라의 대부인 전 길남 박사/교수도 젊은 시절에 저기서 근무한 경력이 있는 것이 잘 알려져 있다.

저기는 비행기용 제트 엔진(터보 팬 같은..?)을 연구하는 곳이 전혀 아니다. 엄연히 산화제까지 같이 들어있는 우주 발사체용 로켓 엔진의 연구가 본업이다. 하지만 저 연구소가 처음 생겼던 당시에는 '로켓'이라는 단어가 그리 대중적이지 않았기 때문에 이름이 저렇게 붙은 것이다.

비슷한 다른 예로는 IBM이 있다. 이름에 '컴퓨터, 정보' 같은 단어가 들어가기에는 역사가 너무 긴 기업인 관계로, 오늘날까지도 고작 '국제 사무용품 기기'라는.. 마치 국제시장 같은 매우 낡은 명칭으로 통용되고 있지 않은가? 그래도 워낙 넘사벽급의 기술과 인지도를 자랑하는 세계구급 기업이니 이름 따위는 바꿀 필요가 없다.

제트 추진 연구소 때문에 이야기가 잠시 옆으로 샜는데, 다시 안테나 얘기로 돌아오기로 한다.
사진을 보면 알겠지만, 이들 기지에 만들어진 안테나는 지름이 30m대 내지 70m대까지 있을 정도로 매우 거대하다.
그리고 한 곳에만 있는 게 아니라 다음과 같이 대략 120도대의 경도 간격으로 세 군데가 존재한다. 그래야 임의의 지표면에 도달한 전파가 지구의 자전에 구애받지 않고 셋 중 적어도 한 곳 이상에서 언제나 수신 가능하기 때문이다.

  • 미국 서부의 캘리포니아 바스토우 모하비 사막 (UTC-08:00)
  • 스페인 마드리드 (UTC+01:00)
  • 오스트레일리아 캔버라 (UTC+10:00)

사용자 삽입 이미지
위의 그림은 지구를 북극점 위에서 내려다본 시점에서 세 기지가 감지 가능한 신호 영역을 나타낸 것이다.
가령, 1969년 아폴로 11호의 달 착륙 신호를 최초로 잡아서 전세계에 타전한 곳은 미국이 아닌 오스트레일리아 기지였다. 미국에서도 잡히긴 했지만 저쪽이 신호가 더 또렷했다고 한다.

보행자와 차들로 북적대는 육지의 도로와 달리, 비행기가 순항하는 공중이나 배가 항해하는 공해는 장애물이 없다시피하다.
하물며 우주의 스케일은 지구를 훨씬 능가한다. 우주는 정말 우리가 상상하기 어려울 정도로 너무 방대 광대하게 텅 빈 공간이다. 태양계 행성들의 크기는 행성들 간의 거리에 비하면 새 발의 피 수준에 지나지 않는다. 우주 탐사선은 한번 가속을 한 뒤엔 관성으로 한없이 등속 운동만 하면 되며, 전파도 그냥 조준만 잘 해서 쏴 주면 지구나 탐사선에 도착하는 건 그냥 시간 문제일 뿐이다. 다른 장애물에 부딪칠 걱정은 사실상 할 필요가 없다.

우주 공간에서 지구와 탐사선의 사이에 물리적인 장애물 걱정을 할 필요가 없는 건 일면 다행이다.
하지만 외행성 탐사선의 경우, 지구와 워낙 너무 멀리 떨어져 있기 때문에 전파도 진행하는 동안 점점 넓게 퍼지고 신호가 약해진다. 게다가 지표면에서는 주변에 숱하게 돌아다니는 지구 발 노이즈들을 걸러내고 그 약한 우주 발 신호만 증폭해서 받아야 한다.

신호를 보낼 때야 지구에서 최신 설비로 최고 출력 고주파로 그나마 최대한 빵빵하게 쏘겠지만, 가녀린 탐사선에서 지구로 보낸 신호를 받는 것은 정말 보통일이 아닐 것 같다.
안테나가 괜히 저렇게 거대한 게 아니다. 그나마 지금은 기술의 발달 덕분에 옛날 같은 지름 70m짜리는 필요하지 않고 30m대만으로도 충분하다고 그런다.

그나마 보이저보다 나중에 더 최신 기술로 발사됐고 지구에 훨씬 더 가까이 있는 뉴 호라이즌 호도 거기서 지구까지 전파가 도달하는 데 4~5시간을 잡아야 한다. 그런 propagation delay와는 별개로, 데이터의 전송 속도도 초당 수백 바이트, 1980년대의 2400~9600bps 모뎀 수준에 지나지 않는다고 한다. 거리가 너무 멀고, 탐사선의 전파 출력에도 한계가 있기 때문에 이건 뭐 어쩔 수가 없다.

그렇기 때문에 탐사선은 자기 메모리에 저장해 놓은 수십 GB에 달하는 사진들을 지구로 찔끔찔금 보내느라 그야말로 세월아 네월아 애써야 했다.
propagation delay인 4~5시간만 지나고 나면 지구에서 인터넷 하듯이 고화질 명왕성 사진이 짠~ 뜨는 건 인류의 기술로는 아직 가능하지 않다.

지구가 둥글다는 건 말할 것도 없고, 빛의 속도조차도 느리다는 걸 실감하는 직업에 종사하는 사람들은 평소에 자기 전공과 생업에 대해서 무슨 생각이 들지 궁금해진다.
더 나아가 달 같은 데서 지구의 인터넷을 연계해서 쓰는 게 가능해질까? 흥미로운 상상이 아닐 수 없다.

