Visual Basic 6은 이제 개발사로부터 지원이 중단된 지 무려 10년이 돼 가는데(나온 지는 20년..!) 아직도 현업에서 쓰는 경우가 있는지 모르겠다. Visual C++ 6도 업계에서 도를 넘는 노인학대를 당해 온 물건이긴 하지만, 그래도 얘는 이제는 거의 은퇴한 듯하다. 그리고 VB6과 VB .NET은 VC6과 VC .NET하고는 처지가 완전히 딴판으로 다르다.

비주얼 베이직이 오늘날까지 인류에게 남긴 독보적인 GUI 유산은 바로 property grid이지 싶다. 이거 원조가 바로 VB이다.

사용자 삽입 이미지

이건 운영체제의 공용 컨트롤로 제공되지는 않는다. 하지만 닷넷에서는 자체 구현한 컴포넌트가 있는 듯하며, 네이티브 환경에서는 그냥 3rd-party GUI 툴킷에서 구현해 놓은 레플리카 내지 짝퉁이 쓰인다.

property grid는 오늘날까지 Visual Studio IDE에서 Alt+Enter 속성 창과 프로젝트 속성 대화상자에서 고스란히 볼 수 있다. 수십 개의 설정들이 추가되더라도 번거롭게 대화상자를 디자인할 필요 없이 설정을 뒤에다 추가만 하면 되니 참 편하다.
이에 비해 VC6의 옛날 속성 대화상자는 얼마나 추레하게 생겼는가?

단, 외형이 깔끔하긴 해도 너무 사무적이고 재미없게 생겨서 그런지, 개발툴이나 DBMS 말고 일반 사용자용 Office 제품 같은 데서는 property grid가 등장하는 걸 여전히 본 적이 없는 것 같다.

Visual Basic은 1991년 5월에 Windows용으로 1.0이 첫 출시됐다. 드래그 앤 드롭 방식으로 폼을 디자인하고 곧장 이벤트를 추가하는 방식으로 코딩을 하는 굉장히 획기적인 개발툴이라고 찬사를 받았음이 틀림없다. Windows용의 호평에 힘입어 그 해 9월에는 처음이자 마지막으로 도스용 비베도 1.0이 나와서 QuickBasic과 MS Basic PDS의 라인을 종결시켰다. 하지만 VB의 UI 엔진은 경쟁작이던 볼랜드 Turbo Vision 라이브러리에 비해서는 인지도가 매우 낮다.

그 뒤 VB 2와 3은 16비트 Windows용으로 나와서 인기를 얻다가 95년에 나온 4.0은 16비트용과 32비트용이 나란히 동시에 출시되었다. 마소에서 제품을 이런 식으로 동일 버전을 16비트용과 32비트용으로 동시에 내놓는 건 극히 드물었고 아마 VB4가 거의 유일했다. Office나 VC++는 그냥 상위 버전에서 곧장 32비트용이 나오면서 16비트 지원을 중단하는 형태였기 때문이다.
물론 VB도 5부터는 당연히 32비트 전용으로 갈아탔다. VB6 이후의 .NET에 맞춘 언어 마개조의 역사는 굳이 여기서 더 말할 필요가 없을 것이다.

델파이(네이티브 코드 지원 RAD), Java(압도적으로 넓은 플랫폼 지원, 인지도, 점유율)와 C#(닷넷 지원 킹왕짱) 같은 경쟁 솔루션이 너무 쟁쟁한테 비주얼 베이직 프로그래머 수요가 국내에 얼마나 되는지는 잘 모르겠다. 그나저나 ASP도 비베와 비슷한 문법인 걸로 아는데 그건 살아 있나?
또한 비베가 .NET 으로 바뀌면서, 기존 Office와 Visual Studio IDE에서 제공되던 VBA 매크로 언어까지 반쯤 낙동강 오리알 레거시로 전락한 것도 좀 아쉬운 점이다. 덕분에 Visual Studio 201x 최신 IDE는 지금도 제대로 된 키/스크립트 기반 매크로가 없는 걸로 본인은 기억한다.

