« Previous : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : ... 31 : Next »

1. 경고와 에러

C/C++ 컴파일러가 소스 코드를 컴파일 하는 중에 내뱉을 수 있는 메시지는 흔히 에러 또는 경고라는 두 종류로 나뉜다. 그런데 이걸 더 세분화하면 에러의 앞에는 수위가 더 높은 ‘심각한 에러’(fatal error)라는 게 있다.

얘는 컴파일 중에 컴파일러 자체가 뻗거나 메모리가 부족할 때처럼, 외부 요인에 의해 컴파일이 더 진행될 수 없을 때 나는 편이다. 그런 게 아니면 소스 코드가 문법상으로는 이상이 없지만 각종 수식이나 명칭 선언이 괄호가 너무 깊게 들어가고 복잡할 때, 리터럴 데이터 같은 게 너무 많아서 도저히 감당이 안 될 때, #include 깊이나 #define 치환 단계가 너무 깊을 때..

한 마디로 컴파일러의 한계 때문에 코드 생성이 안 되는 것이 심각한 에러로 분류되는 편이다. 이건 통상적인 컴파일 에러와는 성격이 다르기 때문이다. 참, #include 파일을 아예 찾을 수 없는 것, 그리고 #error로 대놓고 에러를 발생시킨 것 역시 추가적으로 심각한 에러의 범주에 든다.

일례로, int a = 999999999999999999999999; 이런 거야 상수가 너무 커서(32비트 범위 초과) 토큰의 스캐닝 단계에서 튕겼기 때문에 일반 컴파일 에러이다.
하지만 int tbl[] = { 10,45,34,33, ... }; 다음에 숫자가 한 100만 개쯤 있다거나,
char msg[] = "......" \ 이런 리터럴이 100MB쯤 이어져서 컴파일이 실패하는 것은 심각한 에러가 되는 셈이다.

그리고 괄호들이 닫히지 않은 채로 구문을 종료하는 세미콜론이 나오면 일반 에러이지만.. 그 상태로 파일 내용이 끝나 버리면 보통 심각한 에러로 간주된다.

에러 말고 경고는.. 컴파일러들이 경고를 이미 여러 단계로 분류해 놓은 편이다. 가령, 초기화되지 않은 변수를 사용하는 것은 다소 심각한 수위의 경고이지만.. 선언만 해 놓고 사용하지 않은 변수는 상대적으로 덜 심각한 경고이다.

또한 요즘은 정적 분석기가 함수 인자의 annotation까지 참조해서 미주알고주알 지적해 주는 잠재적 오류 가능성도 경고의 연장선이라고 볼 수 있다. "null 포인터를 참조할 가능성이 있다, 버퍼 오버런이 발생할 수도 있다" 따위 말이다.
요즘 세상에 코딩을 글쓰기에다 비유하자면 컴파일· 빌드는 인쇄· 배포에 대응하고, 정적 분석은 맞춤법 검사기와 비슷해 보인다.

2. 빌드 툴들이 말귀를 도무지 못 알아들을 때 확인해 볼 사항

  • 그 소스 파일이 프로젝트에 포함돼 있긴 한가? 포함돼 있더라도 혹시 exclude from build 이런 낚시 옵션에 걸려 있지 않은가?
  • 문제의 구간이 #if 조건을 만족하는 구간에 속해 있는가?
  • 명칭이 이상한 매크로 때문에 다른 엉뚱한 형태로 치환되고 있지는 않은가? (주로 C)
  • C++의 경우, 복잡한 namespace나 using 으로 인한 문맥 차이가 존재하지 않는가?
  • 링크 에러의 경우, extern "C"로 인한 name mangling 방식 차이가 존재하지 않는가?

3. 빌드 속도

특별히 다른 부하가 걸린 게 없는 멀쩡한 개발자용 평균 사양의 2~3GHz급 컴터에서.. 2000줄 이하의 평범한 복잡도의 C++ 소스 파일이.. (IOCCC 입상작급 기괴한 난독화, 다단계 템플릿, namespace, #define 떡칠, 다중 다단계 상속 등의 남발.. 이 아닌 "평범한". -_-)
그것도 네트웍도 아닌 로컬 환경에서, 더구나 딱히 빡세게 최적화를 걸지도 않은 디버그 빌드가 컴파일하는 데 개당 0.8초 이상씩 걸리는 건.. 본인은 납득하기 어려운 상황이라고 간주한다. 소스 코드의 #include 구조 및 빌드 시스템에 문제가 있을 가능성이 높다.

당장 precompiled header가 제대로 적용돼 있는지, 덩치 큰 라이브러리 헤더의 연쇄 인클루드와 파싱이 무식하게 매번 반복되고 있지 않은지부터 확인해야 한다. 저건 컴터한테나 인간에게나 좋지 않은 상황이다.
DB 테이블로 치면 primary key 지정이나 인덱싱과 비슷한 최적화가 필요하다.

4. 안드로이드 앱용 JNI 라이브러리의 빌드

(1) 안드로이드 앱을 개발할 때, 겉에서 돌아가는 java 내지 kotlin 코드 기반의 프로그램이야 로컬 환경에서 Android Studio로 간편하게 빌드할 수 있다. 이 IDE는 Windows용과 mac용이 모두 깔끔하게 존재한다.
하지만 이 앱이 내부적으로 사용하는 native code 라이브러리들의 빌드 환경은 내 경험상 mac이건 리눅스건 여전히 유닉스 기반 터미널에 의존하고 있다. Windows에서 바로는 안 된다는 게 특이한 점이다.;; JNI 쪽 빌드도 IDE와 연계해서 같이 되게 할 수는 없는지..

(2) 디버깅도 앱은 breakpoint와 step in/out/over, 지역변수 값 확인, call stack 같은 통상적인 방법론이 IDE 차원에서 모두 지원되는 반면, 그 아래의 라이브러리는 그렇게 할 수 없다. 그런 내부 동작은 로그 printf 신공에 의존해서 추적하는 수밖에 없으니 몹시 불편하다.

(3) 그래도 이런 라이브러리들은 빌드 시스템이 멀티코어/멀티스레드 환경과 굉장히 잘 연계하는 편이다. 그래서 고성능 빌드 서버에서 make -j8 , -j16 이런 식으로 코어 수를 늘려 주면 빌드 속도가 정말 눈에 띄게 매우 빨라진다.
그런데 이 시설에도 이 기능에도 매우 아쉬운 점이 있는데... 코어 수가 늘어나면 빌드 에러 메시지도 진짜 정신없게 중구난방으로 튀어나와서 확인이 어려워진다는 것이다.

Visual Studio처럼 메시지의 앞에 코어 내지 프로젝트의 번호라도 좀 찍어 주면 읽기가 좀 더 수월할 텐데 말이다.
그리고 터미널 접속 프로그램의 본좌인 putty에는 특정 단어나 문자열이 등장했을 때 highlight를 시켜 주는 간단한 기능이 좀 있었으면 좋겠다.

putty는 20년이 넘게 0.x대의 버전 번호를 고수하고 있고, 유니코드(W)가 아닌 ANSI API를 사용하는 게 이색적이다.
ANSI API, 0.x 버전, 크로스 플랫폼 공개 소프트웨어라는 점에서는 DOSBOX하고도 무척 비슷하다.

5. 구조체 전방 선언의 부작용(?)

C/C++ 코드에서는 모듈 간의 include 의존도(= coupling)을 낮추기 위해서 자신이 내부적으로 취급하는 구조체는 불완전하게 전방 선언만 명칭만 노출하는 경우가 많다. 외부에서는 전방 선언 구조체의 포인터만 핸들 마냥 갖고 있고, 실제 조작은 실제 내부 구조를 아는 함수의 호출을 통해서를 하는 것이다. 뭐, 이게 C++이 말하는 정보 은닉과도 일맥상통하는 개념이며, 충분히 바람직한 디자인 패턴이다.

하지만 디버깅을 하는 상황이라면 어떨까..??
조작하는 함수로 들어가기 전에, 즉 밖에서 breakpoint를 걸었다. 이때도 이 포인터가 가리키는 구조체 내용을 좀 조회할 수 있었으면 좋겠는데 그게 Visual Studio IDE에서 안 돼서 답답했던 경우가 많다. 그렇다고 구차하게 소스 코드를 고쳐서 디버깅일 때에 한해서 감춰 놓은 내부 구조체 몸체 선언 include를 시키고 싶지도 않다.
특정 상황에 한해서 컴파일 때는 참고하지 않는 다른 소스 코드의 디버깅 정보를 가져오는 기능이 있으면 좋을 것 같다.

6. 나머지

(1) 컴파일러와 링커는 오늘날까지도 환경 변수라는 게 쓰이는 얼마 안 되는 분야이기도 하다. 환경 변수라는 게 명령줄에서 실행 파일을 자동으로 찾는 PATH, 그리고 컴파일러가 사용하는 기본 include 및 라이브러리 디렉터리... 이것 말고는 쓰이는 곳이 정말 드물지 않은가? 자체적인 환경 설정 파일 같은 게 동원될 법도 한데 컴파일러와 링커는 GUI 프로그램이 아니다 보니 좀 더 저수준이면서 실행되는 세션별로 사용자가 값을 더 간단하게 변경할 수도 있는 환경 변수를 대신 선택한 것 같다.

(2) 과거에 도스용 Turbo C/C++ 같은 물건은 굳이 프로젝트 파일을 안 만들어도 소스 하나만 단독으로 달랑 열어서는 곧장 빌드해서 돌려 볼 수 있었다. 그러나 요즘 개발툴들은 단순 텍스트 에디터 이상의 매우 복잡하고 방대한 물건이기 때문에 그렇게 할 수 없다. Hello world! 한 줄짜리 프로그램을 만들더라도 최소한의 프로젝트 세팅은 한 뒤에야 빌드와 디버깅이 가능하다.

(3) 그리고 요즘 개발툴들은 여러 소스 파일들을 한데 묶은 프로젝트로도 모자라서.. 프로젝트도 여러 개를 한데 묶은 '솔루션, workspace'라는 개념으로 운용된다는 것이 주지의 사실이다. 이 정도는 돼야 좀 규모 있는 소프트웨어를 원활히 개발 가능하기 때문이다.

(4) 컴터 프로그램 개발을 하다 보면.. 디버깅 로그가 실시간으로 뜨게 해 놓은 채로 디버기 프로그램을 구동하고 일정 주기로 결과를 확인할 때가 있다.
그런데 이때 프로그램이 출력하는 로그만 넣는 게 아니라, 사용자가 로그에다가 인위로 "=======" 같은 가로줄 같은 걸 즉석에서 추가할 수 있으면 좋겠다는 생각이 든다. 한 프로그램에서 동작 시험을 여러 번 할 때 로그의 영역을 하기 위해서이다.

(5) 앞으로는 "주 메모리에 로드되어 실행된 프로그램 / 하드디스크에 설치돼 있는 프로그램 / 원본 설치 패키지"라는 소프트웨어의 통상적인 3단계 구분이 더 모호해지고 단순화되지 않을까 생각된다.
일단 웹 프로그램은 설치라는 과정이 없는 게 확실하며, 메모리 계층에서 보조 기억장치와 주 메모리의 구분이 모호해지는 것도 이런 추세를 더욱 부채질할 테니 말이다.

Posted by 사무엘

2021/06/26 08:35 2021/06/26 08:35
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1903

컴퓨터 소프트웨어계에는 이미 작성되어 있는 프로그램을 실제로 돌려 보지 않고(샌드박스 가상 머신 안에서..) 형태만 들여다보고는 버퍼 오버런이나 메모리 누출 같은 잠재적 위험성 및 논리 결함을 어느 정도 찾아 주는 '정적 분석'이라는 기술이 존재한다. 그 프로그램이 기계어 바이너리 형태이건, 고급 언어 소스 코드이건 형태는 무엇이건 상관없다.

그런데 정적 분석 툴은 그 누가 만든 것이라도 원천적으로 이론적으로 근본적으로 100% 정확하게 작동하지는 못한다.
이에 대해서 "아니 소스 코드가 무슨 자유 의지를 지닌 생명체도 아닌데 그 뻔한 로직을 분석해서 결과를 사전 예측하는 게 그렇게 어려운가? 단순히 소모하는 메모리와 계산량만 많아서 어려운 거라면 컴퓨터의 성능빨로 극복 가능하지 않은가? AI 기술을 접목하면 되지 않는가?" 처럼 생각하기 쉽다.

하지만 그렇지 않다. 그 말은 저런 차원이 아니다.
그런 함수는 단순히 현실적으로 구현하기가 어려운 정도가 아니라 논리 차원에서 모순에 빠지며 존재 불가능하기 때문이다. "모든 창을 막는 방패와 모든 방패를 뚫는 창 세트"와 동급으로 존재 불가능하다~! 창이나 방패의 제조 기술과는 무관하게 말이다.

가장~~ 원초적인 정적 분석 프로그램을 생각해 보기로 한다.
분석할 대상인 프로그램 코드, 그리고 그 프로그램에다가 넘겨줄 입력 데이터.
이 둘을 인자로 받아서 이 프로그램의 시시콜콜한 무슨 메모리 문제 따위를 진단하는 게 아니라..
이 프로그램이 무한 루프에 빠지지 않고 실행이 종료되기는 할지를 정확하게 판단해 주는 bool DoesThisProgramReturn(func, argument) 라는 가상의 함수 프로그램을 생각해 보자.

argument는 현실의 프로그램으로 치자면 명령 인자뿐만 아니라 프로그램이 파일이나 네트워크 형태로 읽어들이는 방대한 입력 데이터까지 모두 포함하는 개념이다. "일괄 처리 형태가 아니라 입출력이 실시간으로 들어오는 프로그램은요?" 이건 이 시점에서 그리 중요한 문제가 아니니 논외로 한다.
func는 뭐.. C/C++로 치면 기계어 코드를 가리키는 함수 포인터 정도로 생각하면 이해하기 편하겠다.

당연한 말이지만 저 함수 자체는 절대로 무한 루프에 빠지지 않고 언제나 유한 시간 안에 답이 나오는 게 보장된다. 무한 루프에 빠지는 프로그램을 의뢰했더라도 말이다. 그러므로 DoesThisProgramReturn(DoesThisProgramReturn, xxx)는 xxx로 무엇을 넘겨주건 그 정의상 리턴값이 언제나 true가 된다.

그럼.. 저 가상의 함수는 어떤 식으로 동작할지를 생각해 보자.
func가 가리키는 코드를 읽으면서 while(true); 같은 패턴을 발견한다거나,
더 구체적으로는 예전에 한번 거쳤던 state와 동일한 state로 이미 지났던 지점을 또 지나는 게 감지되면.. 이 프로그램은 실행이 끝나지 않는다는 결론을 내릴 수 있을 것이다.

이거 만델브로트(망델브로) 집합을 그릴 때 주어진 복소수의 발산 여부를 판별하는 것과 비슷하게 느껴진다.
배배 꼬인 복잡한 프로그램에서는 좀 어렵겠지만 그래도 도저히 불가능한 문제는 아니어 보이는데..??

하지만 튜링 기계는 우리가 흔히 생각하는 것보다 자유도가 더 높은 계산 모델이다.
메모리에 저장된 주소값에 해당하는 다른 메모리의 값을 마음대로 읽고 쓸 수 있을 뿐만 아니라(= 포인터) 거기 저장된 데이터를 코드로 간주해서 실행할 수도 있다(= 함수 포인터).

재귀 호출도 되고.. 또 앞서 살펴보았듯이 DoesThisProgramReturn 자신조차도 튜링 기계에서 실행되는 함수이기 때문에 DoesThisProgramReturn의 인자로 전달할 수 있다. 그리고 분석 대상인 타 함수가 얘를 또 호출할 수도 있다.
이런 상황까지 다 허용 가능해야 한다면 DoesThisProgramReturn의 존재 가능성은 굉장히 난감해진다.

아래와 같이.. DoesThisProgramReturn가 true라고 판정한(= 실행이 끝난다) func에 대해서는 "반대로" 자신이 무한 루프로 가 버리고, 실행이 끝나지 않는 함수에 대해서는 실행을 끝내는 HangIfReturns이라는 함수를 정의해 보자.

bool HangIfReturns(func) {
    if (DoesThisProgramReturn(func, func)) while(true);
    return true;
}

그러니 HangIfReturns(DoesThisProgramReturn)을 하면.. 얘는 무한 루프에 빠지게 된다.
DoesThisProgramReturn은 자기 자신에 대해서는 앞서 정의한 바와 같이 언제나 true를 되돌리고(= 늘 깔끔하게 실행 종료) if문을 만족하기 때문이다. 여기까지는 쉽다.

