5. 엔진 브레이크

엔진 브레이크라는 건 감속· 제동을 위해 자동차에 따로 장착되는 기계 장치를 가리키는 게 아니다. 이미 있는 엔진의 특성을 이용해서 차의 속력을 슬금슬금 줄이는 일종의 운전 테크닉에 가깝다.
자동차에서 엔진이 돌아가는 것과 바퀴가 돌아가는 것 사이의 관계는 뭐랄까 참 미묘하다. 서로 영향을 주고받는다. 엔진이 돌아가는 것에 비례해서 바퀴가 돌아가지만, 반대로 바퀴가 관성을 따라 계속 굴러가는 것이 엔진을 덩달아 회전시켜 주기도 한다.

엔진 브레이크의 본질은 강제로 기어를 저단으로 바꿔서 바퀴가 굴러갈 때 엔진을 덩달아 회전시키는 것을 굉장히 어렵게 하는 것이다. 그러면 아무리 내리막이라 해도 차가 호락호락 미끄러져 내려가지 않게 된다. 1단으로 고정이라도 시키면 차가 조금만 가속되어도 엔진 회전수가 팍 치솟으면서 굉장히 큰 저항 같은 게 걸린다. 물론 엔진 브레이크를 오· 남용하면 변속기를 포함한 파워트레인 계통이 퍼질 위험이 있지만, 그건 무슨 시속 100에서 1~2단 고정을 시켜서 엔진 회전수가 레드존 이상으로 치솟았을 때에나 걱정할 사항일 뿐이다.

이런 관점에서 보면, 변속기를 D로 놓고 주행하던 중에 가속 페달에서 발을 잠시 뗀 상황은 정말 순수하게 자전거 페달에서 발을 떼고 관성만으로 달리는 것과 같은 상황이 아니다. 정말 순수하게 관성 주행을 하려면 변속기를 N으로 옮기든가, 수동 변속기라면 클러치를 밟고 있어야 한다. 엔진이 바퀴와 연결되어 있는 한 고단 상태라도 아주 약하게나마 엔진 브레이크가 걸려 있는 셈이다.

관성만으로 자동차 바퀴를 굴리고 바퀴와 연결된 엔진까지 돌리는 상태는 오래 가지 못한다. 자동차는 지금 설정된 단의 기준으로 아이들링 rpm에 해당하는 최저 속도까지 서서히 감속될 것이고 엔진 rpm도 비례해서 줄어들 것이다. 액셀을 안 밟고 계속 방치하면 힘이 부족해서 현재의 '단'도 공기 저항 등 여러 이유로 인해 유지되지 못할 것이다. 그러니 자동 변속기는 알아서 더 저단으로 변속을 할 것이고, 궁극적으로 자동차는 최저단인 1단에서 그냥 슬슬 기어가는 상태로 되돌아가게 된다. 단순히 공기 저항 같은 요인 때문에 감속되는 게 아니라 엔진 브레이크가 걸려서 그렇게 된다는 뜻이다.

엔진 브레이크는 브레이크 페달의 부담을 일부 분담해 줄 뿐, 얘 단독으로 차를 완전히 세우지는 못한다. 토크가 작고 회전수 편차가 큰 휘발유 엔진이 엔진 브레이크의 성능이 더 좋은데, 정작 드럼 방식 브레이크 기반이고 엔진 브레이크가 더욱 절실히 필요한 차량들은 디젤 엔진 대형 차량이라는 게 역설적이다.

6. 접지력

브레이크라는 건 동작하기 위해서 충족되어야 하는 매우 기본적이고 중요한 전제 조건이 있다. 바로 바퀴가 제대로 된 접지력을 발휘하는 것이다. 바퀴가 접지력을 상실하면 굳이 급발진처럼 엔진에 의해 속도가 더 붙지는 않을지 몰라도, 핸들과 브레이크가 말을 전혀 듣지 않고 차가 미끄러지기 때문에 매우 위험한 상황에 빠진다.