이런 비주얼 베이직과 달리 C/C++ 컴파일러 라인은 원래 IDE 같은 게 없다 보니 도스/Windows 플랫폼은 그리 타지 않았다. C/C++은 베이직과는 완전히 다른 저수준 고성능 시스템 프로그래밍 언어이지 않던가? Windows는 NT 이전엔 애초에 자체적인 명령 프롬프트라는 게 없던 물건이었고, C 컴파일러는 도스 환경에서 스위치만 바꿔서 도스뿐만 아니라 Windows, 그리고 그 당시 중요한 플랫폼이던 OS/2용 프로그램을 크로스 컴파일했다.

그러다 1990년대 초에 이쪽은 C++ 언어 추가 → MFC 도입 → MS C/C++ 8.0 대신 Visual C++ 1.0으로 명칭 변경 같은 중요한 사건을 겪었으며, 리소스 편집기와 간단한 소스 코드 에디터가 16비트 Windows용으로 나왔다.
그리고 1993년, Windows NT가 출시되면서 NT용 32비트 Visual C++ 1.0이 별도로 나왔지만 이때는 NT는 시장 점유율이 아주 미미했으니 별 재미를 못 봤다.

그 뒤 1993~94년 사이에 Visual C++은 16비트와 32비트가 서로 약간 엇갈린 길을 갔다. 16비트용은 1.5 ~ 1.52c가 나온 뒤 지원이 중단됐고, 32비트용으로는 2.0이 나왔다. 하지만 아직 Windows 95도 없던 시절에 NT밖에 지원하지 않는 32비트용 VC++ 2는 정말 존재감이 없다. 이 32비트 바이너리를 Windows 3.1에서도 아쉬운 대로 돌릴 수 있게 하기 위해 Win32s라는 런타임이 이 시기에 개발되기 시작했는데, 얘 역시 본격적으로 이름이 부각된 건 Windows 95가 나온 뒤부터였다. 요컨대 Win32s는 95의 등장 이전부터 NT 3.1과 오리지널 3.1 사이의 gap을 메우기 위해 존재해 왔던 물건이다.

그 뒤, Windows 95가 나오고 1995년 말에 출시된 Visual C++ 4가 대박을 치면서 마소의 개발툴이 볼랜드 같은 타사 컴파일러를 슬슬 제치기 시작했다. Developer Studio라는 통합 IDE도 이때 처음으로 등장했다(텍스트 에디터, 리소스 에디터, 디버거, 빌드 툴, 도움말 레퍼런스 모두 한데 통합). VC4 시절에는 UI상으로 생뚱맞게도 맥용 크로스 컴파일이 있었던 모양이나, 본인이 직접 써 본 적은 없다.

이 당시에는 지금 같은 인터넷 기반 제품 업데이트가 없다 보니 소숫점 첫째나 둘째 자리가 0이 아닌 제품 버전을 심심찮게 볼 수 있었다. Win32s는 Visual C++ 4.1까지 지원되다가 96년 가을에 출시된 4.2에서부터 지원이 중단됐다. 설치할 때부터 "이 버전부터는 Win32s를 지원하지 않으니 이걸 타겟으로 개발하려면 구버전을 쓰고 이건 설치하지 마세요"라고 확인 질문이 뜬다.

비베는 4.0에서야 32비트 에디션이 등장하고 16비트와 32비트가 공존했던 반면, C++은 진작부터 32비트가 존재했고 그 대신 Win32s라는 과도기를 거쳤다는 차이가 있다.
또한 비베는 21세기부터는 닷넷 기반 언어로 완전히 탈바꿈해 버린 반면, C++은 이전부터 위상이 위상이다 보니 닷넷의 공세에 영향을 받지 않있다. 차라리 C++/CLI 같은 파생형 확장이 나오면 나왔지, 네이티브 코드 개발 부분은 바뀐 게 없다.