Posted by 사무엘

2019/04/18 08:31 2019/04/18 08:31
, , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1609

Trackback URL : http://moogi.new21.org/tc/trackback/1609

Leave a comment

미국이 196, 70년대에 인간을 달에 보내기 위해서 폰 브라운의 영도력으로 새턴 V라는 왕창 크고 아름다운 로켓을 만들었던 동안, 소련에서는 세르게이 코룔로프의 휘하에서 N1이라는 이름의 로켓을 만들었다.
그랬는데 1969년에 미국에서 아폴로 11호 미션을 먼저 성공시키자, 소련에서는 2등은 별 의미가 없다면서 유인 달 착륙 계획을 취소했다. 패배를 깔끔히 인정했다.

사실, 그 당시 소련은 그렇잖아도 미국과는 달리 로켓 엔진의 고출력 대형화를 달성하지 못해서 기술적으로 매우 고전하던 중이었다. 자동차로 치면 휘발유 엔진은 디젤 엔진만치 실린더 하나의 배기량을 무한히 키우지 못하는 것처럼 말이다.
무작정 공간을 크게 만들어서 무식하게 연료를 한꺼번에 많이 폭발시킨다고 장땡이 아니다. 그럴수록 연소 효율이나 폭발 압력 관리 같은 난관이 커진다.

미국의 새턴 V는 맨 아래에 가장 큰 출력을 내야 하는 1단 로켓이 저렇게 딱 5개의 큼직한 엔진으로 구성돼 있었다. 분출구 크기와 주변의 사람 크기를 비교해 보라. 각각의 엔진이 얼마나 거대한지를 알 수 있다. 저게 평범한 기술로 구현 가능한 게 아니었다는 얘기다.

사용자 삽입 이미지

그 반면, 소련의 N1은 자그마한 엔진이 무려 30개나 다발로 달려 있었다. 단수도 새턴은 3단이지만 N1은 4단으로 한 단계 더 많았다. 밑바닥이 무슨 자동차 휠처럼 생겼다.

사용자 삽입 이미지

새턴 V는 가장자리에 엔진이 4개 있고 중앙에 하나가 더 있는 형태인데, N1은 가장자리에 엔진이 24개 있고 중앙에 엔진이 추가로 정육각형 꼭지점 모양으로 달려 있으니.. 공교롭게도 딱 6배수 관계이다.

그런데 같은 동력을 공급하는 용도로 힘의 원천이 지나치게 많으면 제어가 너무 힘들어진다. 10기통을 훌쩍 넘어가는 스포츠카 엔진이라든가, 1km 이상의 긴 열차에서 3대 이상의 기관차가 동시에 가속하는 경우를 생각해 보라.

하물며 로켓 엔진은 자동차나 비행기 엔진보다 더 많은 연료를 더 짧은 시간 동안 급격하게 태워 없애야 한다. 그만큼 더 위험하다. 연료와 공기를 그 많은 엔진에다가 균등하게 공급하는 것부터 시작해서.. 엔진들 중 한 곳에라도 예기치 못한 문제가 생겼을 때 뒷감당을 할 수가 없었다.

이 때문에 N1 로켓은 1969년부터 시작해서 수 년에 걸쳐 네 번이나 발사 시도를 했지만, 모두 폭발 사고가 나고 실패로 끝났다. 이건 나로 호 같은 자그마한 로켓도 아니고, 인간을 달에 보내는 수준의 초대형 로켓이다. 그러니 한번 실패할 때마다 등유와 액체 수소 등등 연료만 생각해도.. 허공에 날리는 비용과 손해가 장난이 아니었다. 발사대까지 불바다에 휘말려 다 날려먹었을 정도였다.

그에 반해 새턴 V는 발사 실패가 전무하고 언제나 100% 성공이었으니.. 참 대조적이다. 저 로켓의 1단 밑바닥 모양이 마치 냉전 시절 미국과 소련의 운명의 차이를 보는 것 같다.

물론 세르게이 코룔로프도 천재였으며, 미국 같은 자금빨과 지원이 있어서 기술을 꾸준히 개선했으면 새턴 V에 필적하는 로켓을 만들 수 있었을 것이다. 실제로 달 착륙용 로켓 이후로 1980년대의 우주왕복선 계열로 와서는 후속작 에네르기아 로켓이 과거 N1 로켓의 한계를 모두 극복하였으며, 소유스 로켓은 100% 무사고 성공 기록을 자랑하고 있기도 하다.
하지만 옛날에 달 착륙 경쟁을 하던 시절에는 소련이 아직 그 수준에 이르지 못했다.

우주로 날아가는 로켓은 수평으로 달리거나 굴러가면서 내기도 어려운 엄청난 고속 가속을... 중력을 정면으로 180도 거스른 위쪽으로 올라가면서 구현한다는 게 정말 보통일이 아니다. 그러니 수백~수천 톤에 달하는 연료를 겨우 몇 분 만에 다 태워 없애 버린다.

수 톤 남짓한 payload를 지구 저궤도에 띄우고 우주로 보내기 위해서 이만한 연료가 필요한데, 그 연료 자체의 무게 때문에 또 엄청난 양의 연료가 추가되고.. 이런 걸 다 감안하며 계산해 보니 결국 저 거대한 로켓이 필요해진 것이다. 나라에서 세금을 걷으려면 원래 필요하던 돈뿐만 아니라 세금을 걷는 데 드는 비용까지 다 감안해서 세금을 걷어야 하듯이 말이다.