하지만 반대로 HangIfReturns가 DoesThisProgramReturn의 인자로 들어가면 어떤 일이 벌어질까? DoesThisProgramReturn(HangIfReturns, HangIfReturns)는 리턴값이 무엇이 되는 게 이치에 맞을까? 이제 좀 머리가 복잡해질 것이다.

DoesThisProgramReturn(HangIfReturns, HangIfReturns)가 true라면.. HangIfReturns 안의 if문은 true가 되므로 HangIfReturns은 무한 루프에 빠진다. 그러면 저 함수의 리턴값은 원래 false가 되어야 하게 된다.
반대로 저 리턴값이 false라면.. 역시 이제 HangIfReturns는 실행이 깔끔하게 종료되므로 저 함수의 리턴값을 정면으로 부정하는 결과가 나온다.

요컨대 HangIfReturns가 무한 루프에 빠지는지의 여부는 DoesThisProgramReturn의 리턴값에 따라 달라지는데, 이 과정에서 서로 물고 무는 구조적인 모순이 발생하는 셈이다.
이 모순은 DoesThisProgramReturn라는 함수가 존재한다는 가정으로부터 비롯되었다. 그러니 튜링 기계 하에서 다른 코드의 실행 종료 여부를 완벽하게 판단하는 코드를 똑같은 튜링 기계 기반으로 구현하는 것은 불가능하다는 것이 입증된다.

이 논리는 "정지 문제"(halting problem)이라고 불리며, 컴퓨터라는 기계의 계산 가능 범위를 고민하게 하는 매우 탁월한 통찰이다. 이걸 처음으로 생각해서 논문으로 발표한 사람이 바로 그 이름도 유명한 앨런 튜링이다.

과학 철학에서 "반증 가능한가", 천문학에서 "관측 가능한가"처럼.. 전산학에서는 "계산 가능한가, 튜링 기계를 돌려서 답을 구할 수 있는 문제인가"가 중요한 고민거리가 된다. 계산 자체가 이론적으로 가능해야 그 다음 관심사는 "실용적으로 유의미한 시간 만에 빨리 해결할 수 있는가?", 더 구체적으로는 "입력 크기 N에 관한 다항식 급의 시간 안에 해결 가능한가 (팩토리얼이나 지수 함수 급이 아니라)"라는 시간 복잡도가 될 것이다.

TSP(순회하는 세일즈맨) 문제 같은 NP-완전 문제는 이론적으로 알려진 시간 복잡도가 너무 높기 때문에 실생활에서는 적당히 성능이 좋은 다항 시간 근사 알고리즘이 쓰인다.
그래도 정지 문제는 3-SAT 문제라든가 NP-완전처럼 시간 복잡도를 따지는 증명보다는 덜 난해하고 직관적인 설명도 가능하기 때문에 수식 없이 블로그에다 증명 방식을 소개도 할 수 있다. 현실에서는 논리적으로 100% 완벽하고 헛점이 없고 100% 정확하게 동작하지는 못하지만 그래도 현실적으로 충분히 정확하고 속도도 적절한 각종 소스 코드 정적 분석 기능이 개발되어 쓰이고 있다.

Posted by 사무엘

2021/05/24 19:36 2021/05/24 19:36
, , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1891

1. 비트 연산 관련 버그

프로그래머가 살면서 설마 컴파일러의 버그를 볼 일이 얼마나 될까? 이건 마치 버스· 트럭· 택시 등 운전으로 먹고 사는 기사 아저씨가 잘 가다가 차량의 엔진 결함이나 급발진을 경험하는 것만큼이나 끔찍한 경험일 것이다.

본인은 최적화 옵션을 빡세게 주고 나면 Visual C++ 컴파일러가 비트 연산 쪽으로 유난히도 말귀를 못 알아먹는 현상을 종종 목격했다.
7년쯤 전에 VC++ 2010 기준으로 (1) bit rotate 연산을 <<, >> | 따위로 구현한 게 제대로 동작하지 않는 것을 목격했다. 그 함수만 #pragma를 줘서 최적화를 강제로 꺼야 오류가 발생하지 않았다.

그리고 2019년쯤에는 (2) WORD, BYTE 따위를 비슷한 연산으로 한데 합쳐서 DWORD를 만들려고 했는데.. 이것도 변수 내용을 강제로 로그를 찍으면 문제가 없지만 간단하게 값만 되돌리게 하면 틀린 값이 돌아왔다.
인라인 함수, 매크로 함수, 최적화 강제 해제 등 별별 방법을 써도 소용없어서 결국은 무식하게 memcpy로 값을 오프셋별로 강제 복사해서 문제를 회피해야 했다.

그 뒤, 19.5.x급으로 그 당시로서는 최신 업데이트가 적용됐던 Visual C++ 2019에서 더욱 황당한 일을 겪었다.
내가 하고 싶은 일은 8비트 char 값을 그대로 부호 없는 형태로만 바꿔서.. 즉, -3을 253으로만 바꾼 뒤 다른 산술 연산 처리를 하는 것이었다. 그런데 (3) 컴파일러가 말귀를 못 알아듣고 숫자를 32비트로 취급하면서 앞에 0xFFFFFF00를 제멋대로 붙였다.

숫자는 내가 기대한 것보다 엄청나게 큰 값으로 바뀌었으며, 프로그램은 이 때문에 오프셋 계산을 잘못해서 메모리 오류가 발생했다. 내가 아무리 강제 형변환 연산을 집어넣어 줘도 오류는 없어지지 않았다. 계산값에다가 원래는 할 필요가 없는 &0xFF 필터링을 강제로 하거나, 이 역시 최적화를 꺼야만 오류가 사라졌다. 이런..

이 세 사례는 모두 비트 연산 + 최적화와 관련된 컴파일러의 난독증이라는 공통점이 있었다. 2010으로 32비트 코드를 빌드하던 시절이나, 2019로 64비트 코드를 빌드하던 시절이나 마찬가지이니.. 딱히 버전과 아키텍처를 가리지도 않는 것 같다.

더 자세한 정황을 나열하지 못하는 이유는 이것들이 전부 방대한 회사의 코드를 취급하다가 발생한 일이기 때문이다. 그래서 동일 문제를 재연할 수 있는 최소한의 케이스를 따로 분리할 수가 없다. 그 함수만 텅 빈 프로젝트에다가 떼어내서 돌리면 당연히 문제가 발생하지 않는다.
하지만 동일 코드를 사용하여 macOS, 안드로이드 등 타 플랫폼에서 돌아가는 제품에서는 버그가 발생하지 않으니 이건 일단 Visual C++만의 문제라고 봐야 할 듯하다.

2. UTF-8 지원 여부와 미스터리한 오동작

Windows는 전통적으로 ANSI 인코딩(?) 천국이던 운영체제였다. 그래서 유니코드 자체는 진작부터 지원했지만 UCS-2 내지 UTF-16 같은 별도의 2바이트 단위 인코딩 형태로만 지원하는 것을 선호했다. 1바이트 단위 인코딩인 UTF-8의 형태로 지원하는 것에는 대단히 보수적이고 인색했다.

오죽했으면 Visual C++이 취급하는 리소스 스크립트 *.rc라든가 resource.h의 기본 포맷도 유니코드 기반으로 바뀌긴 했는데.. UTF-8이 아니라 UTF-16으로 바뀌었다. 거 참..

그래도 세월이 흐르니 마소에서도 대세를 거스를 수 없는지라, 명령 프롬프트에서 제한적이나마 65001 UTF-8 코드 페이지를 지원하기 시작했다. Windows 10 19xx 버전부터는 메모장이 기본으로 지정하는 텍스트 저장 인코딩이 UTF-8로 바뀌기도 했다.
심지어 Visual C++ 컴파일러 역시 UTF-8 인코딩의 소스 코드를 인식하기 시작했다. 단...!! 이건 2% 부족한 아쉬운 면모가 좀 있다.

바로.. 파일 앞부분에 BOM이 있을 때만 UTF-8로 인식한다는 것이다. 그렇지 않으면 그냥 ANSI이다.
소스 코드의 인코딩을 강제로 지정하는 옵션이 소스 코드 내부에 #pragma 같은 형태로 좀 있었으면 좋겠지만 그렇지는 않다. #pragma code_page라는 게 있긴 한데, C 문법을 일부 빌려 온 리소스 스크립트에만 쓰인다.
파일 내부 대신, 컴파일러의 옵션으로 /source-charset:utf-8 요런 게 존재하고, 줄여서 그냥 /utf-8이라고만 해도 된다.

생각해 보면 설정이 하나만 있는 것으로 충분하지 않다. 소스 코드 자체는 인코딩이 UTF-8인데 그 안에서 L로 둘러싸이지 않은 "한글"이라는 문자열 리터럴은 KS X 1001로, 즉 길이가 4바이트이고 전체 크기가 5바이트인 문자열을 의도한 것일 수 있다. 그렇게 실제로 의도된 인코딩을 지정하는 옵션은 /execution-charset이라고 따로 있으며, /utf-8은 두 charset을 모두 utf-8로 지정한 것과 같은 효과를 낸다.

그런데 컴파일러는 그렇게 인식시키면 되지만 에디터의 동작에 여전히 함정이 남아 있다.
BOM도 없고 딱히 한글· 한자 같은 문자도 없이 모든 문자열이 간단한 1바이트 숫자· 알파벳 따위로만 구성된 평범한 파일의 경우, Visual Studio IDE는 얘를 기본적으로 ANSI 인코딩 파일로 간주한다. 그 파일에 나중에 한글· 한자가 부주의하게 추가된다면 인코딩이 영락없이 잘못 지정될 수 있다. 이 기본 동작을 고치는 방법이 있는지는 난 아직 모르겠다.

그런데 그렇다고 BOM을 넣어 버리면..?? BOM은 Windows 동네에서나 통용되지, 리눅스 등 타 운영체제에서는 그냥 민폐 덩어리인 문자이다. 소스 파일의 앞에 저런 문자가 떡 있으면 컴파일러가 잘못 먹고 체하는 수가 있다.
그러니 한 소스를 여러 플랫폼에서 공유하는 경우, 모든 코드의 인코딩은 그냥 닥치고 BOM 없는 UTF-8로 통일하는 게 안전하다. 이 문제에 관한 한은 Visual C++이 타 빌드 툴들의 표준 관행에 맞춰 줘야 한다. BOM는 이식성을 저해하기 때문이다.

모종의 이유로 인해 Visual C++에서 소스 코드의 인코딩이 잘못 인식되면 빌드 과정에서 깨진 문자가 있다고 C4819라는 경고가 발생한다. 깨진 문자가 주석 내지 조건부 컴파일에 걸려서 어차피 빌드되지 않는 영역에 있을 때는 저게 딱히 문제될 게 없다. 단지, 문자열 리터럴 내부에 들어있던 한글· 한자가 깨지면 심각한 문제가 될 것이다.

그런데 내 경험상.. 주 번역 단위에 해당하는 소스 파일과, 걔가 인클루드 하는 헤더 파일 간에 인코딩이 다를 때도 상당히 골치 아픈 문제가 발생하곤 했다.
C4819 말고도 C4828이라고 파일의 줄 수가 아닌 오프셋 운운하면서 굉장히 기괴한 경고가 떴다. 최신 컴파일러에서는 이 경고가 삭제되었는지 조회되지도 않더라.

그리고 정말 믿을 수 없지만 컴파일러가 완전히 뜬금없는 에러를 내면서 동작을 멈췄다. 실제로 문법 오류가 전혀 없는 구문에서도 쓸데없는 에러가 발생했으며, 그 소스 파일에 실제로 존재하지 않는 칸 번호를 언급하기도 했다.
이렇게만 말하는 나도 황당하고 읽는 분들도 상황을 받아들이지 못하시겠지만.. 내가 실제로 겪은 상황이 저랬다.

이 역시 회사에서만 겪었기 때문에 정확· 엄밀하게 재연 케이스를 만들지는 못하겠다. 아까 얘기했듯이 (1) /utf-8 옵션을 global하게 준 상태에서 소스와 헤더 파일들의 인코딩이 충돌 난 것, 그리고 아마도 (2) precompiled 헤더를 쓰는 소스와 그렇지 않은 소스가 한 프로젝트 안에서 좀 뒤섞여 있는 것, (3) namespace와 using이 좀 복잡하게 얽혀서 인텔리센스도 오락가락 하는 상황인 것이 다 조금씩 영향을 주지 않았을까 생각된다.

이 난국은 모든 코드의 인코딩을 BOM 없는 UTF-8로 정리하고, 모든 코드에다가 한글로 dummy string을 만들어서 Visual Studio IDE가 파일을 ANSI (cp949) 인코딩으로 잘못 저장하는 일이 없게 조치를 취함으로써 해결되긴 했지만..
그때 그 문제가 왜 발생했으며 그 상황을 어떻게 재연할 수 있는지는 모른 채 미스터리로 남게 되었다.

회사에서는 길지 않은 기간 동안에도 이 정도의 이상한 버그를 몇 차례 경험했는데.. 개인적으로 날개셋 한글 입력기를 20여 년 가까이 만들어 온 동안은 컴파일러의 버그를 경험한 적이 거의 없다는 것이 참 신기하다. IDE야 불필요하게 다운되거나 뻗는 버그를 여럿 경험했지만 컴파일러가 문제를 일으킨 적은 없었다.
모든 코드가 깔끔하게 KS X 1001 레거시 인코딩이고, 회사 코드보다는 규모가 작고 모듈 구조가 깔끔하고, 전부 precompiled 헤더를 사용하기 때문이 아닌가 생각한다.

소스 코드의 인코딩이 UTF-8이 아니거나, UTF-8이더라도 앞에 BOM이 있는 것 자체를 경고로 처리하는 건 너무 과격할까? 그리고 #include에서 경로 지정을 /가 아닌 \로 한 걸 경고로 처리하는 옵션도 있으면 좋겠다. 이런 건 Windows 환경에서나 통용되지 밖에서는 전부 민폐 에러 요인이 되기 때문이다. 본인이 직장의 공동 작업 과정에서 종종 실수했던 적도 있는 사항들이다.

3. 인텔리센스의 오동작

끝으로, 이건 실제로 생성된 exe/dll의 동작과 관계 있는 치명적인 문제는 다행히 아니지만.. Visual C++ IDE가 텍스트 에디터에서 사용하는 인텔리센스도 일부 특이한 상황에서는 말귀를 못 알아듣고 오동작할 때가 있다.

본인이 겪은 경우는 클래스(가령 A)의 선언 내부에 MFC의 DECLARE_DYNAMIC 같은 복잡한 custom 매크로를 넣은 뒤, 곧장 private/public/protected 같은 접근 권한 지정자가 나올 때이다. 그러면 인텔리센스가 그 뒤에 이어지는 멤버 및 내부 enum/class (가령 B) 따위 선언을 파싱을 제대로 못 한다. ClassView를 보면 A의 멤버 목록에 B의 멤버들이 잘못 표시되며, B 선언 이후에 등장하는 A의 진짜 멤버들은 전혀 인식되지 않는다.

ClassView뿐만 아니라 텍스트 에디터에다 불러온 소스 코드에서도 각종 경고와 에러 밑줄이 A의 멤버들이 누락된 것처럼 쭈루룩 뜬다.
그렇기 때문에 A 클래스의 구현부에서는 인텔리센스와 자동 완성, 심벌 위치 조회 같은 기능들을 활용하지 못하면서 코딩을 꽤 불편하게 해야 한다.

이런 초보적인 문제는 Visual C++ 6 ncb 시절에나 보던 게 아니었나? 왜 발생하는지 모르겠다.
최신 업데이트를 적용한 Visual C++ 2019에서도 동일하게 발생한다. 본 컴파일러가 아니라 인텔리센스 컴파일러이니 딱히 특정 Visual C++ 컴파일러 툴킷만의 문제도 아닐 것이다.

뾰족한 해결책은 없고, 인텔리센스를 헷갈리게 하는 그 문제의 매크로를 클래스 선언의 맨 앞이 아니라 맨 뒤로 옮김으로써 문제를 회피할 수 있었다. 흠...

4. 도킹 하다가 뻗음

역시 컴파일러가 아닌 IDE 얘기이고, 옛날 버전에서만 발생하는 문제이기 때문에 지금 큰 의미는 없지만..
Windows 10 19xx대 버전부터인가 Visual Studio 2013 (그리고 아마 2015도)에서 각종 문서 편집 창이나 보조 윈도우(출력, 속성, 디버그 등등)를 어디에든지 도킹을 해서 붙이면 프로그램이 뻗어 버린다.