비베는 5와 6에서 잠시 MS Office 97 기반 GUI 엔진을 사용했고, 닷넷 200x에서는 그 기반을 계승하여 Office XP 및 파생 변종 GUI를 사용했다. VC++의 4~6에서 쓰인 IDE는 MFC를 써서 Office와 비슷한 외형이 나오게 자체적으로 만든 GUI 엔진 기반이었다.
그러던 것이 Visual Studio 201x부터는 WPF 기반의 완전히 독자적인 고유한 GUI를 사용하여 오늘날에 이르고 있다. 버전이 올라갈 때마다 매번 외형을 바꾸던 것도 이제는 지쳤는지(?) 2013 이후쯤부터는 안 하고 있다.

Posted by 사무엘

2017/10/12 08:35 2017/10/12 08:35
, , , ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1415

Windows에서 메뉴, 리스트박스, 콤보박스처럼 세부 항목이 존재하는 고전적인 UI 컨트롤에는 기본 글꼴로 문자열을 찍는 기능뿐만 아니라 임의의 크기로 임의의 그림도 그리는 owner draw 기능이 있다. 한두 개 정도 특수하게 쓰이는 owner draw 기능이라면 해당 UI 컨트롤을 구동하는 대화상자 등 부모 윈도우에서 메시지를 받아서 처리한다.

그러나 매 아이템들마다 check box가 달린 리스트라든가, 트리 계층 구조를 owner draw 기능을 이용해서 얼추 구현한 리스트처럼.. 특정 owner draw 기능과 동작을 컴포넌트화해서 여러 곳에서 동시에 사용하고 싶다면 그 UI 컨트롤 자체가 개조 대상이 된다. 윈도우 프로시저를 서브클래싱한 후, owner draw 메시지를 부모 윈도우로부터 되받아서 자신이 직접 처리하면 된다. 이건 뭐 16비트 시절부터 존재해 온 아주 고전적인 Windows 프로그래밍 테크닉이다.

owner draw는 개념적으로 모든 아이템의 크기가 동일한 owner-draw fixed와, 각각의 아이템 크기가 모두 다를 수 있는 owner-draw variable이 존재하는데, 개인적으로 후자는 전혀 다뤄 본 적이 없다.

그리고 string 버퍼를 사용하는 owner-draw가 있고(LBS_HASSTRINGS 내지 CBS_HASSTRINGS 스타일), 그런 게 없는 owner-draw도 있다. 문자열의 옆에다가 아이콘 같은 걸 추가로 그리거나 문자열 자체를 좀 색다른 색깔과 폰트로 출력하기 위해서 owner-draw를 사용하는 것이라면 전자를 선택해야 할 것이고, 그게 아니라 완전히 생판 다른 그림만을 찍거나, 자체 버퍼에 있는 문자열을 직통으로 찍으려면 후자를 선택하면 된다.
문자열 없는 owner draw 리스트박스는 일일이 LB_ADDSTRING을 호출할 필요 없이 LB_SETCOUNT만으로 간단하게 아이템 수를 뻥튀기할 수도 있다.

owner draw 컨트롤이 동작을 시작하면 아이템을 손수 직접 그리라는 WM_DRAWITEM 메시지가 오기에 앞서, 그림을 그릴 영역을 정하기 위해 WM_MEASUREITEM 메시지가 부모 윈도우로 날아온다. 그런데 여기서 꽤 재미있는 동작 특성이 있다. WM_MEASUREITEM는 DRAWITEM과는 달리, 굉장히 일찍 날아온다. 대화상자의 경우, MEASUREITEM은 WM_INITDIALOG보다도 먼저 날아온다.

WM_INITDIALOG는 대화상자 내부의 모든 컨트롤들이 생성되었고 모든 준비가 완료되어서 대화상자가 화면에 표시되기 직전에 날아온다. 그러나 MEASUREITEM은 그렇게 내부 컨트롤이 생성될 때마다, WM_CREATE 타이밍에서 자신의 스타일에 owner draw 속성이 주어져 있으면 곧장 부모 윈도우로 전달된다고 생각하면 된다. 그러니 자기 주변의 다른 대화상자 컨트롤들이 다 생성되기도 전의 굉장히 이른 타이밍에 날아온다.