그리고 저런 난관을 해결하고 대형 고출력 엔진만 만든다고 해서 일이 다 끝나는 것도 아니다.
로켓은 총알처럼 강선을 타고 고속으로 뱅글뱅글 돌면서 날아가는 게 아니고, 무슨 비행기 같은 조향 장치(rudder)가 있지도 않은데.. 진행 방향이 어긋나기가 정말 쉬워 보이지 않는가? 그거 방향이 어긋나면.. 비행기가 실속에 빠지듯이 로켓은 최악의 경우 땅으로 꼬라박아 버릴 수도 있다.

이런 거 저런 거 다 따져 보면.. 지금 같은 컴퓨터도 없던 반세기 전에 천체 운동 궤도를 계산하고 로켓의 모든 내부 구조를 설계한 우주 개발 공돌이들이 얼마나 대단한 천재들이었는지 실감할 수 있다. 또한 우주왕복선은 탐사선을 등에 업은 기형적인 자세로도 수직-수평으로 방향을 잡고 제대로 날아가는 게 정말 보통일이 아니다.

앞서 언급한 바와 같이 미국에는 베르너 폰 브라운(1912-1977), 소련에는 세르게이 코롤료프(1906-1966)가 있었고.. 중국에는 첸쉐썬(1911-2009) 같은 사람이 있었다. 천재 한 명이 나라의 항공 우주 기술을 다 이끌다시피했다. 우리나라...는 몰라도 일본에도 또 그런 엘리트가 분명 있을 텐데 싶다.

참고로 브라운의 경우, 정말 진성 우주덕으로서 인간을 달도 모자라서 화성에까지 보내고 싶어했는데.. 아폴로 17호 이후로 우주 개발 관련 예산이 모조리 짤리는 바람에 몹시 상심하고 안타까워했다고 한다. 뭐, 천조국도 예산이 무한정 있는 건 아니니 어쩔 수 없었을 것이다. 화성까지 가는 건 현재 기술도 편도로만 최하 반 년이 넘게 걸리는데.. 거기에 사람을 보내면 그 동안 뭐 먹고 어떻게 살며 귀환은 어떻게 할지 문제가 너무 어렵긴 하겠다..;;

* 보너스: 영화 옥토버 스카이

마침 10월이 되기도 했으니 저런 로켓과 관련하여 본인이 감명깊게 접한 옛날 영화가 하나 떠오른다. 바로 옥토버 스카이.. October Sky (1999)이다.
이건 Homer Hickam(1943~)이라는 미국의 실존 인물과 그의 친구들의 학창 시절 행적을 다룬 영화로, 아폴로 13과 더불어 본인의 favorite 투톱이다.

사용자 삽입 이미지

그는 그냥 탄광촌 깡촌에서 그저 그런 아이로 살고 있었는데.. 1957년 소련의 스푸트니크 인공위성 발사 소식을 계기로 로켓에 완전히 미치고 꽂혀 버려서 로버트 고다드의 후예처럼 살기 시작했다.

그는 아버지와 주변 사람들의 만류, 미친놈 취급에도 아랑곳하지 않고 불철주야 로켓 연구만 하다가..
1960년, 고등학교 재학 시절에 지금 인텔 ISEF의 전신인 전미 과학 전람회(NSF)에 자기 로켓을 출품했다. 그리고 추진체 분야에서 당당히 1등을 차지했다.

본인도 먼 옛날에 ISEF의 허접 참가자였다. 그러니 저 장면에서 더욱 콧등 찡함이 느껴진다. (1960년은 인텔 사는 아직 없던 시절..)
그리고 저 소년이 쏘아올린 작은 로켓은 훗날 우주왕복선으로 바뀐다...;;
유튜브에 올라와 있는 영화 결말부를 한번 보시라.

Homer Hickam은 그 대회 입상실적 덕분에 버지니아 공대를 특채로 들어갔다. 대학 졸업 후에는 장교로 임관하여 월남전에 참전했으며, 전역 후에는 NASA에 들어가서 각종 연구 개발과 우주왕복선 승무원 양성에 관여했다고 한다.
일본 최초의 우주인이며 옛날에 <생명 그 영원한 신비> 다큐 진행자로 잘 알려진 모리 마모루도 그때 저 사람을 만났었다는 얘기다!

저런 괴짜들, 덕후들이 자기 꿈을 마음껏 펼칠 수 있다는 게 미국의 진정한 저력이다. ㅜㅜ
1960년대에 인디애나 주, 인디애나폴리스라 하면.. 난 지금까지 실비아 라이컨스 아동 학대치사 범죄 사건(An American Crime 영화) 정도밖에 몰랐는데, 저 때 과학 전람회가 열린 곳도 인디애나폴리스이다. 시간과 공간 배경이 비슷하다.

그런데 왜 영화 제목이 뜬금없이 '10월 하늘'이냐 하면.. Rocket Boys의 단어 anagram을 의도했기 때문이다.
나도 Looking for you가 아니었으면 항공우주덕으로 기울었을 텐데.. 음악 때문에 철덕으로 방향이 고정돼 버렸다.;;

Posted by 사무엘

2018/10/02 08:30 2018/10/02 08:30
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1538

Trackback URL : http://moogi.new21.org/tc/trackback/1538

Leave a comment

천체의 운동 관련 여러 생각들

우리는 뉴턴 고전역학을 통해 질량을 가진 두 물체는 서로 끌어당기며, 천체의 운동이라는 것도 그 끌어당기는 힘에다가 초기의 운동 방향이 서로 영향을 주고받으면서 3차원 공간에서 원뿔곡선 궤도를 그리는 것이라고 알고 있다. 단적인 예로 인공위성은 지구를 향해 한없이 추락하고 있는 물체일 뿐이다.