2010이 언제부턴가 실행될 때 Microsoft.Vsa.tlb 파일이 없다는 에러를 내는 것과 비슷한 현상인 것 같다. 그래도 얘는 정상 실행은 되고 프로그램 사용에 문제가 없는 반면, 저건 창을 내 마음대로 배치할 수 없게 만들고 프로그램이 뻗기까지 하기 때문에 상당히 심각한 문제이다.
저런 단순 UI는 운영체제건 VS건 한번 만들고 나서는 고칠 일이 없는 기능일 것 같은데.. 둘 다 내부적으로 뭘 건드리길래 이런 부작용이 발생하는 걸까..??

하긴, 더 옛날엔 Visual Studio 2005도 Windows Vista에서 실행하려면 sp1에다가 Vista 지원 추가 패치까지 설치해야 겨우 돌릴 수 있었다. 아래아한글 2005와 2007도 Vista 이후의 운영체제에서 실행하려면 업데이트부터 대판 설치해야 했었으니 이런 예가 전혀 없지는 않구나.

어떤 프로그램이 후대의 운영체제에서 단순히 GUI나 외형의 glitch 정도가 발생하는 걸 넘어 아예 뻗고 실행이 안 되는 건.. 대부분 보안 강화 때문이지 싶다. 문서화되지 않고 미래에 얼마든지 달라질 수 있는 특성이나 동작에 의존하게 프로그램이 만들어진 경우야 걔의 잘못이겠지만, 흔한 경우는 아닐 것이다.

Posted by 사무엘

2021/05/19 08:35 2021/05/19 08:35
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1889

프로그래밍에서 메모리를 가리키는 포인터라는 건.. 그 특성상 돌아가는 컴퓨터의 machine word와 크기가 동일하다. 하지만 현실에서 포인터(= 메모리 주소)를 구성하는 모든 비트가 골고루 쓰이는 일은 몹시 드물었다.

먼저, 컴퓨터의 실제 메모리 양이 포인터가 가리킬 수 있는 범위보다 훨씬 적다. Windows의 경우, 32비트 시절에는 user mode에서는 대부분의 경우 포인터의 상위 비트가 언제나 0이었던 것이 잘 알려져 있다(하위 2GB까지만 사용).
하물며 64비트는 공간이 커도 너무 크기 때문에 가상 메모리 관리 차원에서도 아직은 40~48비트까지만 사용한다. 상위의 무려 16비트가량이 쓰이지 않는다는 것이다. 램이 32GB여도 겨우 35비트면 충분하니까..

가난하고 배고프던 20세기 16비트 시절에는.. 반대로 포인터 하나만으로 겨우 몇백 KB~수 MB 남짓한 메모리도 한번에 다루지 못했다. 그래서 far 포인터니 huge 포인터니 별 삽질을 다 해야 했는데 그때에 비하면 지금은 격세지감이 따로 없다.

저렇게 상위 비트뿐만 아니라 하위 비트도 마찬가지이다. padding, align 같은 이유로 인해, 메모리 할당 함수의 포인터 리턴값이 홀수가 될 일은 일반적으로 없다. 아니, 겨우 2의 배수가 아니라 4나 8의 배수가 될 수도 있으며, 이 경우 하위 2~3개 비트도 0 이외의 값을 가질 일이 없게 된다.

그러니 포인터를 저장하는 공간에서 0 이외의 값이 들어올 일이 없는 비트에다가 자신만의 정보를 넣는 꼼수를 부리는 프로그램이 예로부터 줄곧 존재해 왔다.
이거 무슨 변태 같은 짓인가 싶지만.. 이제 막 32비트로 넘어가긴 했지만 아직 가정용 컴퓨터들의 평균적인 메모리 양이 수 MB대밖에 안 됐던 시절이 있었다. 이때는 메모리가 부족해서 하드디스크 스와핑이 일상이었다. RAM을 1바이트라도 더 아끼는 최적화가 필수였다.

가령, 다재다능한 자료구조인 빨강-검정 나무를 생각해 보자.
노드의 색깔을 나타내는 겨우 1비트짜리 정보를 위해서 굳이 bool 멤버를 추가하는 건 굉장한 낭비라는 생각이 들지 않는가? 단 1비트 때문에 구조체 패딩까지 감안하면 무려 2~4바이트에 달하는 공간이 매 노드마다 허비되기 때문이다.
안 그래도 노드의 내부엔 left/right 같은 딴 노드 포인터가 있을 것이고, 포인터 내부에 쓰이지 않는 1비트 공간이 있으면 거기에다 색깔 정보를 박아 넣고 싶은 생각이 들 수밖에 없다. 비트필드와 포인터의 union 써서 말이다.

물론, 그렇게 0으로만 채워지던 공간을 운영체제에서도 나중에 유의미하게 사용하기 시작하면.. 그 꼼수 프로그램은 재앙을 맞이하게 된다.
대표적인 예로 마소에서는 32비트 기준으로 사용자:커널이 통상적인 2GB:2GB가 아니라 3GB:1GB로 주소 공간을 분할하는 기능을 Windows에다가 추가했다.

이러면 사용자 모드의 포인터도 2GB가 넘는 영역에 접근할 수 있으며 최상위 비트가 1이 될 수 있다. 그런데 포인터의 최상위 비트를 자기 멋대로 사용하고 있는 프로그램은.. 뭐 메모리 뻑나고 죽을 수밖에 없다.
64비트 환경에서는 겨우 1비트가 아니라 상위 word 전체를 다른 용도로 전용해도 당장 이상이 없으며 이 추세가 앞으로 몇 년은 가지 싶다. 컴퓨터의 램이 256~512GB나 1테라까지 간다면 모를까..

요즘 컴퓨터야 메모리가 워낙 많고 풍족하니, 굳이 저런 꼼수를 동원하는 프로그램은 별로 없을 것이다.
하지만 저 때가 되면 또 꼼수 부리는 말썽꾸러기 프로그램과의 호환성 때문에 주소 공간을 옛날처럼 상위 16~32GB까지로 봉인하는 옵션 같은 게 또 등장할지도 모른다.;;; HIGH_DPI_AWARE처럼 LARGE_ADDRESS_AWARE 시즌 2 말이다.

여담이지만 Windows의 경우, 실행 파일은 시작 주소가 언제나 64KB의 배수 단위로 부여되기 때문에 HINSTANCE/HMODULE은 아래쪽은 무려 word 덩어리가 언제나 0이 된다. 이 특성을 이용해서 운영체제의 LoadLibraryEx 함수도 하위 몇 비트를 자기 마음대로 활용하기도 한다.

※ 나머지 메모

(1) unsigned 타입에 대해서 단항 연산자 -를 적용해서 -a 이런 값을 구하는 코드를 우연히 보고는 개인적으로 신박하다는 생각이 들었다. 흐음~ Visual C++의 경우 이건 원래 경고인데, 요즘 버전에서는 더 엄격하게 에러로 처리하는가 보다.
-a는 2의 보수의 특성상 ~a+1과(비트 not보다 1 크게) 완전히 동일한 효과를 내며, 앞에 0을 붙여서 이항 연산자로 만들어도 에러를 회피할 수 있다.

(2) ANSI C에서는 함수의 prototype을 선언할 때 매개변수 리스트에 타입만 써 넣고 이름을 빼먹으면 안 된다는 걸 최근에야 알게 됐다.
아니 도대체 왜..? 거기서 매개변수의 이름은 거의 잉여 옵션에 불과할 텐데.. void func(int);라고만 쓰면 틀리고 void func(int x);라고 아무 이름이라도 붙여야 된다는 것이다.
이건 먼 옛날에 C언어에서 void func(a) int a; 같은 구닥다리 문법이 쓰이던 시절의 잔재인 것 갈다.

Posted by 사무엘

2021/05/15 08:35 2021/05/15 08:35
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1887

컴퓨터그래픽에서 벡터 그래픽의 반의어로 픽셀과 비트맵을 다루는 체계를 래스터 그래픽이라고 흔히 부른다. 종이가 아니라 해상도가 상대적으로 낮은 모니터 화면이 주 무대이고, 면을 채우는 기본 단위가 scan line(주사선)이라는 관점에서 정립된 용어이다.

그리고 2D 비트맵(더 정확한 명칭은 래스터..?) 그래픽 API를 보면 어떤 플랫폼용 어떤 언어의 라이브러리이든지 점과 직선, 곡선을 그리는 함수가 있고, 사각형과 원을 그리는 함수가 있다. 이게 기본이다.
점이나 사각형이야 그리는 방식이 너무 trivial하니 제끼고, 원이나 곡선을 빠르게 그리는 원리는 기하 알고리즘의 일종으로 다뤄지기도 한다. 그 단순한 직선조차도 굵기가 2픽셀 이상이 되면 중심점을 생각해야 할 것이고, 무거운 부동소수점 연산 없이 anti-aliasing까지 하면서 그린다는 조건이 추가되면 결코 쉽지 않은 일이 된다.

그리기 기능 중에서 특정 픽셀부터 시작하는 flood fill은 무척 독특한 동작이다. 기하 알고리즘이라기보다는 스택 메모리를 동원해서 컴에게 길 찾기 재귀호출 노가다를 시키는 코딩의 영역이다. 빼곡한 미로의 내부에 있는 한 점에서 flood fill을 시켜 보면 이건 본질적으로 길 찾기와 다를 바 없다는 걸 알 수 있을 것이다.

글쎄, flood fill은 그래픽 에디터에서 사용자가 내리는 채우기 명령을 구현하는 형태로나 쓰이지, 직선과 곡선, 사각형과 원처럼 그림을 그리는 구성요소로서 프로그램이 내부적으로 사용할 일은.. 정말 아주 특수한 상황이 아니라면 없을 것이다. 도형 자체를 처음부터 내부가 채워진 형태로 그려야지, 도형의 윤곽만 그린 뒤에 도형 내부의 임의의 점을 따로 주고 채우는 건 몹시 비효율적이기 때문이다.

그래서 그래픽 라이브러리에는 다각형을 그리는 함수가 있다. 다각형의 경계선만 찍찍 그리는 것이야 LineTo만으로 얼마든지 할 수 있으므로, 이런 함수는 내부가 채워진 다각형을 그리는 것이 핵심이다. 그러니 이 함수는 다른 함수와 달리, 반드시 다각형의 꼭지점들이 담긴 배열을 전달받아야 한다.
옛날 도스 시절의 베이식은 타 언어들에 비해 그래픽 모드의 접근성이 좋았지만, 정작 다각형을 그리는 API는 없었다.

그럼 다각형을 채우는 기능은 어떤 방식으로 동작하는 걸까?
이걸 구현하기 위해서는 어떤 점이 다각형의 내부에 속하는지를 판단해야 한다. 더 나아가서 이 점에서 한쪽으로 scan line을 그어 나갈 때 어디까지가 동일하게 다각형의 내부 또는 외부인지를 판단해야 한다.

이걸 판단하는 방법은 의외로 간단하다. 그 점으로부터 아무 방향으로(예: x축 양의 방향) 한없이 직선을 그을 때, 그 선이 다각형을 구성하는 선분과 얼마나 몇 번이나 마주치는지를 판단하면 되며, 이걸 판단하는 방법도 크게 두 갈래로 나뉜다. 바로 (1) 홀짝 아니면 (2) 0여부이다.

홀짝법은 마주친 선분이 짝수 개이면 다각형의 외부이고, 홀수 개이면 내부라고 판단한다. 다시 말하지만 이 가상의 선은 정말 아무 방향으로나 그리면 된다. 다각형이 모든 방향으로 닫혀서 내부에 공간이 존재한다는 사실 자체가 이 판별법의 correctness를 보장해 준다.

0여부는.. 홀짝보다 더 절묘하다. 초기값이 0인 가중치라는 걸 두는데, 마주친 선분이 우리가 그은 가상의 선을 위에서 아래로 교차한다면 가중치에 1을 더한다. 그렇지 않고 아래에서 위로 교차한다면 1을 뺀다.
이렇게 해서 최종적으로 가중치가 양수든 음수든 0이 아닌 값이 나온 점은 다각형의 내부라고 간주하고, 0인 점은 외부라고 간주한다.

0이나 홀짝이나 그 말이 그 말 같은데.. 실제로 자기네 선분끼리 배배 꼬아서 교차하지 않는 일반적인, 평범한 오목/볼록다각형이라면 어느 판별법을 사용하든 결과에는 아무 차이가 없다.
하지만 당장 오각형 별표를 한붓그리기로 그린 궤적을 줘 보면 둘은 서로 차이를 보인다.

사용자 삽입 이미지
Windows API에서는 SetPolyFillMode라는 함수가 있어서 두 방식을 모두 사용해 볼 수 있다. 더 단순한 홀짝법이 ALTERNATE이고 기본값이다. 0여부는 WINDING... Windows 1.x 시절부터 존재해 온 오래된 고전 API여서 그런지, 매크로 상수의 앞에 접두사가 붙어 있지도 않다(PFM_* 같은?? ㅎㅎ).

오각형 별표에서 별의 중앙에 생긴 공간을 보면.. 그 옆으로 다각형 경계를 나타내는 선이 어느 방향이든 두 개가 존재한다(짝수). 그런데 이들은 방향이 둘 다 오르막 아니면 둘 다 내리막이며, 이 때문에 winding value는 nonzero가 된다. 그러니 ALTERNATE일 때는 이 공간이 비워지지만 WINDING일 때는 공간이 채워지는 것이다.

그 위의 더 복잡한 꼬인 사각형도 상황이 비슷하다. 잘 살펴보면 이 궤적도 홀수점이란 게 전혀 존재하지 않으며 한붓그리기가 가능하다.
그런데 WINDING일 때는 궤적이 꼬여서 생긴 내부의 사각형 공간 둘 중에서 좌측 하단 한 곳만 채워져 있다. 그 이유는 역시 저기서만 winding value가 nonzero이기 때문이다.

일반적으로 WINDING(0여부)이 판정하는 다각형 영역은 ALTERNATE(홀짝)의 상위 호환이다. ALTERNATE가 판정하는 영역을 100% 포함하면서 일부 영역을 추가적으로 더 판정한다는 뜻이다. 그렇다고 해서 모든 닫힌 영역을 한 치의 예외 없이 몽땅 내부라고 판정하는 건 아니다.

뭐.. 현실의 벡터 그래픽에서 이 따위 선끼리 교차하는 배배 꼬인 폴리곤을 생성하는 것은 애초부터 권장되지 않는 금지 사항이다. 가령, 속이 빈 오각별을 그리고 싶으면 저렇게 보이는 대로 삼각형 다섯 개로 풀어서 표현하라는 것이다. 윤곽선 폰트 등 벡터 그래픽 편집기들은 그렇게 폴리곤의 모양을 자동으로 수정해 주는 기능도 제공한다.
그러니 이렇게 fill mode의 차이점을 미주알고주알 관찰할 일이 현업에서는 거의 없을 것이고, 이런 건 그냥 학교에서 컴퓨터그래픽스 기초를 공부할 때 이런 방식도 있다는 걸 알기만 하고 넘어가면 될 것 같다.

하지만 그게 전부가 아니다. 다각형 채우기의 기능이 더 확장되면 다음 영역에도 도달하는데, 이때 fill mode의 차이점이 다시 드러나게 된다.

1. 여러 다각형을 한꺼번에 그리기
이건 내부에 구멍이 뚫린 다각형을 그릴 수 있다는 것에 의의가 있다. 구멍은 Polygon 함수를 연달아 호출하는 것으로는 표현할 수 없기 때문이다.

Windows에는 여러 다각형을 한꺼번에 그리는 PolyPolygon이라는 함수가 있다. 그런데 아까처럼 한 다각형에서 변들이 서로 교차하고 꼬였을 때뿐만 아니라, 변은 꼬이지 않았고 여러 다각형들의 영역이 서로 겹칠 때에도 fill mode의 차이는 유의미한 동작의 차이를 만들어 낸다.

사용자 삽입 이미지

위의 그림은.. 뭐 이론적으로는 한붓그리기가 가능하기 때문에 역시 꼬인 단일 다각형으로 궤적을 나타낼 수 있다. 하지만 앞서 예를 들었던 오각별이나 그 사각형 그림과 달리, 일부 점과 점이 겹치는 건 피할 수 없을 것이다. 무슨 말인가 하면, 저 궤적을 꼭지점 좌표의 배열로 기술했을 때, 4개의 선분과 만나는 점은 두 번 등장하는 부분이 생긴다는 것이다.