대화상자 윈도우(HWND)를 그에 상응하는 C++ 개체 같은 사용자 정의 오브젝트(LPARAM)와 연결하기 위해서는 CreateDialog나 DialogBox 같은 함수에다가 연결할 그 오브젝트 포인터를 넘겨주는 편이다. 그리고 HWND와 LPARAM이 실제로 만나는 타이밍이 WM_INITDIALOG이다. 즉, 이 메시지가 대화상자계에서 WM_CREATE나 마찬가지인 셈이다.

하지만 WM_MEASUREITEM은 이런 통상적인 초기화 메커니즘이 수행되기 전에 부모 윈도우로 호출된다. 그렇기 때문에 MFC 말고 자체적인 Windows API 프레임워크를 구현하고 있다면 이 메시지의 처리를 좀 특수하게 해 줄 필요가 있다.
리스트박스나 콤보박스가 좀 지연 초기화를 지원해서 대화상자의 초기화가 다 끝나고, 자기가 WM_PAINT를 받아서 화면에 그려지기 직전(WM_DRAWITEM)처럼 정말로 폭을 알아야 할 때에나 저런 메시지를 보냈으면 사용자가 UI 프로그래밍을 하기 약간 더 수월했을 텐데 싶은 아쉬운 생각이 좀 든다.

그리고 WM_MEASUREITEM의 도착 타이밍이 너무 일러서 부담된다면, 아이템의 폭을 꼭 이때 지정해 주지 않아도 된다. 뒤늦게라도 부모 윈도우에서 LB_SETITEMHEIGHT(리스트박스), CB_SETITEMHEIGHT(콤보박스) 메시지를 보내서 아이템 전체(ower-draw fixed), 또는 개별 아이템(owner-draw variable)의 폭을 지정해 줄 수 있다.
리스트박스의 경우 경험상 둘의 차이는 거의 없다. 콤보 박스는 WM_MEASUREITEM 메시지의 결과에 따라서 drop list 내부에서의 아이템 높이뿐만 아니라 한 줄짜리 자기 본체의 높이도 그에 맞춰 자동으로 조절되는 반면, CB_SETITEMHEIGHT 메시지는 그런 효과까지는 없다는 차이가 있다.

또한, 메뉴야 대화상자의 내부 컨트롤 같은 존재가 아니니 저런 대체제가 존재하지 않으며 owner-draw 메뉴 아이템의 폭을 지정하는 타이밍은 WM_MEASUREITEM밖에 선택의 여지가 없다. 딱히 MENUITEMINFO 같은 구조체에 자신의 높이를 지정하는 곳은 존재하지 않는다.

요즘 운영체제의 옵션에 따라서는 콤보 박스의 drop list가 튀어나올 때, 또는 메뉴가 출력될 때 바로 툭 튀어나오는 게 아니라 fade in으로 서서히 나타나거나 위-아래 내지 대각선 방향으로 슬라이딩 하듯이 튀어나오곤 한다. 이건 임의의 윈도우에 대해서 AnimateWindow라고 이런 애니메이션 효과를 구현해 주는 함수가 따로 있다.

그런데, 과거의 Windows 9x에서는 owner-draw 아이템이 들어있는 콤보박스나 메뉴에 대해서는 그런 애니메이션이 지원되지 않았다. 기본 스타일로 문자열을 출력하는 컨트롤만 애니메이션이 나오던 것이 2000/XP 같은 NT 계열에 와서야 owner-draw 방식의 컨트롤에 대해서도 동등하게 애니메이션이 지원되기 시작했다. 그림을 화면에다 바로 그리는 게 아니라 내부 버퍼 DC에다가 그려 놓고 그런 처리를 하게 된 듯하다.