어떤 행성의 크기는 자신이 주변의 모행성이나 항성을 공전하면서 그리는 궤도의 크기에 비해 매우 작다. 단적인 예로 지구와 달 사이의 최단 직선 경로에다가 그 큰 목성과 토성을 포함해 태양계의 타 행성들이 모두 일렬로 늘어설 수 있을 정도이다. 그렇기 때문에 천체의 궤도 운동에 대해 기술하고 계산할 때는 그 천체가 완전한 구인 것도 모자라서 그냥 점이라고 간주하기도 한다.

그러나 모행성과 위성의 질량 서열이 그 정도로 일방적이고 압도적이지 않을 때는 어느 한쪽을 완전히 무시하는 게 가능하지 않다. 위성이 모행성을 돌면 사실은 모행성도 위성의 중력의 영향을 받아서 조금은 휘청이고 들썩이며, 가상의 질량중심을 축으로 해서 빙글빙글 돌게 된다.

모행성이 위성보다 압도적으로 더 무겁다면야 그 질량중심이 모행성의 실제 중심에서 거의 벗어나지 않는다. 그러나 둘의 질량이 서로 대등하고 호각인 지경이 되면 질량중심은 아예 두 천체 사이의 외부에 있게 되며, 둘은 상대방을 마주보며 빙글빙글 도는 이중 행성 체계를 형성한다. 태양으로부터 저 멀리 떨어진 명왕성이 위성 카론과 이런 관계인 것으로 잘 알려져 있다. 그 뒤 양 행성은 궁극적으로 자전 주기와 공전 주기가 같아져서 상대방의 한 면만 보게 된다.

지구의 자연위성인 달은 모행성의 규모에 비해 이례적으로 굉장히 크다. 그래서인지 거리도 상당히 멀리 떨어져 있음에도 불구하고, 지구를 통째로 들썩이게는 못해도 암석보다 훨씬 가벼운 유체인 물 정도는 인력으로 끌어올려서 기조력을 일으킨다. 태풍이 분 것도 아닌데 달의 근접만으로 해수면의 높이가 바뀌고 어디 저지대가 침수됐다는 소식이 전해지는 게 개인적으로 굉장히 신기하게 느껴졌다.

지구는 타 행성과는 달리 '살아 있는 행성'으로 여겨진다. 단순히 생명이 존재하고 표면에 액체 상태의 물이 존재하기 때문만이 아니다. 끊임없이 화산이나 지진 같은 지질 현상이 발생하고, 공기와 물이 순환하고 물질도 생명과 소멸을 반복하기 때문이다.
물론 이게 신의 창조와 개입 덕분이라고 믿어 버리면 더 할 말이 없지만, 지구와 같은 급은 아니어도 폭풍 같은 단순 기상 현상 자체만 따지자면 금성이나 목성처럼 성경이 언급하지 않는 다른 행성에도 존재한다.

사용자 삽입 이미지

도대체 무슨 힘으로 저 많고 무거운 물이 끝도 없이 움직이고 파도가 치는 걸까? 과학의 영역에서 답을 구하자면, 지금까지 얘기가 나왔듯이 (1) 지구의 자전, (2) 달의 기조력, 그리고 (3) 땅과 바닷물의 엄청난 비열 차이 덕분이다. 물은 비열이 굉장히 높으며, 지구는 자전 속도가 비교적 빨라서 행성 차원에서 자기장이 존재할 정도이니 이것 역시 굉장한 축복이다. (금성은 여기서 탈락해서 완전 안습 낭패로..)

뭐, 파도에 대해서도 "주께서 경계를 정하사 물들이 넘어가지 못하게 하시며 그것들이 다시 돌아와 땅을 덮지 못하게 하셨나이다." 같은 성경 말씀이 있긴 하다(시 104:9). 쓰나미는 저 잠금장치가 일시적으로 해제된 상황이라고 봐야 할 듯하다.

황해는 시간대별로 물이 들어왔다가 빠져서 수위가 가변적인 게 동해에서는 발견할 수 없는 현상이고 참 흥미롭다. 전기로 치면 주기적으로 전압이 변하는 교류 전기와 비슷한 구석이 있어 보인다.

지구 안 사정 얘기가 좀 길어졌는데, 다시 천체 운동 얘기로 돌아오면..
모행성과 위성 사이에는 천체물리학적으로 이런 게 있다.
어떤 위성이 공전하던 힘이 부족해져서 모행성과 계속해서 가까워지고 추락하게 됐다고 치자. 혹은 그냥 모행성의 중력에 어떤 돌덩어리가 이끌려 들어왔다고 치자.

그게 크기가 아주 작은 돌덩어리나 인간이 만든 탐사선 정도의 크기에 불과하고 모행성이 지구처럼 대기라도 있다면, 걔는 빠르게 끌려오다가 대기와의 마찰만으로 타서 없어진다. 그러나 걔가 크기가 굉장히 큰.. 지름이 수백~수천 km 이상 되어 어느 정도 자체적인 중력을 가질 정도가 되면 얘기가 달라진다.

1/n 같은 반비례 함수라는 건 n이 충분히 큰 값이면 그냥 0에 근접하는 아주 작은 값이고 n-1이나 n+1이나 큰 차이가 없다.
그러나 n이 작아지고 0에 근접할수록 함수값은 급격히 커진다. 하물며 만유인력은 거리의 제곱에 '반비례'하니 그 증가폭이 더욱 커진다.