꼬인 단일 다각형이 아니라 영역이 일부 겹치는 사각형과 삼각형을 서로 떼어서 PolyPolygon으로 그린 경우.. ALTERNATE(홀짝)에서는 짝수 개의 다각형에 속하는 영역은 비우고, 홀수 개에 속하는 영역만 칠한다. 그러고 보니 동작이 뭔가 XOR스러워 보인다. 각 다각형들의 꼭지점이 기술된 방향은 어느 쪽이건 무관하다 (시계 or 반시계 방향)

그러나 WINDING(0여부)일 때는 그 특성상 방향이 같은 다각형들은 겹치더라도 영역을 모두 칠한다. 겉의 껍데기가 시계 방향이라면.. 그 안의 구멍은 반시계 방향으로.. 다른 방향으로 칠해져야 구멍이 비게 된다! 다시 말하자면, WINDING에서도 위의 그림의 왼쪽처럼 중앙이 비어진 그림을 그리고 싶다면 사각형과 삼각형의 좌표 방향이 서로 반대여야 한다.
꼬인 단일 다각형에서 fill mode의 차이점을 설명하는 프로그래밍 서적들이.. 다중 다각형까지 연계해서 동일 개념을 설명하는 경우는 내가 딱히 못 본 것 같다.

2. 직선뿐만 아니라 베지어 곡선까지 포함된 궤적의 내부를 채우기
위와 같은 구멍 감지에다가 곡선 지원까지 포함되면.. 이건 뭐 윤곽선 글꼴 래스터라이저가 번듯하게 완성된다. 물론 본격적인 폰트 엔진은 거기에다 작은 크기에 대비한 정교한 안티앨리어싱과 힌팅, 글꼴 글립 캐시, 더 나아가 복잡한 유니코드 문자 형태 분석까지 추가되는데 이것들 하나하나가 별개의 전문 영역일 정도이다.

FreeType 라이브러리는 그 중에서 제일 저수준인 그리기, 안티앨리어싱, 힌팅까지만 담당한다. 요즘 소프트웨어들은 글자 하나를 찍는 것도 겨우 8*16, 16*16 비트맵 글꼴 찍던 시절과는 차원이 다르게 더 복잡해져 있는 셈이다.
그건 그렇고.. Windows API에는 직선과 곡선이 포함된 도형을 한꺼번에 그리는 것은 윤곽선만으로 한정이다. PolyDraw라는 함수가 있다.

내부를 채우는 것은 한 함수로 지원되지 않으며, path라는 걸 써야 한다. 얘는 Windows GDI가 제공하는 강력한 벡터 그래픽 라이브러리로, 직선, 베지어 곡선, 원과 원호, 심지어 다른 트루타입 글꼴의 글립까지 몽땅 궤적으로 표현해서 한꺼번에 내부를 채울 수 있다. 구멍 처리도 물론 된다.
BeginPath (그리기) CloseFigure (그리기) EndPath 이런 식으로 말이다. 위의 1과 2를 모두 할 수 있다.

내 경험상 트루타입 폰트는 WINDING 방식으로 래스터라이징을 한다. 글꼴 글립을 그릴 때부터 제일 밖의 path는 시계 방향이고, 그 안의 구멍 윤곽을 기술하는 path는 반시계 방향이고, 구멍 안의 칠하는 영역은 또 시계 방향.. 이런 식으로 디자인을 해야 한다.

허나, 예전에 MS Office 2003 이하 버전에서 제공되던 클래식 WordArt는 이 원칙을 지키지 않고 트루타입 글꼴도 홀짝 ALTERNATE 방식으로.. 짝수 회 overlap 영역은 무조건 비웠던 것 같다.
그래서 composite glyph 형태로 표현되는 비완성형 한글 글꼴에서 글립이 겹칠 수 있는 복잡한 글자를 찍어 보면 저렇게 흰 부위 glitch가 발생하곤 했다. (아래 그림에서 ㅆ, ㅠ, ㅔ 부분 참고)

사용자 삽입 이미지

Office 2007 이상부터 제공되는 WordArt는 이 문제가 해결됐다. 그리고 아래아한글의 글맵시도 0여부 WINDING 방식으로 맞게 색칠을 하기 때문에 glitch가 발생하지 않는다.

그러고 보니.. MS Office는 지난 2007때부터 그래픽 엔진이 크게 바뀌었다. 워드아트의 글자 장식 기능도 리뉴얼 됐고 PowerPoint 같은 데서도 직통으로 사용 가능해졌는데, 정작 본가인 Word에서는 2003 이하의 클래식 워드아트가 제공됐다. 다음 버전인 Office 2010부터 Word에서도 동일하게 리뉴얼된 워드아트가 제공되기 시작했다.

Posted by 사무엘

2021/05/12 08:35 2021/05/12 08:35
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1885

1. 함수 명칭만으로 오버로딩 분간하기

C++에는 그 이름도 유명한 함수 오버로딩이라는 게 존재하기 때문에 어떤 함수를 이름만으로 유일하게 식별할 수 없다. 링크를 위한 심벌을 생성할 때는 자신이 받아들이는 인자들의 개수와 타입도 이름에다가 일일이 곁들여 줘야 동명이인(?) 함수들을 구분할 수 있다. 이 절차를 decoration이라고 한다.

그런데 바이너리 차원에서 함수 이름에 대한 구체적인 decoration 방식은 표준으로 정해진 것이 없어서 컴파일러마다 완전히 제각각이다. 이 때문에 동일한 타겟에다 동일한 포맷의 obj/lib(기껏해야 OMF 아니면 COFF..)라도 C++ 클래스 라이브러리는 컴파일러를 넘나드는 이식성이 크게 떨어진다.

C 단독이 거의 쓰이지 않는 오늘날까지도 유명 라이브러리들이 C언어 형태의 단순한 인터페이스를 고집하는 이유 중의 하나가 바로 이것이다. 아니면 그런 C 함수를 아주 얇게 감싸는(생성자, 소멸자, 오버로딩..) C++ wrapper 클래스를 만들더라도 하는 일이 정말 C 함수 호출밖에 없고, C++ 멤버 함수는 몽땅 인라이닝이 되게 만든다. 인라이닝이 됐다면 decoration이고 뭐고 걱정할 필요가 전혀 없어지기 때문이다.

그런데.. C++에서 함수를 (1) 실제로 호출하지 않고, (2) 저렇게 decoration 정보가 있는 link time도 아니면서 소스 코드 차원에서(= compile time) 오버로딩 동명이인 함수를 구분할 수는 없을까?

엥? (1)도 (2)도 아닌 애매한 상황은 C++에서 한동안 고려할 필요가 없었다. 그러나 2010년대부터 modern C++이 등장하고, 명칭만으로 type을 유추할 수 있는 auto와 decltype 키워드가 도입되면서 발생할 수 있게 됐다.

void foo() {}

라는 함수를 정의해 놓았다면

auto ptr = &foo;
decltype(&foo) ptr = ...;

이런 식으로 foo를 얼마든지 써먹을 수 있다. auto와 decltype이 자동으로 void (*)()이라는 타입을 유추해 내기 때문이다. 그런데 문제는..

void foo(int) {}

같은 overload를 더 만들었을 때이다.
그러면 이때부터 auto와 decltype에다가 foo를 언급할 수 없게 된다. 이 이름이 가리키는 함수의 prototype이 하나로 딱 떨어지지 않기 때문이다.

이에 대해 C++ 표준 스펙은 오버로딩된 함수 이름을 저기에다 집어넣는 것은 ill-formed라고만 지적하고 넘어간다. (☞ 링크)
이건 컴파일된 obj가 아니라 소스 코드 레벨이기 때문에 decorate된 저수준 명칭을 사용할 수도 없다. 어느 오버로드인지를 지목하는 문법은 딱히 마련하지 않고 넘어간 듯하다.

글쎄, 생각 같아서는 foo as_in () 내지 foo as_in (int) 같은 오버로딩 식별을 위한 토큰이 필요해 보인다.
파이썬이라면 모를까 C++에서 겨우 이런 용도를 위해 영단어 예약어를 도입하는 건 보기 좋지 않다. 그냥 foo 다음에 -> : []처럼.. 데이터 포인터가 아닌 함수 포인터라면 쓰일 일이 없는 기존 연산자 토큰을 늘어놓아서 이 함수의 인자들의 타입을 기술해 주면 될 것이다.

참고로, 함수의 포인터를 얻는 상황에서는 static_cast가 아주 유용하게 쓰인다.
void *p = static_cast<int (*)(int,int)>( func_ptr );

이렇게 해 주면 이 형변환은 func_ptr이 int 2개를 받고 int를 리턴하는 놈이 실제로 선언이나 정의돼 있을 때에만 성공한다. 그런 게 없으면 에러.. 그러니 안전하다. 흥미롭지 않은가? 형변환 연산자가 함수의 동명 오버로드를 분간할 때도 쓰인다니 말이다.
C-style cast나 reinterpret_cast는 그런 면모가 없고 무조건 될 것이다.

2. 복합 포인터 간의 더 세밀한 형변환 연산자

C/C++에서 void*라는 포인터 타입은 잘 알다시피 다른 아무 자료형을 가리키는 포인터를 받아서 대입될 수 있다. 공집합은 다른 모든 집합들의 부분집합이며, 1은 다른 모든 자연수의 약수인 것과 같은 이치이다.
malloc을 비롯해 메모리를 할당하는 함수들은 특정 자료형에 구애받지 않는 void*를 되돌린다. 그런데 이 포인터값을 함수의 리턴값이 아니라 함수 인자로 전달된 포인터가 가리키는 주소에다 받게 하려면 어떡해야 할까?

그럴 때는 별 수 없이 이중 포인터가 쓰이게 된다. 자주 보는 물건은 아니지만 Windows에서 COM 객체를 다루다 보면 QueryInterface 메소드, CoCreateInstance 함수 때문에 접하게 된다. COM에서는 함수 리턴값은 에러코드(정수값)를 되돌리고, 포인터는 인자로 전달된 주소를 통해 받기 때문이다.

여기서 우리는 문법 차원에서 약간의 어색함을 경험하게 된다.
void*는 int*, char* 등 다른 포인터 타입과 호환되지만 이중 포인터끼리는 그렇지 않다. 가령, void**와 int**, char** 따위는 호환되지 않는다.
상속 관계도 마찬가지이다. IUnknown**에다가 IUnknown의 파생 클래스의 포인터의 주소를 바로 넘겨줄 수는 없다.

단순 포인터는 한쪽은 호환되고, 역변환은 static_cast만 해 주면 된다. 그러나 이중 이상의 포인터는 가리키는 타입도 타입 그 자체가 아니라 그 타입의 포인터이다. 그렇다 보니 타입간의 아무런 계층 관계가 인정되지 않는다. 어느 방향으로든 얄짤없이 무식하게 reinterpret_cast만 써야 한다.

글쎄, 이런 일이 자주 발생하고 구분해 줄 필요가 꼭 있다면 pointer_cast 내지 reference_cast라고 해서.. 다중 포인터라도 참조 깊이가 동일하고 최종적으로 도달하는 타입이 서로 static_cast급으로 호환된다면 변환을 허용하는 형변환 연산자를 둘 법도 해 보인다. 저건 굳이 reinterpret_cast까지 사용해야 할 정도로 과격하고 위험해 보이지는 않기 때문이다.

하지만 저 상황만을 위해서 별도의 키워드까지 추가하는 건 좀 overkill 낭비로 보이니 그렇게 되지 않은 것 같다. 배열이야 필요에 따라 3차원 이상의 다차원 배열이 쓰일 수 있지만, 포인터는 본인도 20여 년에 달하는 프로그래밍 인생 이래로 3중 이상 깊이의 포인터를 사용할 일은 전혀 없었다. 즉, void ***p라든가, 이중 포인터에 대한 주소값 같은 것 말이다.

포인터라는 게 크게.. (1) 타 자료형에 대한 포인터, (2) 함수에 대한 포인터, (3) 구조체 및 클래스의 멤버에 대한 포인터라는 세 갈래로 나뉘는 것 같다. 물론, (1)~(3) 종류 불문하고 포인터를 가리키는 포인터는 자동으로 (1)에 속하게 된다. (2)와 (3)은 void*로 싸잡아 일컫는 것이 권장되지 않거나 원천적으로 가능하지 않다.

멤버 포인터의 포인터 내지 배열 같은 것은.. 잠깐 테스트를 해 보니 그래도 문법적인 한계나 typedef 땜빵 없이 이렇게 바로 선언해서 쓸 수 있긴 하다. 물론 멤버 포인터 자체도  쓰일 일이 극도로 드문데 하물며 그걸 또 가리키는 포인터는.. 삼중 이상의 포인터만큼이나 정말 레어템이다. 아래처럼 말이다.

class A {
public:
    void func(int x);
};

void (A::*pfn)(int) = &A::func;
void (A::**ppfn)(int) = &pfn;
void (A::*apfn[1])(int) = { &A::func };

A obj;
(obj.*pfn)(1);
(obj.**ppfn)(2);
(obj.*apfn[0])(3);

복잡한 포인터에서 세부 속성 간의 형변환은 비단 다중 포인터에만 존재하는 게 아니다. 함수 포인터에다가 인자의 개수와 calling convention 같은 건 완전히 일치하고, 일부 인자나 리턴값만이 void*와 char*처럼 미묘하게 다른 함수를 집어넣는 상황을 생각해 보자. 일반 함수뿐만 아니라 C++ 멤버 함수의 포인터도 해당된다.

이때도 지금 문법에서는 닥치고 C-style 또는 reinterpret_cast를 쓰는 수밖에 없다. 하지만 static_cast와 reinter_*의 중간 완충 역할을 해서 저럴 때만 유도리를 허용하는 연산자가 있다면 문법 차원에서 실수가 더 줄어들 수 있고 더 깔끔한 코드를 작성할 수 있다. 프로그래밍 언어에서 type theory의 심오함이 문득 느껴진다.

3. 복수 인터페이스의 구현체에서 IUnknown 베이스 얻기

C++로 COM 인터페이스를 지원하는 클래스를 구현하다 보면.. 다중 상속 기능을 이용하여 한 클래스에다가 2개 이상의 인터페이스를 한꺼번에 집어넣는 경우가 있다.
예를 들어 한 윈도우가 drag & drop을 양방향으로 지원해서 데이터를 밖으로 날릴 수도 있고 받을 수도 있다면, 그 윈도우를 나타내는 클래스(가령, CMyWnd)에다가 IDataObject, IDropSource와 IDropTarget를 몽땅 때려박는 게 편하다.

이렇게 하고 나면, 그 CMyWnd를 상대로 인터페이스들의 베이스인 IUnknown의 QueryInterface, AddRef, Release 메소드를 호출하는 것이야 아무 문제 없이 된다.
다중 상속의 특성상, CMyWnd를 IDataObject, IDropSource, IDropTarget 등으로 캐스트한 포인터 값은 제각각 달라질 수 있다. 왜냐하면 멤버 변수가 없는 인터페이스이더라도 상속을 하나 할 때마다 vtable 포인터의 크기 하나씩은 클래스에다가 차지하게 되기 때문이다.

하지만 이들의 vtable에서 IUnknown 파트는 모두 공통으로 CMyWnd가 구현한 동일한 QueryInterface, AddRef, Release 함수를 가리키게 된다. 이게 바로 마법의 비결이다.
단, 둘째, 셋째, n째 인터페이스들은 this 포인터 값을 살짝 보정한 뒤에 원래 함수를 호출하는 thunk가 추가된다. 마법이 공짜는 아닌 셈이다. 그래서 다중 상속에서는 내가 함수를 호출한 객체의 주소와, 해당 멤버 함수가 받은 this 포인터의 값이 일치하지 않을 수 있다.

그렇게 다중 상속에서 함수 호출과 this 보정 문제가 해결되었는데.. 정작 CMyWnd 오브젝트의 포인터를 IUnknown* 자체로 cast 하는 것은..??? 뜻밖에도 되지 않고 컴파일 에러가 난다. 암시적 자동 형변환은 물론이고, static_cast와 C-style cast도 통하지 않는다.
왜냐하면 얘는 2개 이상 여러 인터페이스를 구현했는데 어느 놈을 기준으로 삼아서 IUnknown으로 cast 해야 할지 알 수 없기 때문이다. 모호성이 존재한다는 것이다. 뜨악~

현실에서 어지간해서는 이런 일을 겪을 일이 거의 없다. 그냥 파생 클래스 구현체가 베이스 인터페이스의 완벽한 상위 호환이니, 어지간한 상황에서는 그냥 그 클래스를 쓰면 되지 굳이 베이스로 형변환을 할 일 자체가 없기 때문이다.