참고로 AnimateWindow는 애니메이션 대상인 윈도우에다가 WM_PRINTCLIENT라고 좀 생소하게 생긴 메시지를 보낸다. 이것은 WM_PAINT와 비슷하게 창의 내용을 그리라는 메시지이지만, WM_PAINT 때와는 달리 BeginPaint나 EndPaint 호출이 필요하지 않다. invalid 영역이나 클리핑 처리 같은 개념도 없으며 주어진 DC에다가 언제나 윈도우 내용을 처음부터 끝까지 그려 주면 된다.

Posted by 사무엘

2017/09/18 08:37 2017/09/18 08:37
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1406

본인은 몇 년 전에 쓴 글을 통해 Windows API에서 비트맵을 출력할 때 사용하는 GDI API 몇 개를 브러시와 비트맵의 관계라는 관점에서 비교하고 살펴본 적이 있었다. 이번에는 픽셀 포맷과 DDB/DIB라는 관점에서 관련 API들과 이들의 특성을 살펴보도록 하겠다.

1.
먼저, 비트맵은 CPU의 관점에서 봤을 때 빅 엔디언 형태이다.
모노크롬 비트맵에서는 128, 64 같은 큰 비트 자리수가 왼쪽을 나타내고 작은 비트로 갈수록 오른쪽으로 간다.
색깔을 나타내는 RGB야 숫자의 대소 구분이 무의미하겠지만, 일단 RGB 매크로(메모리)에서의 색상 배열 순서와 RGBQUAD 구조체(파일 저장)에서의 색상 배열 순서는 서로 정반대이다. 전자는 R이 최하위 비트이지만 후자는 R이 최상위 비트이다. 그러니 여기서도 이념이 빅 엔디언임을 확인할 수 있다.

2.
일반적으로 비트맵 폰트 파일 내부의 비트맵들은 한 줄이 바이트 단위로 align이 돼 있다. 그러나 CreateBitmap 함수가 받아들이는 DDB(장치 종속 비트맵)는 역사적인 이유 때문인지, 한 줄이 2바이트, word 단위로 align돼 있어야 한다.
compatible bitmap이 아니라 CreateBitmap으로 직통으로 만들 수 있는 비트맵이 사실상 모노크롬밖에 없다는 점을 감안하면, 저기에 전달되는 가로 크기는 사실상 언제나 16의 배수 단위여야 한다.

한편, BMP 파일과 직통 대응하는 DIB(장치 독립 비트맵)는 이런 제약이 더 커져서 한 줄이 4바이트 단위로 align돼 있어야 하며, 얘는 또 상하가 뒤집혀 있기까지 하다. y축 양수가 위로 올라가는 좌표계를 염두에 뒀기 때문이다. DIB를 취급하는 함수들은 다 이런 형태의 비트맵을 입력으로 받는다.

3.
Create(Compatible)Bitmap 함수로 만들어진 비트맵은 성능이 가장 좋고 속도가 빠르지만, 한번 초기화한 뒤에 내부 비트맵 메모리에 직접 저수준 접근을 할 수 없다. GetDIBits 같은 함수로 내부 메모리 컨텐츠에 대한 복사본만을 얻을 수 있을 뿐이며, 이 내부 메모리는 철저하게 장치 종속적이다. 즉, portable하지 않다. 컨텐츠를 조작하는 건 BitBlt 같은 타GDI 함수를 써서 해야 한다.

비트맵을 출력하는 다른 함수로는 SetDIBitsToDevice가 있다. 얘는 받는 인자가 많고 사용이 좀 복잡하긴 하지만, BitBlt와는 정반대로 그냥 아무 메모리가 가리키는 임의의 BMP 헤더와 컨텐츠를 통째로 받아서 그 내용을 화면에다 찍어 준다. 원본 비트맵에 대해서 뭐 메모리 DC 만들고 비트맵 만들고 SelectObject 할 필요가 없으며, 메모리에 직통으로 접근해서 픽셀, 팔레트 테이블, 크기 따위의 수정도 얼마든지 가능해서 매우 좋다.