밥을 먹고 있는데, 식탁 표면에 물이 흘려져 있으면 그 위의 밥그릇이나 반찬 그릇이 가끔 케바케로 미끄러지고 저절로 움직이기도 한다. 그 얇은 수면 위로 설마 부력이 작용했을 리는 없지만 지면 정지 마찰력이 극도로 작아지긴 한 것 같다. 그걸 보고서는 "아! 빗길에서 그 무거운 자동차가 미끄러지는 것도 바로 이런 원리이겠구나" 하는 생각이 들었다. 난 딱히 난폭운전을 하지 않아서 그런지 빗길에서는 차가 물의 저항 때문에 더 잘 안 나아가면 안 나아가지, 딱히 미끄러지거나 한 적은 없었던 것 같다.

일상생활에서 뭔가 도구 차원에서 접지력을 향상시켜서 미끄러짐을 방지하기 위해서는 스노우 타이어와 체인(자동차), 아이젠(등산) 같은 게 쓰인다. 그러고 보니 유리병 뚜껑 같은 게 너무 조여져 있어서 안 따지고 손으로 돌려도 손만 미끄러질 때도, 옷이나 헝겊류를 씌우고 그걸 돌리면 뚜껑이 돌아가서 열리는 경우가 생긴다. 이건 병따개나 손톱깎이처럼 지레의 원리로 토크를 키운 게 아니라, 순전히 접지력을 올리는 좋은 예이다. 회전력만 세다고 해서 장땡이 아니다.

자동차는 밥그릇과 비교했을 때 다소 길쭉한(?) 외형이고, 스스로 굉장한 고속으로 움직이기도 있기도 하다. 그렇기 때문에 진행 방향 기준으로 앞뒤의 무게 분배의 균형도 꽤 중요하다.
핸들을 꺾었는데 미끄러져서 차체가 운전자의 기대보다 더 큰 반경으로 돌게 됐다. 그래도 차가 앞뒤 방향이 유지라도 되면 그건 '언더스티어' 성향이다. 그 반면, 조향 과정에서 차의 뒷부분이 원심력을 감당 못 해 드리프트 하듯이 홱 도는 것은 '오버스티어' 성향이다.

묘기· 곡예 운전을 하려면 이런 차의 특성을 잘 알아야 한다. 갑자기 튀어나온 차량을 피하러 핸들을 갑자기 꺾다가 차의 뒷부분이 덜렁덜렁 요동치는 걸 피시테일(fish tail) 현상이라고 하는데.. 이건 일종의 언더스티어 성향으로 봐야 하나 모르겠다. 흔한 통념과는 달리, 딱히 전륜구동이냐 후륜구동이냐를 가리지는 않는다. 엔진이 실린 앞부분이 더 무거운 자동차라면 언제든 발생할 수 있다.

피시테일 현상에서 벗어나려면 마치 급발진에 대처할 때와 마찬가지로 당장의 직감과는 어긋나는 방식으로 자동차를 조작해야 한다. 브레이크를 밟을 게 아니라 오히려 가속을 해야 한다. 그래야 무게중심이 뒤로 쏠리면서 차량의 뒷부분이 무게를 얻고 불안정한 진동을 멈추기 때문이다. 커브를 돌 때 감속이 아니라 오히려 가속을 하듯이 말이다.

이런 식으로, 자동차의 주행에는 연료를 연소시켜서 그 폭발력으로 바퀴를 굴리기까지 전반적인 과정이 비선형적이고 정량적으로 기술하기 어려운 요소가 많다. 무슨 우주 공간처럼 마찰이고 공기 저항이고 다 없고, 그저 연료를 뒤로 분사해서 곧이곧대로 작용· 반작용대로만 나아가는 거라면 기술하기 참 쉽겠지만 현실은 그렇지 않다는 얘기이다. 타이어의 접지력이라든가, 공기 저항 같은 건 최하 대학에서 기계공학 학부나 대학원 수준이 돼야 다뤄질 것이다.

단적인 예로, 자전거만 해도 차체가 너무 무거우면 처음에 출발할 때 페달을 밟는 게 아니라 그냥 발로 땅을 뒤로 차고 나아가는 게 덜 힘들지 않은가? 그런 게 무슨 원리로 왜 발생하는 차이인지가 단순 경험적인 직감이 아니라 수식으로 아직 좀 알쏭달쏭하다. 완전히 이해를 못 했다.