하지만 아무 인터페이스 오브젝트나 받아들여서 레퍼런스 카운트 관리만 한답시고 IUnknown을 인자로 받는 함수가 드물게 있을 수 있다. 그 함수에다가 이런 오브젝트를 덥석 넘겨주면 어느 베이스의 IUnknown을 골라야 할지 모르겠다는 태클에 걸린다. 저 인터페이스들이 IUnknown을 가상(virtual) 상속을 한 게 아니기 때문에 이 문제를 피해 갈 수 없다. 어차피 인터페이스에는 데이터 멤버도 없으니 아무거나 골라도 됨에도 불구하고 말이다.

그 클래스가 상속한 베이스들 중 가상 함수가 존재하는 제일 첫 놈이 IUnknown 기반의 인터페이스라면.. 그 클래스의 인스턴스의 포인터는 그대로 직통으로 IUnknown으로 형변환해도 된다. 하지만 이건 이게 C++의 문법 차원에서 안전이 보장될 수 없는 동작이기 때문에 컴파일 에러가 발생하는 것이다.

C-style cast는 static_*과 reinterpret_*의 중간 정도 위상을 차지하는 물건이며, 포인터 간의 형변환에서는 오히려 후자에 더 가까운 위치에 있다. 하지만 다중 상속에 대해서는 의외로 선 넘지 않는 안전 장치가 걸려 있는가 보다.
저 때 자기 자신을 베이스인 IUnknown으로 강제로 둔갑시키는 수단은 reinterpret_cast밖에 없다.
아니면!! 자신을 void*로 먼저 전환한 뒤에 그걸 IUnknown으로.. static_cast를 두 번 적용하면 된다. 물론 이것들은 다 at your own risk를 감수하고 해야 한다.

이 문제를 해결한답시고 CMyWnd에 대해서 무식하게 QueryInteface(IID_IUnknown, &obj)를 하는 건 너무 오버 같다.
뭐, 어느 베이스를 선택할지 static_cast<IDataObject*>(&obj) 이렇게 명시적으로 지정을 해 주면 모호성이 해소되어 C++ 차원에서 IUnknown으로 cast도 가능해진다.
하지만 이것도 언어 차원에서 더 깔끔하게 해결할 방법이 없는지, const 객체뿐만 아니라 베이스 인터페이스에 대해서도 select_any 같은 속성을 지정해 줄 수는 없을지 궁금하다.

참고로 이런 형변환이 일어나는 곳은 해당 객체 자체가 아니라 십중팔구 그 객체의 포인터들이다. 그러니 그 클래스에서 operator IUnknown*() { return static_cast<****>(this); } 이렇게 전용 형변환 연산자를 구비하는 것은.. 성능 오버헤드는 없지만 언어 문법 차원에서의 아주 깔끔한 해결책으로 보기는 어려워 보인다.;;;

Posted by 사무엘

2021/04/30 08:33 2021/04/30 08:33
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1882

1. make, build

요즘 소프트웨어라는 건 여러 개의 실행 파일들로 구성되고, 그 각각의 실행 파일들도 수십~수백 개에 달하는 소스 코드들로 구성된다. 이를 빌드하려면 단순 배치 파일이나 스크립트 수준으로는 감당하기 어려울 정도로 많은 옵션과 입력 파일 리스트들을 컴파일러 및 링커에다가 일일이 전해 줘야 한다. 기존 소스 코드들을 빌드하는 시나리오를 짜는 것조차도 일종의 프로그래밍처럼 된다.

그래서 이런 빌드 시나리오를 기술하는 파일을 makefile이라고 하며, 이 시나리오대로 컴파일러와 링커를 호출해서 빌드를 수행해 주는 별도의 유틸리티가 make라는 이름으로 따로 존재한다. 얘는 이전 빌드 때 만들어져 있는 obj 파일과 소스 파일과의 날짜를 비교해서 새로 바뀐 파일만 다시 컴파일 하는 정도의 지능도 갖추고 있다.
그리고 이름이 저렇게 고정 불변이며, 한 디렉터리에 하나씩만 존재하는 것으로 여겨진다. 프로젝트는 디렉터리별로 독립적이므로..

그런데 소스 말고 헤더 파일은? 조금 어렵다. 이게 수정되면 역으로 얘를 인클루드 하는 소스 파일들도 재컴파일이 돼야 하는데, make 유틸이 C/C++ 컴파일러나 전처리기는 아닌지라, 그걸 자동으로 파악하지는 못한다. 이건 makefile 스크립트 내부에서 각 소스별 헤더 파일 의존성을 사람이 수동으로 지정해 줘야 한다. 이를 기술하는 문법이 따로 있다.
이건 매번 풀 빌드 명령을 내리는 것보다 분명 편리하지만 그래도 사람이 의존성을 잘못 지정할 경우 빌드가 꼬일 수 있는 잠재적 위험 요인이다.

이렇듯 C/C++ 공부 좀 해서 본격적인 프로그램을 개발하거나 기존 제품을 유지 보수하려면, 언어 자체 말고도 다른 툴이나 스크립트를 알아야 할 것이 이것저것 생긴다. 이 바닥도 체계가 정말 복잡하기 때문에, 잘 모르는 사람은 말 그대로 소스까지 다 차려 놓은 오픈소스 프로젝트를 멀쩡히 받아 놓고도 빌드를 못 해서 돌려보지 못하곤 한다. 최소한 Visual C++ 솔루션 파일 하나 달랑 열어 놓고 F7만 누르면 바로 짠~ 빌드 되는 물건은 아니기 때문이다.

물론 그런 복잡한 시스템들은 훨씬 더 복잡한 상황을 간편하게 제어하고 관리하고 프로세스를 자동화하기 위해 도입되었겠지만.. 그마저도 초보 입문자에게는 쉬운 개념이 아니다.
Visual Studio 같은 개발툴들이 그런 make 절차를 얼마나 단순화시키고 프로그램 개발을 수월하게 만들어 줬는지 짐작이 된다. 당장 include 의존성을 자동으로 파악하는 것만 해도 말이다.

이런 개발툴 덕분에 프로그래머가 makefile 스크립트를 일일이 건드려야 할 일이 없어졌다. makefile은 해당 개발툴이 읽고 쓰는 프로젝트 파일로 대체됐으며, 얘는 비록 텍스트 포맷이긴 하지만 사람이 수동으로 편집해야 할 일은 거의 없다. 한때는 포맷이 제각각이었는데 요즘은 xcode건 비주얼이건.. 껍데기는 XML 형태인 것이 대세가 됐다. 스크립트라기보다는 설정 데이터 파일에 더 가까워진 셈이다.

Visual C++도 지금 같은 번듯한 IDE가 갖춰진 버전은 적어도 1995년의 4.0이다. 그때의 IDE 이름은 Developer Studio이었다. 이 시절에는 얘도 IDE와 별개로 유닉스 유틸과 비슷한 스타일의 make를 따로 갖추고 있었으며, 프로젝트 파일로부터 make 스크립트를 export해 주는 기능도 갖추고 있었다. 그러나 그 기능은 후대의 버전에서 곧 없어졌다. 명령 프롬프트로 빌드를 하는 건 그냥 IDE 실행 파일의 기능으로 흡수되었다.

2. cmake

유명한 대규모 크로스 플랫폼 오픈소스 프로젝트를 받아 보면 분명 Windows를 지원하고 Visual C++로 빌드도 가능하다고 명시돼 있는데, 그 빌드라는 게 내가 생각하고 이해 가능한 방식으로 행해지는 건 아닌 경우가 있다.
한때 직장에서 이미지 처리와 인식 때문에 OpenCV며 Tesseract며 머신러닝 라이브러리까지 C/C++에서 돌리겠답시고 삽질을 좀 한 적이 있었는데.. 이때 이런 식으로 지금까지 듣도 보도 못했던 프로젝트 구조와 빌드 방식 때문에 식겁을 하곤 했다.

압축을 풀거나 git으로 생성된 저장소를 아무리 들여다봐도 sln, vcxproj 같은 파일은 보이지 않는다. 먼저 MinGW에다 cmake 같은 유닉스 냄새가 풍기는 런타임을 설치해야 한다. 그래서 cmake를 돌리고 나면 자기 혼자 무슨 라이브러리 같은 걸 한참을 받더니 그제서야 디렉터리 한구석에 Visual C++용 솔루션과 프로젝트 파일이 생긴다.

소스를 사용자 자리에서 일일이 빌드해서 쓰는 것도 모자라서 빌드 스크립트 자체도 사용자 자리에서 즉석에서 동적 생성되는 모양이다. 흠..;
그 생성된 솔루션 파일을 Visual C++에서 열어서 빌드를 해 보면.. 비록 컴파일러는 마소 것을 쓰더라도 소스 파일이 선택되고 빌드되는 방식은 절대로 Visual C++ IDE의 통상적인 스타일대로 진행되는 게 아니다.

솔루션/클래스 view에는 아무것도 뜨는 게 없으며, 빌드되는 파일을 열어도 인텔리센스 따위 나오는 게 없다. 이 상태로 Visual C++ IDE에서 곧장 코드를 읽으면서 편집할 수 있지 않다. IDE에서는 그냥 debug/release나 win32/x64 같은 configuration을 변경하고 빌드 명령만 내릴 수 있을 뿐이다.

이런 프로젝트는 Visual Studio도 반드시 거기서 쓰라고 하는 버전만 써야 한다. 가령, 2017을 쓰라고 했으면 IDE까지 꼭 2017을 깔아야 한다. 2019에다가 컴파일러 툴킷만 2017을 설치하는 식으로는 안 통한다. 도대체 프로젝트를 어떻게 꾸며야 이런 빌드 환경이 만들어지는지 나로서는 알 길이 없다.

알고 보니 얘는 프로젝트의 Configuration type이 Utility 내지 Makefile로 잡혀 있었다. Visual C++에서 빌드되는 일반적인 프로젝트라면 저건 EXE, DLL, static library 중 하나로 지정하는 속성인데, 그런 것으로 지정돼 있지 않다.

그렇기 때문에 이 프로젝트에서 Visual Studio IDE는 그냥 명령줄을 실행해 주는 셔틀 역할밖에 안 한다. Visual C++ 컴파일러가 호출되는 것도 IDE가 원래 동작하는 방식으로 호출되는 게 아니다. 세상에 C/C++ 프로젝트를 이런 식으로 만들 수도 있다는 것을 어렴풋이 경험하게 됐다.

요컨대 cmake는 기존 make 툴의 또 상위 계층이며, 얘만으로도 기능이 굉장히 많고 덩치가 큰 프로그램이다. qt가 소스 레벨 차원에서 Windows와 리눅스와 맥을 모두 지원하는 범용 GUI 프레임워크로 유명하다면, cmake는 범용 빌드 시스템 관리자인 셈이다. qt를 기반으로 개발되는 GUI 앱의 프로젝트를 cmake 기반으로 만들면 진짜로 한 소스와 한 프로젝트로 Visual C++과 xcode와.. 음 리눅스용 IDE는 뭔지 모르겠지만 아무튼 진정한 크로스플랫폼 프로그램을 개발하고 관리할 수 있을 것으로 보인다.

맥OS야 요즘은 다 유닉스 스타일의 터미널을 갖추고 있으니 빌드 내지 패키지 관리 툴이 Windows보다는 이질감이 덜하다. 그러나 맥도 리눅스와 완전히 동일하게 호환되는 건 아니라는 건 감안할 필요가 있다.
그나저나 같은 x64 환경이면 GUI 말고 a.out급의 명령 프롬프트 실행 파일은 리눅스와 맥이 바이너리 차원에서 호환되나?? 아마 그렇지는 않지 싶다.

3. Source Insight

Source Insight라고 프로그래밍 및 소프트웨어 개발로 먹고 사는 사람이라면 다들 알 만한 유명한 개발툴이 있다. 단순 텍스트 에디터보다는 코드 구조 분석과 심벌 조회 기능이 훨씬 더 정교하게 갖춰져 있지만, 그렇다고 Visual Studio 같은 급으로 특정 플랫폼용 컴파일러나 디버거와 밀접하게 연결돼 있는 IDE도 아니다. 위상이 둘의 중간쯤에 속하는 독특한 물건이다.

즉, Source Insight는 각종 언어들 컴파일러의 ‘프런트 엔드’ 계층에만 특화돼 있다.
얘가 굉장히 독특한 점이 뭐냐 하면.. 전문 IDE와 달리, 실제 컴파일 결과에 꼭 연연하지 않고 유도리가 있다는 점이다. 그래서 코드에 컴파일 에러가 좀 있더라도 괜찮고, 심지어 #if #else로 갈라지는 부분까지 개의치 않고 특정 심벌이 정의된 부분을 몽땅 한꺼번에 조회 가능하다.

그래서 프로젝트와 configuration이라는 걸 꼭 바이너리를 빌드하는 단위로 만들 필요 없이, 전적으로 사용자가 심벌을 조회하고 코드를 분석하고 싶은 큼직한 단위로 만들 수 있다. 생각해 보니 이게 Source Insight의 강점이다.
Visual Studio나 Android Studio 같은 IDE만 쓰면 되지 이런 게 왜 필요하냐고..?? 응, 필요하고 유용하더라. 틈새시장을 잘 공략한 제품 같다.

그나저나 최근에 회사 업무 때문에 SI 3.5 버전을 쓸 일이 있었는데.. 본인은 또 한 번 굉장히 놀랐다.
2019년 11월에 릴리스 됐다는 프로그램이 알고 보니 구닥다리 노인학대의 종결자인 무려 Visual C++ 6으로 빌드돼 있었기 때문이다.;; ㅠㅠㅠㅠ 실행 파일 헤더에 기록돼 있는 링커 버전, 섹션간의 4KB 단위 패딩(옛날 스타일), 생성돼 있는 기계어 코드의 패턴으로 볼 때 확실하다.

게다가 유니코드 기반도 아니었다. 도움말을 보니 여전히 Windows 9x를 지원한다고 쓰여 있다. 요즘 같은 시대에 레거시 OS 종결자인 프로그램이 날개셋 말고 더 있었구나;;
회사에서만 쓰는 프로그램이어서 많이 다뤄 보지는 못했지만 쟤들도 자기 제품에다가 분명 최신 C++1x 문법을 구현했을 텐데, 그걸 자기들이 제품 코딩을 할 때 좀 써 보고 싶은 생각은 하지 않았을까..?? 피치 못할 사정이 있어서 VC6을 그렇게 오랫동안 써 온 건지 궁금하다.

그나마 2020년에 출시된 SI 4.0에서는 유니코드를 지원하고 많은 변화가 있었다고 한다. 거기서는 자기네 개발툴도 새 버전으로 갈아타지 않았겠나 추측해 본다.

4. Visual C++

그리고 나의 사랑하는 툴인 Visual Studio.. 얘는 2019 이후로 202x이 나오려나 모르겠다. 지난 2년 동안 꾸준히 소규모 업데이트 형태로만 버전업을 거듭한 끝에, 무려 16.9.x 버전에 진입했다.
업데이트가 너무 잦아서 좀 귀찮은 감이 있긴 했지만, IDE 자체의 안정성은 야금야금 눈에 띄게 강화되어 왔다. 그 예를 들면 다음과 같다.

  • 예전에는 컴에 절전/최대 절전을 반복하다 보면 IDE의 글꼴이 내가 변경하기 전의 것으로 되돌아가곤 했는데 그 오동작이 어느 샌가 발생하지 않게 됐다. 상당히 성가신 버그였다.
  • 가끔 대화상자 리소스 편집기를 열 때 IDE가 응답이 멎던 현상이 이제 더는 발생하지 않는다.
  • 또 가끔은 프로젝트 대렉터리 내부에 RCxxxx, *.vc.db-??? 등 임시 쓰레기 파일이 프로젝트를 정상적으로 닫은 뒤에도 지워지지 않고 남아 있었던 것 같은데.. 이제는 그런 문제가 확실히 해결됐다.

예전에도 언급한 적이 있지 싶은데, 난 Visual Studio IDE가 서로 다른 프로세스 인스턴스끼리도 연계가 더 자연스럽게 됐으면 좋겠다.

  • 다른 인스턴스에서 이미 열어 놓은 솔루션을 또 열려고 시도한다면 그냥 그 인스턴스로 이동하기
  • 다른 인스턴스에서 만들어 놓은 문서창끼리도 한 탭으로 묶거나 떼어내기 지원 (크롬 브라우저처럼)

그리고...