하지만 BMP 헤더를 매번 해석해서 DIB를 DDB로 변환해서 찍을 준비를 해야 하기 때문에 이 함수는 비트맵을 뿌리는 속도가 DDB 전용 함수만치 빠르지는 않다. 구형 운영체제의 16/256색 구닥다리 비디오 환경에서는 성능 열화의 폭이 더욱 크다.

그런데 알고 보니 저 둘의 중간 역할을 하는 함수도 있다.
CreateDIBSection은 내부적으로 반쯤 DIB로 취급되는 HBITMAP을 되돌린다. 이 비트맵을 사용하기 위해서는 BitBlt를 쓸 때처럼 원본 메모리 DC를 만들고 SelectObject를 해 줘야 한다. 하지만 픽셀을 직접 조작할 수 있는 메모리 포인터도 되돌리기 때문에 이를 응용 프로그램이 사용 가능하다.

이 메모리는 운영체제가 내부적으로 직접 할당해서 준 것이다. SetDIB*처럼 아무 메모리에 있는 비트맵을 찍을 수 있는 게 아니며, 그림의 크기나 색상 수 같은 헤더 정보는 한번 정해진 뒤에 변경 가능하지 않다. (그게 달라진다면 그냥 비트맵을 새로 만들어야..) 단지 픽셀 데이터에만 접근 가능하며, 색깔 변경은 SetDIBColorTable라는 별도의 함수로 해야 한다.

하지만 픽셀 데이터에 직접 접근과 조작이 가능한 것만 해도 어디냐. 기존 HBITMAP의 특성은 다 가지고 있기 때문에 BitBlt, DrawText, LineTo 같은 GDI 함수들을 고스란히 사용하면서 그림이 그려진 결과를 메모리 포인터 레벨에서 바로 확인 가능하니 실로 놀라운 일이 아닐 수 없다. 이런 DIB의 특성을 반쯤 가지면서 비트맵을 뿌리는 성능도 SetDIB*보다는 약간 더 좋다.

지금까지 얘기했던 이 세 가지 API를 표로 정리하면 다음과 같이 요약된다.

  CreateBitmap + BitBlt SetDIBitsToDevice CreateDIBSection + BitBlt
픽셀 포맷 2바이트 패딩 4바이트 패딩 + 상하 반전 4바이트 패딩 + 상하 반전
사용하는 메모리 내부 전용 사용자 임의 지정 가능 내부 전용
픽셀 메모리에 직접 접근 가능 X O O
BMP 헤더에 직접 접근 가능 X O X
단색 비트맵의 색깔 지정 SetTextColor / SetBkColor BMP 헤더 구조체 값 직통 수정 SetDIBColorTable
성능 제일 빠름 제일 느림 약간 느림

* 참고로, CreateDIBitmap은 DIB 함수들처럼 BMP 헤더를 인자로 받긴 하지만, HDC까지 인자로 받아서 DIB를 완전히 DDB 형태로 변환해 버린다. 이 함수를 통해 생성된 HBITMAP은 외부에서 내용 수정이 가능하지 않다.

* 그리고 HBITMAP의 내부 컨텐츠를 얻어 오는 함수로 GetDIBits 말고 GetBitmapBits도 있는데, 얘는 그냥 레거시 잔재이다. BITMAPINFO 헤더 정보를 받는 부분이 없기 때문에 그냥 모노크롬 비트맵 데이터를 얻을 때나 쓰는 간소화 버전이라고 생각하면 된다.

예전에 Windows 95부터 2000/ME까지는 시스템 종료 명령을 내리면 화면 전체에 50% 검은 음영 픽셀이 깔리면서 시스템 종료, 재시작 같은 세부 기능을 선택하는 대화상자가 떴다. 지금은 그런 효과는 관리자 권한을 요청하는 UAC 확인 대화상자가 뜰 때에나 그렇게 배경이 어두워질 텐데 그때는 시스템 종료 대화상자가 그 비주얼 이펙트 역할을 담당했다. (XP에서는 그 효과가 "흑백으로 서서히 fade out"이라는 더 화려한 형태로 바뀌었다가, 후대 버전부터는 이펙트가 사라졌다.)