이게 무슨 말이냐 하면, 저렇게 적당하게 큰 천체는 자체 중력보다 더 큰 인력을 지닌 큰 모행성과 급격히 가까워질 경우, 모행성을 향하고 있는 가까운 면이 받는 인력과(배), 그렇지 않은 먼 쪽(등)이 받는 인력조차도 급격한 차이가 나게 된다.
그 결과 끌려오는 천체는 점점 더 납작해지며, 더 버티지 못하는 경우 말 그대로 오체분시되고 박살이 나 버린다. 모행성과 직접적으로 충돌하기도 전에 이미 이런 현상이 발생한다는 것이다.

볼록 렌즈 거울에서 얼굴이 이상하게 왜곡되어 비춰 보이는 걸 생각해 보자. 그런데 실제 사람 얼굴을 그렇게 잡아당기고 늘어뜨렸다가는 무슨 꼴 나겠는가? 천체가 그렇게 되는 셈이다. 제아무리 금속 덩어리, 돌덩어리라고 해도 버틸 수 없다.
부서진 천체의 파편들은 모행성을 공전하는 방향으로 일말의 힘을 받고 있던 상태이기 때문에, 그래도 모행성 내부로 곧장 추락하지 않고 부스러기들이 그냥 모행성의 고리로 남기도 한다. 행성의 조건 중 하나인 "자기 중력만으로 온전한 구형을 이루고, 자기 궤도에 있는 다른 모든 천체들을 밀어내거나 흡수할 수 있을 것"의 의미를 다시 생각하게 된다.

그래서 어떤 특성을 가진 모행성과 위성이 있을 때, 이 위성이 안 부서지고 버틸 수 있는 최저 궤도 크기를 일컫는 '로슈 한계'라는 게 있다. 그리고 그걸 구하는 복잡한 공식도 있다. 모행성과 위성의 반지름과 밀도가 모두 동원되며, 대학 전공 과목 수준의 어려운 식이다. 이 글을 쓰는 본인도 솔직히 말해서 실감이 잘 안 간다.

다시 말하지만 이건 지름 수십~수백 m짜리 운석이 지구와 충돌하네 마네 하는 것과는 차원이 다른 거시적인 얘기이다. 인력의 편차 때문에 으스러지고 부서지는 게 가능할 정도로 큰 위성이 지구로 접근했다면, 지구 역시 자전축이나 공전 궤도가 조금이나마 휘청거리고 해수면이 미쳐 날뛰는 등 대이변이 일어날 것이다. 한가롭게 우주쇼나 볼 수 있는 처지는 아니게 되는 게 확실하다.

이상. 오늘은 개그만화 보기 좋은 날 종말편과 관계 있는 얘기를 하게 됐다. 이 분야 관련 잡생각들을 전부 내뱉고 글을 맺자면 다음과 같다.

1.
궤도역학이라는 건 정말 신기하다. 어떻게 flyby라는 걸 생각해 내고 지구에서 달로 가는 법, 내행성이나 외행성으로 가는 법을 만들어 내는 걸까..?
궤도라는 단어부터도 철도 용어로는 railway이지만 천문 용어로는 orbit이다. 번역된 한자어만 보면 마치 다의어 같은 느낌이 들지만 영어 어원상의 관점에서 보면 동음이의어로 봐야 하지 않나 싶다. 우리말에서 화력이 열력도 되고 무기의 위력(firepower)이 모두 되는 것처럼 말이다.

2.
현실에서 지구가 둥글다는 걸 실감하기란 쉽지 않다. 딴 천체에 비쳐진 지구의 그림자라도 보지 않는 한 말이다.
배가 해변에서 몇 km나 떨어져 있으면 수평선 아래로 내려가는 것처럼 보이게 될까? 날씨가 맑으면 부산 동남부의 바닷가에서 일본 쓰시마 섬까지가 보인다는데, 그 정도 거리이면 상대편이 자기보다 아래에 있다는 걸 인지할 수 있을까?

베트남· 캄보디아 여행을 갔을 때 느낀 건데 위도가 몇 도 내려가면 날씨가 왜 이렇게 더워질 수밖에 없는지(단위 시간과 면적당 태양에 노출되는 열량의 차이) 삼각함수와 구면기하학 지식을 동원해서 계산해 보고 싶을 정도였다.

3.
신의 창조를 주장하는 쪽에서는 우주의 신묘막측함과 정교한 질서를 강조하는 편이긴 한데, 이 우주가 영원무궁토록 한 치의 오차 없이 기계 톱니바퀴마냥 정교하게 돌아가고 있는 건 또 아니다.
달은 매년 수 cm씩 지구로부터 조금씩 멀어지고 있으며, 화성의 위성 중 포보스는 화성으로 조금씩 가까워지고 있다. 로슈 한계에 걸려서 사전 붕괴할지, 아니면 땅까지 떨어져서 충돌할지는 잘 모르겠다.

한편으로 지구의 자전은 조금씩 느려지고 있다. 다른 이유들도 있거니와, 솔직히 인간이 풍력· 파력 같은 에너지를 막 끌어다 쓰기만 해도 그럴수록 지구의 자전은 새 발의 피만큼이나마 느려질 수밖에 없지, 빨라질 일은 없을 것이다.

4.
흔히 오해하기 쉬운데 천문학으로서 궤도역학과, 아예 로켓 공학은 서로 같은 목표를 공유하는 듯하지만 엄연히 완전히 다른 학문 분야이다.
천문학자가 더 고성능 로켓 엔진을 만드는 방법을 알 수는 없으며, 로켓 공학자도 자기 업무에 필요한 수준 이상으로 복잡한 천체 운동을 예측하거나, 우주 탐사선의 진로 전략을 산출하지는 못한다.