  • BOM이 없는 파일의 인코딩, 또는 새 파일을 첫 저장할 때의 기본 인코딩을 utf-8로 인식해 줬으면 좋겠다.
  • 탭이 설정된 대로뿐만 아니라, 주변 파일의 모양을 보고 탭인지 공백 네 칸인지 얼추 분위기를 파악해서 동작하는 기능이 있으면 좋겠다.
  • 프로젝트별로 소스 파일 곳곳에 지정된 책갈피와 breakpoints들의 세트들을 여럿 한꺼번에 저장하고 불러오는 기능이 있으면 좋겠다. 디버그를 위해 실행할 프로그램과 인자도 여러 개 한꺼번에 관리하고 말이다.

끝으로.. Visual C++은 2015부터가 Windows 10과 타임라인을 공유한다. 이때 CRT 라이브러리의 구성 형태가 크게 바뀌었다. vcruntime이 어떻고 ucrtbase가 어떻고.. 그리고 Visual Studio 2015~2019는 재배포 패키지도 한데 통합됐다.

그래서 그런지 요즘은 Visual C++이 설치되어 있지 않아도 시스템 디렉터리를 가 보면 msvcp140, mfc140 같은 DLL은 이미 들어있다.
20여 년 전의 msvcrt와 mfc42 이래로 운영체제의 기본 제공 DLL과 Visual C++의 런타임 DLL이 일치하는 나날이 찾아온 건지 모르겠다.

Posted by 사무엘

2021/04/03 08:34 2021/04/03 08:34
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1872

0. 들어가는 말

세상에는 누구나 드나들 수 있는 공공장소와 누구나 신호를 주고받을 수 있는 통신망이 있지만, 사람마다 사생활도 있고 비밀도 있다. 이런 게 보장되지 않으면 인간이 정상적으로 살아갈 수 없으며, 사실은 생존에 필요한 기본 욕구를 충족시킬 수도 없어진다.
그렇기 때문에 어떤 장소나 어떤 정보는 내부의 믿을 수 있는 사람, 우리 조직 소속인 사람만 접근할 수 있게 해야 한다.

이를 구현하기 위해 전자에 대해서는 열쇠와 자물쇠라는 게 만들어져 왔고, 후자를 위해서는 암호 기술이라는 게 개발되었다. 열쇠가 없는 사람, 암호를 모르는 사람은 문을 열고 들어갈 수 없고 그 자료를 열람할 수 없다. 심지어 정보가 담긴 매체라든가 물건이 담긴 금고 자체가 유출되더라도 그 안의 물건에 손댈 수는 없다.

열쇠와 암호는 서로 담당하는 영역이 다르지만 심상이 아주 비슷한 구석도 있다. 요즘은 자물쇠도 열쇠 대신 일종의 숫자 암호인 디지털 도어락으로 바뀌고 있고, 암호학에서도 key라는 용어가 즐겨 쓰이니 말이다.

다만, password라는 개념의 '암호'와, 원본 정보를 password 없이는 알아볼 수 없게 변조하는 '암호화'(cryptography, encryption), 그리고 암호화가 적용된 텍스트를 작성하는 것 내지 그 결과물인 암호문(cipher).. 이게 우리말에서는 딱 부러지게 잘 구분되지는 않는다는 점을 감안할 필요가 있다. 마치 '뛰다'(jump/run), '다른'(other/different), '푸르다'(green/blue) 이런 게 잘 구분되지 않는 것처럼 말이다.

보이니치 괴문서처럼 암호 사용 여부와는 무관하게 단순히 체계와 의미가 파악되지 못한 물건도 decipher되지 못했다고 말한다.
그에 비해 한국어 ‘해독’은 동음이의어 한자의 특성 때문에 ‘독’에 read라는 뜻뿐만 아니라 poison이라는 뜻까지 있어서.. 미묘하게 중의적인 심상을 자아낸다. 마치 ‘충전’의 중의적인 심상처럼 말이다. (전기도 충전, 금액도 충전..)

1. 패스워드의 관리, 해시 함수

먼저, 암호화와 무관하게 로그인 패스워드 자체에 대한 보안을 논하는 기본 원칙이 있다. 이 주제에 대해서는 본인이 마지막으로 글을 썼던 때가 무려 7년 전이었구나.;; (☞ 이전 글)
사용자의 입장에서는 “다양한 종류의 문자를 섞어서 최소한 10자 이상의 긴 문자열로 정할 것, 주기적으로 바꿔 줄 것” 이런 게 있다.

물론 누군가의 원한을 사고 있어서 작정하고 당신의 계정을 뚫으려 노력하는 공격자라도 있는 게 아니라면.. 이런 얘기에 지나치게 민감해할 필요는 없다. 암호 좀 허술하게 만든다고 해서 현실에서 당장 위험에 빠지는 건 아니다. 하지만 그렇다고 해서 1234, asdf, iloveyou, 생일, 전화번호 정도로 암호를 너무 성의없게 만드는 건 정말 피해야 한다.

그리고 사용자의 접속 정보를 저장하는 운영자의 입장에서는 암호를 절~대로 평문 그대로 저장하지 말아야 한다. 게다가 암호 문자열이 무슨 도스 시절 파일 이름마냥 10~15자 같은 제약이 걸려 있거나 특정 특수문자 기호를 지정하지 못한다면.. 그건 정말 기본적인 보안 관념도 없던 쌍팔년도 시절 사고방식의 미개한 사이트라고 욕 먹어야 할 것이다.

사용자가 암호를 잊어버렸다면 사이트 운영자라도 그 암호를 알 수 없는 게 정상이다. 본인 인증을 시행한 뒤에 임의로 지정한 새 암호를 알려줘야지, 기존 암호를 그대로 알려주는 사이트는 그 자체가 보안이 매우 허술하다고 실토하는 것과 같다.

그러니 이런 패스워드는 딱히 key 없는 단방향 암호화라는 변조를 거쳐서 저장해야 하는데, 이럴 때 해시 함수라는 게 쓰인다. hash란 어떤 임의의 길이의 원본 문자열이 주어졌을 때 원본과는 완전히 다르고 무질서하게 변조된 다른 고정된 길이의 문자열 내지 바이트 시퀀스를 되돌리는 수학 함수이다. 원본 문자열이 조금만 바뀌어도 완전히 확 달라진 결과값이 나와야 한다.

F(X) → Y인데, 역으로 Y로부터 X를 복원하는 것은 수학적으로 불가능하다. 그리고 F(A) ≠ F(B) 라면 절대적으로 A≠B이지만, F(A)=F(B)이면서 여전히 A≠B일 확률은 매우 매우 낮은 확률로 존재한다. 비유하자면, 퀵 정렬의 시간 복잡도를 n^2로 만드는 input을 우연히 만들 수 있을 정도의 확률로 존재한다.

패스워드의 비교는 사용자가 입력한 문자열을 hash한 결과와, 저장된 패스워드 hash값을 비교함으로써 행해진다. 평문을 비교하는 게 아니라는 것이다.
사실, 이런 해시 함수는 패스워드의 보관뿐만 아니라 방대한 파일이 정확하게 잘 전송되었는지 동등성을 검증하는 용도로도 즐겨 쓰인다. 수 GB짜리 파일의 해시값이 얼마가 나와야 정상인데 엉뚱한 값이 나왔다면 중간에 오류가 있었다는 뜻이 되기 때문이다.

해시 함수가 튼튼하고 안전하려면 (1) F(X)로부터 X를 역으로 추적하는 것이 불가능해야 하고, (2) 서로 다른 두 입력 A, B에 대해서 동일한 해시값이 산출되는.. 다시 말해 ‘충돌’ 사례가 없어야 한다. 전자는 암호화된 값으로부터 패스워드를 복원하는 것이고, 후자는 의도하지 않았던 엉뚱한 암호로 원래 패스워드의 사칭을 가능하게 하기 때문이다.

성능 좋은 해시 알고리즘으로는 MD5니, SHA-256 이런 부류가 공개되어 쓰이고 있다. 이들도 한번 만들고 끝이 아니라 버전과 출력 해시의 길이가 올라가는 편인데, 기를 쓰고 공격하려 애쓰는 연구자에 의해 충돌하는 입력값 쌍이 발견되기도 한다. 그러면 그게 해당 알고리즘을 사용하는 소프트웨어의 잠재적 보안 결함으로 이어진다.

그리고 해시값으로부터 원래 입력을 역추적하기 위해 요즘은 상상을 초월하는 물량 데이터빨이 동원된다. “MD5 해시값을 자동으로 계산해서 구해 드립니다”라는 웹페이지를 개설한 뒤, 전세계 사용자가 입력했던 문자열과 그 해시값 수십억 개를 몽땅 보관해 놓는 것이다. 그래서 산술 연산을 하는 게 아니라 DB를 조회함으로써 해시값 복원을 한다. 우리가 남들도 떠올릴 만한 평범한 문자열로 패스워드를 만들면 위험한 이유가 이 때문이다.

2. 대칭 키 암호화

이게 우리가 흔히 생각하는 데이터 암호화이다. 발신자가 A라는 텍스트를 K라는 패스워드(혹은 key)를 이용해서 E라는 암호화 함수로 암호화해서 B라는 암호문을 얻는다. 수식으로 표현하면 B=E(A, K) 정도? 그러면 수신자는 D라는 복호화 함수를 이용해서 D(B, K)를 돌림으로써 A를 얻는다.
이걸로 끝.. ‘대칭’이라는 말은 발신자와 수신자가 K라는 동일한, ‘대칭인’ key를 공유하는 암호 체계라는 뜻이다.

암호화 함수는 해시 함수와는 달리 복호화 함수도 존재하며, key만 안다면 원문 복원이 가능하다는 차이가 있다. 해시 함수는 애초에 어떤 입력에도 128비트 같은 동일한 길이, 즉 동일한 정보량을 가진 해시값이 돌아오지만, 암호화 함수는 출력의 정보량이 입력의 정보량과 대등하다. 그러니 용도가 서로 근본적으로 완전히 다르다.

컴퓨터가 없던 시절에도 마치 VMS로부터 WNT (Windows NT)라는 명칭을 만드는 것처럼 글자들을 일정 간격 앞뒤의 것으로 변조하거나, 심지어 key 문자열의 형태를 토대로 각 글자들을 가변적인(하지만 규칙과 패턴은 물론 있는) 오프셋만치 변조하는 기법 정도는 응당 쓰였다. 모든 글자를 고정적인 오프셋만치 변조하는 암호는 각 글자들의 빈도수 분석을 통해 비교적 금방 깰 수 있을 것이다.

2차 세계 대전까지만 하더라도 전자식 컴퓨터라는 게 사실상 없던 시절이었고, 지금에 비하면 매우 단순하고 원시적인 암호가 쓰였다. 연합군이 승리한 것에는 적국(일본, 독일) 군대의 암호를 풀어낸 것이 아주 큰 기여를 했음이 주지의 사실이다.
컴퓨터가 등장한 뒤부터는 매우 컴퓨터 친화적인 비트 회전과 XOR 연산이 암호화에 즐겨 쓰이고 있으며 그 수준이 과거엔 상상도 할 수 없을 정도로 복잡해졌다. 문자열을 암호화하기 위해서는 문자열을 구상하는 각 문자들을 숫자처럼 취급하는 게 필수이다.

정보 보호라는 업계에서 이런 암호화와 관련하여 통용되는 철칙이 있다. 암호화 알고리즘은 자신의 동작 방식과 로직이 소스 코드 차원에서 몽땅 공개되어 있더라도 절대적으로 안전해야 한다는 것이다. 데이터의 안전은 key가 보장해야지, 알고리즘을 공격자가 알고 있는지의 여부와는 무관해야 한다.
그렇기 때문에 이 바닥은 소스를 공개할 수 없는 우리만의 초특급 비밀 노하우 원천기술 같은 게 없다. 모든 게 투명하게 공개돼 있고 심지어 취약점이 발견된 것, 수정 내역도 공개된다. 이런 열린 관행 덕분에 컴퓨터 세계는 역설적으로 더 안전해질 수 있었다.

여담이지만, 지난 2009년엔 ‘코드소프트’라는 정체를 알 수 없는 어느 스타트업 기업에서 상금까지 걸면서 자기네 암호화 알고리즘에 대한 크랙 공모전을 주최했으나 비슷한 시기의 T-max 운영체제 같은 흑역사만 남겼던 적이 있다. 자기네 핵심 기술이라던 암호화 알고리즘은 허술하기 짝이 없어서 겨우 몇 시간 만에 뚫려서 큰 망신을 당했으며, 그 회사도 얼마 못 가 통째로 폐업했기 때문이다(소스는 비공개이고 임의의 데이터에 대한 암호화 결과 확인만 가능). 걔들은 암호화 알고리즘의 전문가는 고사하고 보안에 대한 기본 관념이 있긴 한 기업이었는지가 의문이 든다.

대칭 키 암호화 알고리즘으로는 AES, DES 같은 기성 표준 알고리즘이 있고 이것도 버전 내지 사용하는 정보량(비트수)이 올라가고 있다. AES는 오늘날의 컴퓨터 성능으로는 뚫리는 데 걸리는 시간이 위험할 정도로 짧아졌기 때문에 이제 사용이 권장되지 않는 지경이 되었다.
우리나라에서도 SEED, ARIA, LEA라는 알고리즘을 자체 개발해서 국가 표준으로 지정한 바 있다. 국정원 내지 한국 인터넷 진흥원 이런 데서 날고 기는 수학 박사를 채용해서 머리 굴려서 개발한 듯하다.

문서나 압축 파일에 암호를 거는 기능에도 응당 이런 암호화 알고리즘이 쓰인다.파일 내부에다가 패스워드를 평문으로 저장하는 미친 짓을 하지는 말아야 할 것이다. 혹은 파일 내용 자체를 암호화하지 않아서 헤더의 패스워드 부분만 건너뛰고 나면 나머지 내용을 고스란히 읽을 수 있게 하는 것도 치명적으로 잘못된 설계이다.
틀린 패스워드를 주면 해독이 잘못되어 완전히 엉뚱한 파일이 생성될 텐데, 패스워드가 맞는지 틀린지를 확인하는 건 정상적으로 해독됐을 때의 파일 checksum hash 같은 걸 별도로 둬서 확인해야 한다. 암호화 알고리즘 다음에 붙는 CBC, GCM 같은 모드 명칭은 바로 이런 검증 방식을 가리킨다.

안전한 암호화 알고리즘이라면 평문이나 key가 조금만 달라져도 이들의 원래 형태와 통계적 특성을 전혀 알 수 없는 엉뚱한 암호화 결과가 출력으로 나와야(혼돈과 확산) 안전할 것이다. 이 점에서는 해시와 비슷한 구석이 존재하며 심지어 난수 생성 알고리즘과도 비슷하다고 볼 수 있다. 입력을 0, 1, 2 .. 순차적으로 주고 이를 hash시킨 결과가 난수나 마찬가지이고 암호화도 이와 크게 다르지 않을 테니까.. 하지만 암호화, 해시, 난수는 전문적으로 들어가면 지향하는 목표가 다른 분야라고 한다.

말이 나왔으니 말인데.. 임의로 생성 가능한 문자열과 이를 hash한 문자열을 혼합하면.. 올바른 번호와 잘못된 번호의 구분이 존재하는 일련번호(serial key) 체계도 생성할 수 있다.
간단하게는 우리나라 주민등록번호가 대표적인 예이다. 검증용으로 쓰이는 마지막 자리 숫자가 hash 함수의 결과값이니까 말이다.

소프트웨어에서 불법 복제를 감지하고 예방하기 위해 발급되는 제품 key도 다 이런 원리로 발급된다. 상업용 소프트웨어야 처음부터 고정된 시리얼 키가 제품 패키지에 들어있으니 사용자 이름과 무관하겠지만, 셰어웨어 등록판을 생성하는 시리얼 키는 사용자의 이름도 공식에 응당 반영된다.

규칙에 어긋난 잘못된 문자열을 입력하면 해당 제품의 설치 프로그램은 에러 메시지를 내뱉으면서 다음 단계로 진행을 하지 않을 것이다. key의 생성 규칙은 그 제품 개발사의 중대한 영업 기밀이다.

하지만 이렇게 수학적인 방법, 소프트웨어적인 방법은 역공학을 통해서 뚫리기도 너무 쉽다. 암호학에서 알고리즘이 아니라 key만 믿어야 한다고 괜히 강조하는 게 아니다.
옛날에 불법 복제 어둠의 경로를 가 보면 도대체 어떻게 알아냈는지 특정 소프트웨어의 제품 key를 생성해 주는 툴이 버젓이 굴러다니곤 했다. 그렇기 때문에 요즘은 이 제품 key가 실제 구매자가 사용하는지의 여부를 제품 개발사 서버로부터 일일이 추가로 확인받곤 한다.