타이어가 평소에 그렇게도 좋은 승차감을 선사하지만, 바람이 빠지면 완전히 다른 물질로 바뀐 게 아닌가 싶을 정도로 차체를 안 나아가게 만든다. 공기의 있고 없고 차이가 무슨 역학적인 차이를 만들어 내는 걸까?
더 나아가 차체의 무게와 엔진 종류, 배기량, 기어비가 주어졌을 때 그 차의 경제 속도나 최적 연비,  등판능력 한계를 구하는 근거도 내가 이해 가능한 한도까지 알아 가고 싶다.

7. ABS

자동차가 바퀴가 굴러가는 속도(A)와 차체가 움직이는 속도(B)가 일치하지 않게 돼서 좋을 건 전혀 없다. A>B인 건 바퀴가 헛도는 것이고, A<B인 건(심지어 A=0일 수도..) 미끄러지는 것이다. 미끄러지는 현상을 차량 전체의 관점에서는 skid라고 표현하고, 타이어의 관점에서는 잠김(lock)이라고 표현하는가 보다.

ABS란 제동력 자체가 아니라 접지력 향상을 위해서 고안된 안전 장치이다. 수십 년 전까지만 해도 고급차에만 존재하던 값비싼 선택사양이었으나, 2010년대 이후부터는 경차에도 의무적으로 달리는 모든 차들의 필수품이 된 지 오래이다.

얘는 브레이크를 기계의 힘으로 넣었다 끊기를 반복함으로써 접지력의 향상을 도모한다. 즉, 시속 100km 상태에서 150m를 더 나아가야 멈춰설 것을 120m 만에 멈추게 해 주는 게 아니다. 미끄러운 빗길· 빙판길 커브에서 브레이크를 꾸욱 깊게 밟았을 때 차가 전방을 향해 쫘악 미끄러져서 길을 이탈하는 게 아니라, 제동 거리가 얼마가 나오건 커브 틀면서 원래 성능대로 곱게 멈춰서는 것 자체를 도와준다는 뜻이다. 먼저 바퀴가 땅에 제대로 붙어 있어야 그 다음에 핸들이고 브레이크고가 말을 들을 것이기 때문이다.

사용자 삽입 이미지

위의 사진은 ABS가 하는 일을 정확하게 묘사하고 있다. 정말 센스 대박이다~!! ㅋㅋㅋㅋㅋ 한눈에 바로 이해된다.
노면이 미끄러워서 바퀴가 잠기는 현상이 감지되면, ABS는 운전자의 브레이크 동작을 기계적으로 수 차례의 브레이크 밟기+떼기 트레몰로로 구현해 준다. ABS는 anti-lock brake system의 약자이다만, 각종 프로그래밍 언어에서는 절대값을 구하는 함수의 명칭으로 훨씬 더 많이 알려져 있다..;;

굳이 빗길이나 빙판이 아니어도, 고속 주행 중에 그야말로 강한 관성이 느껴지고 타이어의 스키드 자국이 생길 정도로 브레이크를 강하고 깊게 밟으면 ABS가 발동된다. 스키드 자국이라는 게 타이어가 멈춘 채로 차체가 움직여서 타이어가 길바닥에 질질 긁혔다는 뜻이니 말이다.

이때 브레이크를 밟는 발에서 부르르르~ 떨림이 느껴질 것이다. 트레몰로가 연주되었다는 흔적이다. 브레이크를 사뿐히 즈려밟고 부드럽게 정지하는 평상시에는 ABS의 존재를 체험할 일이 없다.
사실, 오늘날은 ABS는 차체 자세 제어 장치(현대 자동차에서 사용하는 용어는 VDC)라는 최첨단 주행 안전 시스템의 일원, 구성원이 되어 있다. 자동차가 운전자가 의도했던 대로 움직이고 있는지, 아니면 미끄러지는 중인지, 어느 방향으로 무슨 가속도가 작용하고 있는지를 몽땅 파악해서 타이어별로 서로 다르게 구동력/제동력을 공급해 주는 경지에까지 도달해 있다.

본인도 옛날에 눈이 내리고 얼어서 빙판이 된 '오르막' 비탈길을 차를 몰고 오른 적이 있었는데... 뭔가 미끄러지겠다 싶은 상황에서 차가 미끄러지지는 않고 그 대신 부르르르~ 떨면서 계기판에는 생전에 본 적이 없는 경고등이 잠깐 켜졌다가 꺼지는 걸 봤다. 나중에 알고 보니 그건 VDC가 동작한 것이었고, 떨림은 VDC의 명령을 따라 ABS가 발동된 흔적이었다.