5.
로켓 공학자라면 엔진 출력과 발사체의 중량 분배, 자세 제어 같은 것에 목숨을 걸어야 할 텐데..
흔히 엔진의 성능을 나타내는 단위는 일률(마력)이다. 1마력은 질량 75kg짜리 물체를 9.8m/s^2 중력을 거슬러서 1m/s의 속도로 들어올리는 것을 말한다.

이건 물체를 중력을 거슬러서 들어올리는 힘을 가리키니 엘리베이터 모터의 출력은 기술하기가 제일 직관적일 것 같다.
어지간한 엘리베이터들의 주행 속도는 보통 초속 3~4m인 듯하고.. 승객의 무게, 객실과 와이어의 무게 이런 것들을 더하면 내 건물에 달린 엘리베이터 전동기의 최대 출력을 얼추 산출할 수 있지 않을까 싶다. 아 하긴, 옛날에는 우주 엘리베이터 같은 것도 SF에서 제안되기도 했었지.

6.
컴퓨터쟁이들에게 1970년 1월 1일은 일명 유닉스 에폭(epoch)이라고 불린다. 그로부터 20년 전인 1950년 1월 1일이 방사성 원소 측정법의 발견으로 인해 지질학 원년이라 불리는 것과 비슷한 이치인데, 1970년 저 비스무리한 시기에 C 언어와 유닉스 같은 게 개발되었기 때문이다.
그런데 항공 우주 분야의 리즈 시절도 이 유닉스 원년과 얼추 비슷한 시기인 게 너무 신기하다. 인간이 한창 달에 갔다 오고 콩코드가 날아다니고 보잉 747이 개발된 게 다 저 때이기 때문이다. 정작 컴퓨터계엔 인텔 마이크로프로세서조차 아직 없던 시절에..!

7.
인공위성들 중에서는 적도 위도에서 지구의 자전 속도와 동일한 속도로 지구를 도는.. 그래서 언제나 동일한 지표면만 보고 있는 '정지 위성'이란 게 있다. 이런 속도로 안정되게 떠 있는 게 가능하려면 위성의 고도가 거의 36000km, 즉, 지구에서 달 까지 거리의 1/10에 가까울 정도로 굉장히 높아야 한다. 그만큼 띄우기도 어렵다. 현실에서는 겨우 몇백 km만 위로 올라가도 우주라고 일컬어지는데도 말이다.
저 최적 고도가 어떻게 산출되었는지 과정이 궁금하다.

8.
이렇게 어떤 기계류가 우주에서 지구 궤도를 돌다가 힘의 균형을 잃어서 서서히 지구로 떨어지거나, 심지어 인간에 의한 통제력을 상실한 채 혼자 빙글빙글 돌게 되면 우주 쓰레기가 된다. 우주 쓰레기는 지구 중력을 탈출하는 속력에 "준하는" 엄청난 운동 에너지를 보유하고 있기 때문에, 부딪쳤다간 지상에서 비행기의 조류 충돌을 훨씬 능가하는 참사를 야기한다.

이런 우주 쓰레기와 비스무리한 것을 지상에서 찾자면, 달리는 자동차의 바퀴에서 튀어오른 돌조각· 쇳조각 같은 쓰레기가 아닐까 한다. 도로가 잘 포장되고 정리되어 있지 않으면 이런 것 때문에 맞은편 차선의 차량이나 뒷차가 봉변을 당하며, 앞차 운전자는 멀쩡히 잘 가던 중에 졸지에 교통사고 가해자 누명을 뒤집어쓰게 된다.
사람이 발로 땅을 질질 끌고 차 봐야 사실상 아무 일도 일어나지 않는데, 그에 반해 자동차 바퀴와 그에 대응하는 땅의 접지력이 얼마나 큰지를 실감할 수 있다.

Posted by 사무엘

2017/08/14 08:31 2017/08/14 08:31
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1393

Trackback URL : http://moogi.new21.org/tc/trackback/1393

Leave a comment

고체 연료와 액체 연료

우리 주변에서 연료를 태워 열 내지 에너지를 만드는 도구, 기계들을 생각해 보자.
하긴, 옛날에는 불을 최초로 피우는 것조차도 여간 어려운 일이 아니어서 집집마다 한번 만들어 놓은 불씨를 잘 간수해야 했으며, 옛날까지 갈 것도 없이 무인도 같은 오지· 험지에 홀로 내던져졌다면 불을 피우는 게 매우 중요한 생존 기술 중 하나로 변모한다. 성냥, 양초 같은 물건도 주류에서 밀려난 구시대 유물일지언정 완전히 없어질 수는 없을 것이다.

이렇게 연소나 폭발을 취급하는 물건들은 어떤 형태의 연료를 쓰는지에 따라 설계 방식이나 동작의 특성이 달라진다.
연료라는 건 크게 고체 아니면 액체로 나뉜다. 고체는 나무나 석탄, 혹은 다른 고체 폭약 같은 것이고, 액체는 잘 알다시피 석유나 액화 천연가스가 대표적이다.

일반적으로 액체 연료를 다루는 기계적 메커니즘이 고체 연료보다 더 복잡하고 까다롭다.
그러나 액체 연료가 그만큼 연료를 아주 찔끔찔끔 균일하게 공급하면서 화력을 조절하기가 더 쉽다. 그리고 연소 후의 부산물도 액체 연료가 훨씬 더 깔끔하며 처리하기가 더 편하다.