설계 차원에서 결함이 있지 않은 안전한 암호화 알고리즘이라면 key 없이 복호화를 하는 방법이 존재하지 않는다. 그렇기 때문에 이런 암호문은 그냥 a부터 z까지 모든 글자 조합을 무식하게 일일이 대입하는 brute force 방식으로만 풀 수 있다.
패스워드의 길이가 한 글자 늘어날 때마다 공격에 소요되는 시간이 수십 배씩 기하급수적으로 늘어나니.. 이 시간 덕분에 오늘도 인간의 컴퓨팅 세계는 딱히 금융 사고나 개인정보 유출 사고가 별로 없이 안전하게 돌아가고 있다.

하지만 컴퓨터의 계산 성능은 하루가 다르게 향상되고 있고 암호 공격은 병렬화에도 아주 유리한 분야이다.
이런 brute force 공격을 저지하기 위해 요즘 암호를 입력받는 프로그램, 웹사이트 등에서는 암호가 틀릴 때마다 수 초씩 딜레이를 일부러 주고, n번 이상 암호를 틀리면 계정을 정지시키는 조치까지 취한다. 그 어떤 암호 시스템도 하나하나 다 대입해 보는 제일 무식하고 원천적인 전수조사에는 언젠가 뚫릴 수밖에 없는데.. key가 너무 허술하게 만들어져 있으면 거기에 더욱 취약해질 것이다.

3. 공개 키 암호화

지금까지 key를 따로 받지 않는 대표값 변조(해싱), 그리고 key를 받는 대칭 키 암호화까지 얘기가 나왔다. 대칭 키 암호화는 입력 데이터를 받아들이는 방식에 따라 블록 암호화 내지 스트림 암호화로도 나뉘는데, AES/DES 같은 것들은 블록 암호화로 분류된다.
그런데 1970년대에는 이런 것과는 성격이 근본적으로 다른 완전히 새로운 암호화 분야가 개척되었다. 바로 대칭이 아닌 비대칭, 또는 공개 키 알고리즘이라는 개념이 제안되고 개발된 것이다.

왜냐하면 제아무리 날고 기는 복잡 정교한 암호화 알고리즘이 있다 하더라도 그것들은 발신자와 수신자가 모두 동일한 key를 알아야 하고 보안을 위해서는 수시로 교체해야 하고, 그 바뀐 key를 모든 구성원에게 전해 줘야 한다는 원천적인 한계와 위험성이 있기 때문이다. 군대에서 새 암구호를 어떤 절차를 통해 전파하는지를 생각해 보자.

key를 주고 받는 건 암호라는 걸 운용하는 모든 조직이 감내해야 하는 어쩔 수 없는 숙명인 것 같다. 하지만 암호화 때 사용되는 key와 복호화 때 사용되는 key가 다르고(비대칭), 전자는 마음대로 주변에 공개해도 되는(공개 키) 알고리즘은 이런 한계를 극복해 준다. 이런 마법 같은 일이 어떻게 가능할까..?

이 암호화는 수학적 비가역성 내지 난해함에 근거를 두고 있다. 자릿수가 많은 두 수를 곱하는 건 사람의 입장에서 몹시 고된 노가다이겠지만.. 역으로 이미 곱해진 듣보잡 수를 아예 소인수분해 하는 것은.. 뭐 차원이 다를 정도로 난감하고 시간이 오래 걸리는 일일 것이다. 페르마 수 같은 게 n이 조금만 커져도 합성수인 것만 알려졌을 뿐 완전한 소인수분해가 안 된 놈들이 부지기수인 게 이 때문이다.

공개 키 암호화 중 하나로 유명한 RSA는 수십 자리 이상의 엄청나게 큰 소수 둘을 골라서 이 원천으로부터 공개 key와 개인 key pair를 만들어 낸다. 즉, 처음부터 동일한 원천으로부터 두 key 쌍이 계산에 의해 만들어진다는 것이다. 비록 계산이긴 해도 한 key로부터 나머지 key를 역으로 유도하는 것은 무진장 어렵고 시간이 많이 걸린다.

이런 공개 키 암호화는 제약이 크다. 앞서 살펴봤던 재래식(?) 암호화처럼 임의의 메모리 블록이나 문자열을 취급하지는 못하며, 평문과 key, 암호화 결과 모두 그냥 숫자 달랑 하나일 뿐이다. 숫자에다가 문자열에 맞먹는 정보를 담으려면 그 수가 엄청나게 커져야 한다.
그리고 얘는 그런 주제에 계산량이 차원이 다르게 많다. 컴퓨터 친화적인 XOR이나 비트 회전 같은 게 아니라 거대 정수에 대한 산술 연산을 무진장 해야 하기 때문이다.

그렇기 때문에 이런 암호화 알고리즘은 재래식 블록 암호화처럼 몇 MB짜리 데이터 자체를 암호화하는 단순한 용도로 쓸 수 없다.
그 대신 재래식 암호화 알고리즘에다가 돌릴 짤막한 key만을 암호화하는 용도로 병행해서 쓰인다. 멀티스레드 프로그램에서 TLS 슬롯은 공간이 한정되어 있으니 거기에다가 생 데이터를 몽땅 저장하는 게 아니라 그냥 포인터만 저장해 놓는 것과 비슷한 이치랄까..? 마치 손실 압축과 비손실 압축만큼이나 고유한 용도가 있는 셈이다.

https 보안 사이트 내지 인터넷 뱅킹에서 로그인을 할 때 시간이 0.n초나마 랙이 있는 이유는 네트워크 트래픽 때문이 아니라 순수하게 계산 때문에 그렇다. 그때마다 암호 해독을 위해 OpenSSL에 구현된 BigInt 같은 라이브러리의 코드가 실행되면서 큰 수 연산과 값 비교가 행해진다고 생각하면 되겠다.

공개 키 암호화로서 RSA가 아주 유명하지만 이런 소수와 소인수분해 말고 타원곡선이나 이산로그 같은 다른 어려운 연산에 기반을 둔 알고리즘도 있다.
이 암호화 기술은 인터넷의 발달과 더불어 우리의 생활을 크게 바꿔 놓았다. key를 위험하게 통째로 주고받지 않아도 되는 암호화 덕분에 인터넷 상으로 금융 거래도 할 수 있게 되고 디지털 서명, 인증서라는 것도 존재할 수 있게 됐기 때문이다!

보통은 공개 key로 암호화를 해서 개인 key로 복호화를 하는데, 반대로 어떤 문서를 개인 key로 암호화하고 공개 key로 복호화하게 하면 된다. 그러면 이 문서는 누구나 열람은 가능하지만, 만든 사람은 그 공개 key에 대응하는 개인 key의 소유자밖에 없다는 것이 입증된다. 놀랍지 않은가?

hash가 어떤 데이터가 원본과 동일한지 무결성을 보장한다면, 공개 key 암호화는 어떤 데이터가 반드시 특정인으로부터 만들어졌고 변조되지 않았다는 것을 보장할 수 있다.
도장이고 자필 서명이고 자물쇠와 열쇠 같은 모든 실물은 조작이 가능하며 컴퓨터야 뭐 0과 1 무엇이건 해킹이 가능한 디지털 세상이다. 이런 바닥에서 믿을 것은 수학적인 비가역성밖에 없어진다는 것이다.

이 세상에서 생명을 다루는 의료 다음으로 중요하고 착오가 절대로 없어야 하는 크리티컬한 임무는 아무래도 돈 거래, 기밀 거래일 텐데, 이 정도 기반은 갖춰진 뒤에야 인터넷이 안전하게 돌아가고 있다. 그러나 초창기에 인터넷은 기반 프로토콜 차원에서 이런 암호화 알고리즘이 제공되지 않았다.

그렇기 때문에 전자상거래나 인터넷 뱅킹을 남보다 일찍 서둘러 구현하려면 특정 운영체제에 종속적인 온갖 비표준 편법 기술이 동원돼야 했다. 오죽했으면 2000년대 초에 SEED 같은 알고리즘까지 개발한 걸 보면 공개 키뿐만 아니라 대칭 키 암호화까지 모두 허술했던가 보다.
허나 이게 바로 우리나라 특유의 IE + ActiveX 의존이라는 독이 되어서 오늘에 이르고 있다. 일본이 일찍부터 철도 왕국이 되긴 했지만 협궤 때문에 발목 잡힌 것과 비슷한 현상이랄까..?

이상이다. 인증서가 어떻고 공개 키, 개인 키, 디지털 서명 이러는 바닥은 통상적인 hash나 블록 암호화와는 영역이 상당히 다르다는 것, 그리고 이런 공개 키 암호화 덕분에 인터넷 보안 수준의 차원이 달라졌다는 것이 핵심이다. 이 바닥도 날고 기는 괴수들이 너무 많다..;;

Posted by 사무엘

2021/03/31 08:33 2021/03/31 08:33
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1871

1. 아이콘 불러오기

창(그 자체 또는 클래스)에다가 아이콘을 지정하기 위해 흔히 LoadIcon 함수가 쓰인다.
얘는 원래 고정된 32*32 크기의 기본 아이콘 하나만을 달랑 가져오는 함수로 출발했다. 허나 Windows 95부터는 글자 크기와 같은 16*16 작은 아이콘이라는 것도 추가됐고, 나중에 XP쯤부터는 24*24, 48*48 같은 다양한 중간 크기가 도입됐다.

거기에다 화면 DPI까지 가변화가 가능하지, 256픽셀 대형 아이콘까지 도입됐지.. 이거 뭐 아이콘이라는 건 이제 도저히 단일 크기 이미지라고 볼 수 없는 물건으로 바뀌었다. 한 아이콘이 다양한 크기와 색상 버전을 가질 수 있다는 점에서 과거의 비트맵 글꼴과 약간 비슷한 위상이 됐다.

한편, 원래 마우스 포인터(cursor)와 아이콘은 기술적인 원천과 본질이 거의 같은 물건이었다. 작은 정사각형 크기의 이미지 비트맵과 마스크 비트맵의 쌍으로 표현된다는 점에서 말이다. 마우스 포인터는 거기에다가 hot spot 위치 정보가 추가됐을 뿐이었다.
그랬는데 마우스 포인터는 애니메이션이라는 바리에이션이 생겼고, 아이콘은 크기 바리에이션이 생겼다고 보면 되겠다. 동일한 특성을 같이 공유하다가 서로 다른 방향으로 기능이 추가된 것이다.

Windows 95에서는 창이나 창 클래스에다가 아이콘을 지정할 때 큰 아이콘과 작은 아이콘을 구분해서 지정할 수 있게 했다. 그래서 WNDCLASS에는 멤버가 하나 더 추가된 Ex버전이 만들어졌다. WM_SETICON 메시지도 아이콘의 대소 종류를 지정하는 부분이 wParam에 추가됐다.

그리고 LoadIcon 함수 자체도.. Ex가 추가된 건 아니고, 비트맵, 아이콘, 포인터까지 다양한 크기를 모두 처리할 수 있는 완벽한 상위 호환 LoadImage에 흡수되었다. 스펙을 보면 알겠지만 기능이 정말 많다.

하지만 내 경험상, 굳이 Ex 버전을 쓰지 않고 WNDCLASS의 hIcon에다가 큰 아이콘만 LoadIcon으로 지정해 주더라도.. 동일한 ID의 아이콘에 큰 아이콘과 작은 아이콘이 모두 있다면 별도의 처리가 없어도 괜찮았다. 프로그램 타이틀 창에 작은 아이콘은 그 별도의 작은 아이콘으로 자동으로 지정되는 듯하다. 큰 아이콘을 흐리멍텅하게 resize한 놈이 지정되는 게 아니라는 뜻이다.

그래서 본인은 지금까지 프로그램을 개발하면서 굳이 WNDCLASSEX와 RegisterClassEx를 사용한 적이 없었다. 큰 아이콘과 작은 아이콘이 ID까지 다른 서로 완전히 다른 아이콘일 때에나 이런 전용 함수가 필요한 듯하다.
단, 윈도우 클래스를 등록하는 상황이 아니라 대화상자 같은 데서 WM_SETICON으로 아이콘을 지정할 때는 큰 아이콘과 작은 아이콘을 LoadImage 함수로 구분해서 일일이 지정해 줘야 했다.

참고로 Windows에서 아이콘이라는 건 메모리 관리 형태가 크게 세 종류로 나뉜다. (1) 메시지박스에서 흔히 볼 수 있는 ! ? i 표지처럼 시스템 공통 공유 아이콘, (2) 응용 프로그램의 아이콘 리소스를 직통으로 가리키기만 하는 공유 아이콘, (3) 그게 아니라 자체 메모리를 할당하여 동적으로 독자적으로 생성된 놈.

(3)만이 나중에 DestroyIcon을 호출해서 제거해 줘야 한다. (2)는 해당 모듈의 생존 주기와 동일하게 관리된다. (1)이야 뭐 언제 어디서나 유비쿼터스이고..
그리고 RegisterClass 계열 함수가 특례를 보장해 주는 건 역시 리소스 기반인 (2) 한정이다.
wndClass.hIcon = LoadIcon(hInst, IDI_MYICON) 이렇게 돼 있던 곳에서 LoadIcon(...)의 결과를 CopyIcon( LoadIcon(...))으로 감싸서 아이콘의 형태를 (3)으로 바꿔 보시라. 그러면 그 프로그램의 제목 표시줄에 표시된 작은 아이콘은 큰 아이콘을 resize한 뭉개진 모양으로 곧장 바뀔 것이다. 이것이 차이점이다.

사실, Visual Studio의 리소스 에디터 상으로는 구분이 잘 되지 않지만, 응용 프로그램 모듈(EXE/DLL)에 저장되는 리소스 차원에서는 단순 아이콘(RT_ICON)과 아이콘 집합(RT_GROUP_ICON)이 서로 구분되어 있다. 후자는 전자의 상위 호환이다. RegisterClass는 이를 감안해서 동작하지만 HICON 자료형이나 LoadIcon 같은 타 함수들은 일반적으로 그렇지 않은 것으로 보인다.

이럴 거면 wndClass.hbrBackground에 (HBRUSH)(COLOR_WINDOW+1)이 있는 것처럼 hIcon에도 (HICON)IDI_MYICON 이런 게 허용되는 게 더 깔끔하겠다는 생각도 든다.

자, 이 정도면 아이콘 지정에 대해서 더 다룰 게 없어야 하겠지만.. 그렇지 않다. LoadImage 함수에 약간의 버그가 있다.
얘는 (1) 시스템 공용 아이콘에 대해서는 요청한 크기에 맞는 버전을 되돌리지 않고 가장 큰 놈 또는, 걔네들 용어로는 캐시에 보관돼 있는 크기의 이미지만을 되돌린다. 즉, 기존 LoadIcon과 다를 바 없이 동작한다.

특정 크기에 해당하는 아이콘을 정확하게 되돌리라고 별도의 함수까지 만들었는데 그건 (2), (3) 계층에 해당하는 custom 아이콘에 대해서만 동작한다. (1)에 대해서는 글쎄, 성능 때문인지 호환성 때문인지 잘못된 동작을 일부러 방치해 버리고는 더 고치지 않는 듯하다.

그렇기 때문에 시스템 공용 아이콘의 16픽셀급 작은 버전을 이 함수로 얻을 수 없다.
Windows Vista부터는 사용자 계정 컨트롤이라는 보안 기능이 추가되어서 관리자 권한을 나타내는 방패 아이콘(IDI_SHIELD)이 추가되었다. 얘도 UI 텍스트와 함께 작은 크기로 그려야 할 텐데.. LoadImage로는 256픽셀짜리 대형 아이콘만 얻을 수 있기 때문에 이걸 16픽셀로 줄여서 그리면 보기가 흉하다.

마소에서는 LoadImage 함수의 버그를 고친 게 아니라 Vista부터 LoadIconMetric이라는 함수를 추가했다.
얘를 사용하면 시스템 공용 아이콘에 대해서도 정확한 크기를 얻을 수 있다.
얘는 아이콘을 언제나 (3)번 형태로 동적 할당해서 되돌리기 때문에 다 사용하고 나서는 DestroyIcon을 해 줘야 한다. 처리하기 간편한 shared, read-only 속성을 포기하고 정확한 동작을 하도록 로직을 바꾼 것 같다.

그 외에 SHGetStockIconInfo라는 함수도 있어서 얘를 사용하면 한 마디로 탐색기에서 쓰이는 각종 디스크 드라이브, 폴더, 돋보기, 네트워크 등의 표준 셸 아이콘을 얻을 수 있다.

2. DrawFocusRect

Windows에서 대화상자를 키보드로 조작하다 보면, 현재 포커스를 받아 있는 각종 버튼(라디오/체크 박스 포함)이라든가 리스트 아이템에 가느다란 점선 테두리가 쳐진 것을 볼 수 있다. 이것은 DrawFocusRect라는 함수를 이용해서 그려진 것이다.