8. 맺음말: 타 교통수단의 제동 장치

(1) 지금까지 자동차 내지 자전거 위주로 브레이크 얘기를 늘어놓았다만.. 비행기의 랜딩기어 바퀴에도 브레이크가 달려 있다. 애초에 저 ABS도 맨 처음에는 젖은 활주로에 착륙할 때 미끄러지지 말라고 비행기용으로 개발되었다가 나중에 자동차와 철도 차량에도 전해진 것이다.
(여담이지만 안전벨트도 맨 처음엔 비행기를 위해서 개발된 거다. 이건 철도에는 필요 없어서 도입되지 않고 자동차에만 추가로 전해졌지만.. 처음부터 자동차를 위해서 발명된 대표적인 안전 장치로는, 금만 가지 와장창 박살나지 않는 '안전유리'가 있다.)

다만, 비행기는 지상 주행의 비중이 자동차보다 훨씬 작으며, 몇백 명이 타는 대형 여객기라 할지라도 접지 형태는 고작 '삼륜차'에 가깝다..! 그렇기 때문에 브레이크도 뒷쪽 바퀴들에만 달려 있다. 착륙 직후에는 플랩, 스포일러, 엔진 역추진처럼 공기를 직접 맞닥뜨리는 방법으로 속도를 줄이고 또 줄인 뒤에, 바퀴 제동은 기체를 완전히 세우는 결정타로만 사용된다.

비행기 조종석의 페달은 자동차의 액셀/브레이크와는 달리 양발로 조작하며 앞쪽과 뒤쪽의 부위 구분까지 있다. 발꿈치(뒤) 쪽은 비행기가 떠 있을 때 사용하는 방향타이고, 발가락(앞) 쪽은 비행기가 지상 주행 중일 때 사용하는 브레이크이다. 즉, 이륜차처럼 브레이크가 앞뒤 구분이 있는 게 아니라 좌우 구분이 있는 셈인데, 양쪽 바퀴의 제동 정도를 달리함으로써 '조향'을 할 수 있다. 무한궤도 탱크가 방향을 전환하는 것처럼 조향하긴 하지만 추력· 동력 조절이 아니라 제동력 조절이라는 차이가 있다.

(2) 전기로 달리는 차량은 차축을 발전기에다 연결해서 "기왕 제동을 걸 거면 이미 가진 운동량으로 에너지 생산이나 덤으로 하면서 서자"라는 발상을 실현한다. 이것도 방법이 한 가지만 있는 게 아니어서 '발전 제동'과 '회생 제동'이라는 메커니즘이 있다.

역에 정차할 때 전동기 인버터에서 나는 소리가 가속 구동음의 역순으로 주파수가 올라갔다 내려가기를 반복하는 것들이 있다. 이건 개념적으로 자동차의 단을 단계적으로 낮추는 거나 다름없는데, 일종의 엔진 브레이크이기라도 하나 하는 생각도 든다.
그나저나 1세대 KTX(떼제베)는 내부적으로 제동을 어떻게 하는지, 역에 정차할 때 여느 절도 차량에서도 들을 수 없는 시끄러운 굉음이 나는 걸로 악명 높다. 좀 개선이 필요한 점으로 보인다.

(3) 엘리베이터 중에도 한 30층 정도 되는 고층 건물에서 운행되는 초고속 엘리베이터는 브레이크가 있다. 도착층의 3~4층 전부터 이미 감속하는 게 느껴질 정도인 엘리베이터는 우리가 흔히 탈 수 있지는 않아 보인다.

Posted by 사무엘

2018/04/04 19:32 2018/04/04 19:32
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1475

Trackback URL : http://moogi.new21.org/tc/trackback/1475

Leave a comment
« Previous : 1 : ... 873 : 874 : 875 : 876 : 877 : 878 : 879 : 880 : 881 : ... 2204 : Next »

블로그 이미지

그런즉 이제 애호박, 단호박, 늙은호박 이 셋은 항상 있으나, 그 중에 제일은 늙은호박이니라.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2024/12   »
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Site Stats

Total hits:
3048786
Today:
1948
Yesterday:
2058