고체 연료를 사용하는 연탄/화목 보일러나 난로는 불에 탈 수만 있다면 통나무건 종이 뭉치건 아무 덩어리나 집어넣어도 되니 기계 구조가 간단하고 당장 열을 만들어 내는 건 쉽다. 하지만 그 뒤부터는 여러 모로 불편한 점과 애로사항이 꽃핀다. 매캐한 연기와 냄새가 나며, 일단 불이 붙은 연료를 통제하기가 어렵다. 점화나 소화를 스위치 하나로 간편하게 할 수가 없다.

연탄은 크기와 모양이 규격화돼 있는 고체 연료라는 점은 그나마 낫지만, 여전히 점화와 소화가 불편하며 연료를 배달하기가 매우 번거롭다. 매번 연탄재를 처리하는 것도 큰일이고 말이다.
양초는 고체 연료인 것치고는 심지를 통해 연소가 균일하게 잘 일어나는 편이지만, 역시나 강약 조절을 할 수 있지는 않다.

옛날에 증기선이나 증기 기관차에는 보일러에다 석탄을 삽으로 퍼 넣는 화부가 탑승해야 했으며 즉각적인 동력 조절이 되지 않았다. 고체 연료 화통의 화력은 공기를 불어넣는 양 정도로나 조절 가능했다. 성경의 다니엘서에서 풀무불을 평소보다 일곱 배나 더 뜨겁게 하는 건 과연 기술적으로 어떻게 실현했을까? (단 3:19)

이것은 발사체인 고체 연료 로켓도 고스란히 갖는 한계이다. 한번 점화가 된 뒤에는 연료의 연소를 일시적으로 중단하거나 동력 조절을 할 수 없으며, 가능하다 해도 그 과정은 몹시 어렵다.

이런 이유로 인해 요즘은 관광용 증기 기관차도 물을 끓여서 나아갈지언정, 물을 데우는 건 석탄이 아닌 석유로 한다.
그리고 로켓에는 액체 연료 로켓이 연구되었으며, 이 바닥의 선구자는 미국의 물리학자 로버트 고다드이다. 우리말 표기로는 '더'와 '다'가 공존하면서 혼란스러운 이름인데...

공기가 없는 우주에서도 움직이는 액체 로켓은 연료 자체뿐만이 아니라 산화제까지 액체여야 하기 때문에 고체 로켓보다 만들기가 더욱 어려웠다. 증발이나 부식 같은 문제 때문에, 산화제와 연료를 주입한 채로 로켓을 장시간 발사대에 놔 둘 수 없다는 점도 대단히 번거로운 점이다. 로켓의 발사가 연기된다거나 하면 그것들을 도로 빼내야 한다.

그럼에도 불구하고 액체 연료 발사체 기술 덕분에 인간이 우주로 나갈 수도 있을 정도로 안정적이고 통제 가능한 발사체가 만들어질 수 있게 되었다.
라이트 형제가 동력 비행을 성공한 지 30년이 채 되지 않아 미국의 학계에서는 로켓의 이론적 근간이 연구되고 “달까지 가는 진지한 방법” 같은 게 논문으로 발표되고 있었다니 정말 대단한 일이 아닐 수 없다. (한때는 그랬는데 미국이 어쩌다가 스푸트니크 멘붕을 당할 정도로 잠시 주춤했는지?)

단, 고다드의 연구는 시대를 너무 앞서 있었으며, 그 당사자 역시 언플이나 사교력이 뛰어난 공돌이는 아니었던 관계로... 그의 연구는 그가 살아 있는 동안에는 딱히 인정을 못 받았다. 1920년대에 뉴욕 타임스 신문은 고다드가 불가능한 목표를 두고 아무 쓰잘데기 없는 황당한 뻘짓을 한다고 막 조롱하고 디스하고 망신 주는 사설을 게재했을 정도였다.

그러나 그로부터 수십 년이 지나고 고다드의 연구를 토대로 새턴 로켓이 발사되고 아폴로 우주선이 달까지 간 뒤에야 뉴욕 타임스는 자기네 옛날 사설을 취소하고 고인에게 사죄를 했다. “그런데 그것이 실제로 일어났습니다. 님의 연구 덕분에 후손들이 달에 진짜로 갈 수가 있었습니다. 우리의 생각이 짧았습니다.”라는 요지로.

이건 20세기의 우주 개발 역사에서 매우 유명한 일화이다. 우리나라로 치면 일제나 독재 정권에 아부하던 메이저 언론이 나중에 자기 잘못을 스스로 인정하고 사죄한 것과 완전히 같지는 않아도 비슷한 격인데, 우리나라 언론에서는 찾기 힘든 모습인 것 같다. =_=;;

이것저것 얘기가 많이 나왔는데..
여러 분야를 막론하고 액체 연료는 고체 연료에 비해 점화· 소화와 화력 제어가 용이하고 연소 결과가 깨끗하다는 많은 장점이 있음을 알 수 있다.
이제는 친구들과 삼겹살을 구워 먹으러 갈 때도 고체 연료(숯)를 쓰는 식당과 액체 연료(도시 가스)를 쓰는 식당의 구조적인 공통점과 차이점을 나눠서 생각할 수 있을 것이다. 다만, 고기를 굽는 데는 '연기와 향'이라는 변수가 추가되기 때문에 굳이 경제적으로는 더 불편한 고체 연료가 선호되기도 한다. ^^;;;