마소에서는 키보드 포커스를 받아 있는 GUI 구성요소에다가는 요 함수를 호출해서 점선으로 테두리를 그려 줄 것을 GUI 디자인 표준으로 명시하고 있다. 뭐, 일반 프로그래머라면 버튼 같은 커스텀 컨트롤을 직접 구현하거나 owner-draw 리스트박스를 만들 때에나 숙지할 만한 개념이다. 다른 요소들을 다 그리고 나서 맨 마지막으로 focus 테두리를 그려 주면 된다.
다만, 에디트 컨트롤은 애초에 깜빡이는 캐럿(caret; cursor)이 포커스에 대한 시각 피드백 역할을 하고 있기 때문에 또 점선 테두리를 그려 줄 필요가 없다.

이 점선은 이미 아시겠지만 xor 연산을 가미한 반전색이다. 원래 색과 반전 색이 교대로 등장하는 아주 단순한 패턴이다.
요즘 세상에 테두리는 그냥 알파 채널을 가미한 옅은 실선으로 그려도 될 것 같지만, 이 분야는 구닥다리 GDI 레거시 API와의 호환 문제도 있어서 그런지 여전히 옛날 그래픽 패러다임이 쓰이고 있다. 이 xor 테두리는 계산량 적고 간편할 뿐만 아니라, 다시 한번 그리라는 명령을 내리면 싹 사라지고 원래 이미지로 돌아온다는 특성도 있어서 더욱 편리하다.

이 테두리는 두께가 오랫동안 1픽셀로 고정되어 있었다. 하지만 1픽셀만으로는 너무 가늘어서 눈에 잘 띄지 않고 시각 장애인의 접근성에 좋지 않다는 의견이 제기되었다. 게다가 모니터의 해상도가 갈수록 올라가고 100%보다 더 높은 확대 배율도 등장하다 보니, 1픽셀 고정 두께의 한계는 더욱 두드러지게 됐다.

이 때문에 Windows XP부터는 제어판 설정에 따라 2픽셀 이상의 focus 테두리도 등장할 수 있게 됐다.
이 조치가 응용 프로그램에서 특별히 문제가 될 일은 거의 없겠지만, DrawFocusRect로 평범한 직사각형을 안 그리고 1~2픽셀 남짓한 두께의 수직선· 수평선을 그려 왔다면 선이 의도했던 대로 그려지지 않을 수도 있다. 같은 영역에 선이 두 번 그려지면서 점선이 없어져 버리기 때문이다.

DrawFocusRect는 기술적으로 사각형 테두리 모양으로 50% 흑백 음영 비트맵을 브러시로 만들어서 PatBlt() 한 것과 완전히 동일하다. raster operation은 PATINVERT (흑백 xor target)이고 말이다. 그러면 원래색 / 반전색이 교대로 등장한다.
xor이 아니라 and라면 과거 Windows 9x/2000의 시스템 종료 대화상자의 배경처럼 "검정 / 원래색"이 교대로 등장하면서 화면이 반쯤 어두워지는 걸 연출할 수 있을 텐데.. 이 래스터 연산 코드는 따로 정의돼 있지 않은 것 같다.

그런데.. Windows의 GDI API에서 흑백 비트맵은 자체적인 색이나 팔레트 따위가 없으며, 현재 DC의 글자색과 배경색이 DC에 select된 비트맵의 색깔로 쓰인다.
그렇기 때문에 DrawFocusRect로 정확하게 반전 점선 테두리를 그리려면 호출 당시에 해당 DC의 글자색과 배경색을 반드시 black & white로 해 줘야 한다. 시스템 색상 따질 것 없이 RGB(0,0,0)과 RGB(255,255,255)로 하드코딩하면 된다.

이렇게 해 주지 않으면 마지막으로 텍스트를 찍던 당시의 글자색 및 배경색이 무엇이냐에 따라서 focus 테두리의 색깔이 정확하게 반전색이 되는 게 아니라 들쭉날쭉 날뛰고 지저분해질 수 있다.
이건 꽤 중요한 사항인데 왜 MSDN 같은 문서에 전혀 소개되어 있지 않았나 모르겠다. 나도 10수 년째 모르고 있다가 요 얼마 전에야 깨달았다.

또한 50% 음영은 굉장히 단순하고 자주 쓰이는 패턴인데.. 브러시나 비트맵을 stock object로 제공을 좀 해 주지, 왜 안 하나 모르겠다. 요즘 같은 트루컬러, 알파채널 이러는 시대보다도 모노크롬, 16색 이러던 옛날에 더 필요했을 텐데 말이다.
CreateCaret 함수로 caret을 생성할 때는 일반적인 비트맵 핸들 대신 특수한 상수를 넣어서 50% 음영 모양을 지정하는 게 있는데.. caret보다는 다른 형태로 쓰이는 경우가 더 많다.

다음은 파란 배경에 대해서 잘못 그려진 테두리(위: 반전색+검정)와, 맞게 그려진 테두리(아래: 반전색+원래색)의 예시이다.

사용자 삽입 이미지

3. 비트맵 윤곽으로부터 region을 곧바로 생성하는 방법의 부재

Windows에서 region은 사각형이 아닌 임의의 비트맵 영역을 scan line들의 집합 형태로 표현하는 자료구조이며, 창을 사각형이 아닌 임의의 모양으로 만드는 데 쓰이는 수단이기도 하다. 이 블로그에서 예전에 한번 집중적으로 다룬 적이 있다. (☞ 예전 글)
Windows에서는 사각형이 아닌 임의의 복잡한 모양의 region을 생성하기 위해서 다각형, 원, 모서리간 둥근 사각형 등 여러 API를 제공하며, 집합 연산 비스무리하게 기존 region과 영역을 합성하는 CombineRgn이라는 함수도 제공한다.

그런데 이것만으로는 여전히 좀 2% 부족한 구석이 있다.
region을 생성할 때 사용되는 원· 다각형 그리기 함수의 결과와, 실제 DC에다 원· 다각형을 그리는 함수의 결과가 픽셀 단위로 100% 정확하게 일치하지 않을 때가 있다. 그래서 딱 정확하게 영역 안에다가 테두리를 깔끔하게 그리는 게 난감하다.

그리고 아예 만화 캐릭터 같은 모양의 창을 만들 때는.. 저렇게 벡터 이미지가 아니라 임의의 마스크 비트맵으로부터 그 윤곽 영역대로 region을 바로 생성할 수 있는 게 좋은데 의외로 그런 함수가 없다.

뭐, region의 내부 자료구조에 접근해서 복잡한 region을 직통으로 생성하는 방법도 없지는 않지만(정말 생짜 직사각형들의 집합..;; ) 이 역시 귀찮다는 건 어쩔 수 없다.
이 때문에 비트맵 그림으로부터 region을 생성하는 코드를 보면.. 비트맵 내용대로 한 줄 한 줄 CombineRgn(RGN_OR)로 한눈에 보기에도 정말 느리고 비효율적인 방법을 쓰고 있다.

layered window의 color key를 쓰면 투명색을 더 편리하게 구현할 수 있긴 하다. 허나, 창 아래의 그림자(CS_DROPSHADOW)는 region을 통해 지정된 경계하고만 정확하게 연계한다. 그렇기 때문에 애니메이션이 아닌 데서는 구닥다리 region도 여전히 필요하다.

이 분야는 다른 그래픽 API 같은 대안이 있는 것도 아닌데 마소에서 GDI API의 지원에 왜 이리 인식한지 모르겠다.;;

Posted by 사무엘

2021/03/28 08:35 2021/03/28 08:35
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1870

Windows 환경에서는 프로그램이 자기 화면(창)에다 뭔가를 그리고 표시하는 걸 보통은 WM_PAINT 메시지가 왔을 때 한다.
하지만 반드시 그때만 그림을 그릴 수 있는 건 아니다. 키보드나 마우스 입력(특히 뭔가 드래그)이 들어와서 특정 지점에 대한 시각 피드백만 즉각 주고 싶을 때, 혹은 타이머를 걸어서 일정 시간 주기로 반드시 뭔가를 그리고 싶을 때는 InvalidateRect라든가 WM_PAINT에 의존하지 않고, 프로그램이 직통으로 DC를 얻어 와서 그림을 그려도 된다.

화면 그리기뿐만 아니라 키보드 입력 인식도 마찬가지이다.
반드시 WM_KEYDOWN/UP 메시지를 통해서만 키보드 입력을 인식할 수 있는 건 아니다. 마우스 메시지를 처리 중일 때도 shift나 ctrl 같은 modifier key가 같이 눌렸는지, 혹은 caps/num/scroll lock 램프가 현재 켜져 있는지를 함수 호출 하나로 간편하게 알 수 있다.
그런 modifier 글쇠조차 매번 WM_KEYDOWN/UP때만 감지할 수 있다면.. 응용 프로그램이 지역 변수의 범위를 넘어서는 지저분한 key state 관리자를 둬야 할 것이고, 코딩이 굉장히 번거롭고 불편해질 것이다.

옛날에 도스 시절에 키 입력을 감지하는 건 꽤 번거로웠던 걸로 본인은 기억한다.
문자가 아닌 화살표, home/end, page up/down 같은 글쇠에 대해서는 0번(null) 문자가 prefix 명목으로 오고, 동일 함수를 한번 더 호출해서 실제 값(아마 스캔 코드)을 얻는 형태였다. 그러고 보니 저건 나름 dead key라는 개념이 구현된 셈이다.

그것 말고 ctrl이나 shift, 각종 lamp 글쇠는 저런 방식으로도 잡히지 않았기 때문에 또 다른 도스 API를 동원해야 했다. 요것들은 키보드 버퍼를 차지하지 않고, 컴퓨터가 바쁠 때 아무리 누르고 있어도 삑삑 소리를 발생시키지 않는 조용한 특수글쇠이기 때문이다.;;

글쇠를 누르는 것 말고 떼는 것을 감지하는 것도 본인은 도스 시절에 개인적으로 경험한 적이 없다.
글쇠를 누르고 있는 동안 해당 문자를 일정 간격으로 반복해서 접수해 주는 것은 컴퓨터 하드웨어 차원에서 행해지는 일인데.. 그런 키보드 속도에 구애받지 않고 누른 것과 뗀 것 자체만을 감지하는 건 특히 게임 만들 때의 필수 테크닉이다.
그랬는데 Windows에서는 모든 글쇠들이 한 치의 차별 없이 WM_KEYDOWN과 WM_KEYUP 메시지 앞에서 평등해지고 가상 키코드값을 부여받게 됐다니~! 정말 혁명 그 자체였다. 프로그래밍 패러다임이 싹 바뀌었다.

가상 키코드는 기반이 전적으로 소프트웨어에 있는 계층이기 때문에 같은 하드웨어에서도 차이가 날 수 있다. 가령, 같은 글쇠에다 가상 키코드를 부여하는 방식은 Windows와 mac이 서로 다를 수 있으며, Windows는 사용하는 키보드 드라이버에 따라서도 차이가 날 수 있다.

Windows의 가상 키코드는 caps lock 내지 shift의 영향을 받지는 않기 때문에 a건 A건 코드값이 같다. 하지만 num lock의 영향은 받기 때문에 키패드 0~9 숫자와 키패드 화살표의 코드값이 서로 다르다. 키패드 numlock 숫자는 진짜 숫자키의 숫자와도 가상 키코드가 다르다.
가상 키코드와 달리 스캔 코드는 각각의 물리적인 글쇠들에 고정불변으로 부여되어 있다. 좌우로 두 개 있는 shift처럼 가상 키코드가 동일한 글쇠는 스캔 코드로 방향을 구분할 수 있다.

요컨대 스캔 코드는 저수준이고 가상 키코드는 고수준이다. 여기에다가 문자 글쇠는 message loop에서 TranslateMessage 함수를 거침으로써 caps lock(대소문자)까지 고려한 실제 입력 문자가 담긴 WM_CHAR로 바뀐다.
WM_CHAR가 생성되는 과정(가상 키코드와 스캔 코드로부터 문자를 얻기)이 별도의 함수로 제공되기도 한다. 바로 ToUnicode 내지 ToAscii이다.

배경 설명이 좀 길어졌는데..
현재 어떤 글쇠가 눌러졌는지 여부를 알려주는 대표적인 함수는 GetKeyState이다. 인자로는 가상 키코드를 주면 되고, 리턴값으로는 2비트의 유의미한 정보가 담긴 BYTE값이 돌아온다.
최상위 비트 0x80은 이 key가 지금 눌렸는지의 여부이고, 최하위 비트 1은 눌렸다 뗐다 toggle 여부이다. 3대 lock들의 램프 점등 여부는 &1을 해 보면 알 수 있다.

심지어 GetKeyboardState 함수는 모든 가상 키코드값에 대한 키보드 상태를 배열 형태로 한꺼번에 되돌려 준다.
컴퓨터 키보드의 글쇠는 많아야 100여 개이지만 가상 키코드의 범위는 0~255라는 바이트 규모이므로 가상 키코드를 할당할 공간은 아주 넉넉한 셈이다.

그런데 Windows에는 GetAsyncKeyState라는 함수도 있다. 무엇이 비동기적이라는 얘기이며 GetKeyState와는 어떤 차이가 있는 걸까..?
GetKeyState는 현재 스레드의 메시지/input 큐 기준으로 WM_KEYDOWN/UP 메시지가 마지막으로 처리되었던 그 순간의 키보드 상태를 일관되게 쭉 되돌린다. 한 메시지가 처리되던 도중에 사용자가 어떤 글쇠를 누르거나 떼더라도 값이 변함없다.
한 컴퓨터에 키보드야 하나만 존재하겠지만, 각 응용 프로그램의 UI 스레드별 키보드 상태는 이론적으로 서로 제각각으로 다를 수 있다.

그 반면, GetAsyncKeyState는 그런 것과 상관없이 시스템 전체의 현재 키보드 상태를 실시간으로 반영해서 알려준다. 그리고 이유는 알 수 없지만 GetKey*는 최상위 bit 크기가 BYTE인 반면, GetAsyncKey*는 최상위 bit 크기가 WORD이다.
둘 다 함수의 리턴 타입은 short로 잡혀 있다. 하지만 전자는 눌려 있는 글쇠를 0x80으로 표현하는 반면, 후자는 0x8000으로 표현한다.

그러면 마우스 휠을 Ctrl을 누른 채로 굴렸는지 감지하고 싶을 때 GetKey*와 GetAsyncKey* 중 무엇을 쓰는 게 좋을까?
프로그램이 사용자의 키보드· 마우스 입력에 0.1초 안으로 정상적으로 반응하고 있는 상태라면 두 함수는 유의미한 차이를 보이지 않는다.

GetAsyncKey*는 내 프로그램이 작업을 하느라 수 초 동안 응답이 멎은 중에 사용자가 ESC를 누른 것 정도나 잡아내는 용도로 쓰면 된다. 아니면 애초에 자기 GUI 창이 없는 콘솔 프로그램에서 키 입력을 감지하는 것 말이다. 얘는 심지어 포커스가 다른 프로그램에 가 있을 때에도 특정 글쇠가 눌린 것을 감지할 수 있다.

이와 달리 GetKey*는 메시지 처리 단위로 실행 결과가 '동기화'돼 있으며, 정확하게 자기 스레드의 UI에 포커스가 가 있을 때 글쇠가 눌린 것만 감지해 준다. 그러니 일반적인 상황에서 우리에게 필요한 것은 대체로 GetAsyncKey*가 아니라 그냥 GetKey*이다.

Async가 붙은 놈이건 안 붙은 넘이건, 이들 함수는 글쇠가 눌린 것을 감지만 하지, 그걸 처리한 것으로 퉁쳐 주지는 않는다. 내 작업 루틴에서 ESC가 눌린 것을 감지해서 하던 작업을 중단했다 하더라도 UI에서 WM_KEYDOWN + VK_ESCAPE 메시지가 가는 것은 변함없다.
이럴 거면 GetAsyncKey*를 호출할 게 아니라 Peek/Get/DispatchMessage로 메시지를 정식으로 처리하는 게 더 낫다. GetAsyncKey*는 쓸 일이 더욱 줄어드는 셈이다.

Posted by 사무엘

2021/03/20 08:35 2021/03/20 08:35
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1867

« Previous : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : ... 31 : Next »

블로그 이미지

그런즉 이제 애호박, 단호박, 늙은호박 이 셋은 항상 있으나, 그 중에 제일은 늙은호박이니라.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2024/12   »
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Site Stats

Total hits:
3041159
Today:
786
Yesterday:
1700