Posted by 사무엘

2014/12/17 08:35 2014/12/17 08:35
, , ,
Response
No Trackback , 3 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1040

Trackback URL : http://moogi.new21.org/tc/trackback/1040

Comments List

  1. 김재주 2014/12/17 16:09 # M/D Reply Permalink

    시대를 앞서간 선구자들은 항상 존재하죠. 예를 들어서, 이미 19세기에 미국이 지구에서 달으로 사람을 날려보낸다는 내용의 소설이 나오기도 했습니다. 정확하게는 1865년에 <지구에서 달까지> 라는 제목의 소설이 나왔는데, 이 소설을 쓴 사람이 바로 <해저 2만리> <80일간의 세계일주> 등으로 유명한 쥘 베른입니다 ㅎㄷㄷ

    이 소설에서 쥘 베른은 땅을 깊숙히(지하 300m) 파서 그 안에 쇳물을 부어 대포를 만들고, 엄청나게 큰 대포알 속에 사람이 들어가서 타고 간다는 방법을 제시했는데, 그는 이 소설을 쓰기 위해 당대에 알려져 있던 과학 지식을 어마어마하게 공부했음이 틀림없습니다. 예를 들어서 밀폐된 대포알 안에 산소는 어떻게 공급할 것이냐라는 의문에 대해 화학적 지식을 바탕으로 환원 반응을 통해서 산소를 만들어낼 수 있다는 식으로 대답하는 것이죠.

    그리고 발사 시기와 장소는 어떻게 할 것인가에 대한 얘기도 나오는데, 대포알의 경우 일단 쏘아올려지면 중간에 궤도를 바꿀 방법이 없으므로, 정확하게 달이 지구와 가장 가까운 위치에 오는 날에 정확하게 머리 위에 왔을 때에 맞추어 쏘아 올리면 달의 인력에 붙잡혀서 달 표면에 도달하게 될 거다.. 라는 식이죠. 지구와 달의 거리, 자전 속도 등을 고려해서 미국 영토 내의 가장 적절한 위치를 선택하게 됩니다.

    이야기가 출판된 시기가 워낙 앞선 만큼 실제로 과학자들도 쥘 베른의 이야기에 영향을 받았을 것이 분명합니다. 다만 실제로 그렇게 했다가는 안에 있는 사람들은 끔찍한 중력가속도와 낙하 시의 충격에 사망할 것이기 때문에 그걸 해결하기 위한 방법을 생각하다가 나온 것이 로켓이었겠죠.

    아무튼 쥘 베른은 당대에 생각할 수 있는 수많은 공학적 이슈들을 그 시대의 과학적 지식들을 바탕으로 해결하는 모습을 묘사하고 있습니다. 그런데 대단한 점이 무엇인가 하면, 프랑스에서 태어나고 실제로 미국에 가본 적은 없었던 그가 선택했던 난제들을 이후 미국의 과학자들 역시 겪게 됩니다만...


    그가 대포 발사 지점으로 선택했던 곳이 케네디 우주센터가 되었고, 발사된 대포알이 지구 궤도를 빙빙 돌다가 다시 착지한 지점으로 선정한 곳이, 그로부터 103년 후에 아폴로 8호가 실제 낙하한 곳에서 고작 4km 떨어진 곳입니다 ㅎㄷㄷ

    이쯤 되면 거의 소설가를 넘어 선지자 급......

    1. 사무엘 2014/12/17 20:08 # M/D Permalink

      우주 대포의 선구자이자인 제랄드 불 박사가 그 아이디어를 부분적으로나마 실현시켰지요. 로켓은커녕 아직 동력 비행도 실현되지 못했던 시절에 그런 상상을 해서 그런 소설을 썼다니 쥘 베른도 참 대단합니다.
      로켓 없이 우주로 나가는 건 뭐랄까, 비교 연산 없이 O(n) 복잡도로 정렬을 하는 비주류 제한적인 알고리즘 같은 위상이라는 생각이 듭니다.
      아울러, 소설을 써서 일부나마 ㅎㄷㄷ한 예언을 한 다른 예로는 Futility (vs 타이타닉) 정도가 있습니다.

  2. 사무엘 2015/03/24 12:55 # M/D Reply Permalink

    참고로 이 홈페이지에서 한번 특집으로 다룬 적도 있는 과거의 우주 왕복선은 액· 고체 연료를 모두 사용한 하이브리드였다.
    탐사 로켓의 아래에 있는 거대한 연료 탱크는 액체(산· 수소) 기반이고, 그 양 옆에 달린 보조 부스터는 고체 연료 로켓이다.

    이 보조 부스터는 초기에 우주 왕복선이 뜨는 걸 도와 준 뒤, 연료가 소진되면 가장 먼저 떨어져 나간다. 얘는 낙하산을 달고 떨어지며, 나중에 바다에서 회수되고 몇십 회 정도 더 재활용된다.
    그 반면 더 오랫동안 쓰이는 주 연료 탱크는 크기도 너무 크고 이미 너무 높게 올라가 버린지라 재활용을 못 하고 버려진다. 추락 중에 대기와의 마찰로 인해 타서 소멸한다.
    일회용 소모품이기 때문에 얘는 하얗게 도색을 안 하기도 하고 말이다.

Leave a comment

블로그 이미지

철도를 명절 때에나 떠오르는 4대 교통수단 중 하나로만 아는 것은, 예수님을 사대성인· 성인군자 중 하나로만 아는 것과 같다.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2019/08   »
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Site Stats

Total hits:
1236162
Today:
475
Yesterday:
554