그런데.. 그렇게 50% 검은 음영을 뿌리는 게 바로 래스터 오퍼레이션을 가미한 BitBlt 내지 PatBlt 실행으로 구현되었다. 최신(당대 기준) 그래픽 카드에서야 즉시 전체 화면에 음영 뿌려졌겠지만, 하드웨어 가속 없이 640*480 VGA 내지 그에 준하는 구린 그래픽 환경에서는 음영이 위에서 아래로 뿌려지는 게 눈으로 보일 정도로 속도가 느렸다. 그건 나름 수십만 개에 달하는 픽셀이 바뀌는 거니까..

그리고 그게 바로.. 그 컴퓨터에서 BitBlt 함수로 화면을 가득 채우는 속도와 같다 생각하면 된다. 그때는 이 따위 느린 그래픽 함수로는 답이 없으니, Windows에서 게임을 돌리려면 발상의 전환을 달리한 DirectX 같은 API를 만들어야겠다는 생각을 응당 안 할 수 없었을 것이다. 하드웨어 계층 추상화+통합이 아니라, 하드웨어 직통 제어를 지원하게 말이다.

DirectX 쪽 그래픽 프로그래밍이 재래식 GDI 그래픽 프로그래밍과 다른 점은..

  • 하드웨어의 발전에 따라 프로그래밍 방법론의 변화 기복이 매우 큼.
  • 하려는 일(도형 그리기, 글자 찍기..)보다는 그래픽 하드웨어의 기능 위주로 API가 설계돼 있다. 사실, 이걸 수용하라고 애초부터 이념이 이런 식인 API를 따로 만든 거다.
  • 이런 이유로 인해, GDI처럼 프린터, 플로터, 메타파일 같은 디바이스까지 다 통합하는 추상화 계층 건 전혀 안중에 없음. 오로지 화면 아니면 화면 출력용 메모리 버퍼 위주이다.
  • BeginPaint/EndPaint로 대표되는 invalid 영역 그딴 개념이 없고, 그 대신 '서피스 소실'이라는 개념이 존재한다.

정도로 요약되겠다.
예전에는 GDI와는 완전히 다른 기술 계층을 거쳤기 때문에 화면 캡처도 특수한 프로그램을 써서 했을 정도이지만 이제는 그런 유별난 점이 점점 없어지고 통합돼 가고 있는 것도 인상적이다.

Posted by 사무엘

2017/09/15 19:31 2017/09/15 19:31
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1405

컴퓨터에서 돌아가는 프로그램들에는 각각 current directory라는 개념이 있다. 그래서 파일이나 디렉터리를 지정할 때 매번 드라이브 또는 볼륨의 이름부터 쓰는 게 아니라 그걸 생략하고 이름만 달랑 적거나, ..₩ 처럼 간편하게 ‘상대 경로’를 지정해 줄 수 있다.

기술적으로 봤을 때 current directory는 프로세스 전체 단위로 공유되는 속성이다. 스레드 단위가 아니다.
한 디렉터리 아래에 있는 모든 파일과 디렉터리를 조회하는 건 보통 SetCurrentDirectory를 이용해서 함수의 재귀호출로 구현하는 편인데(이름을 줘서 하위 디렉터리로 갔다가 앞으로 되돌아갈 때는 간편하게 ".."만 지정하면 됨), 이건 여러 스레드가 동시에 수행되지 않게 해야 한다.

여러 군데에서의 디스크 수색을 굳이 동시다발적으로 하려면 해당 함수가 경로 문자열 관리를 자체적으로 해서 FindFirstFile에 언제나 절대경로만 전해 주거나, 아니면 상대 경로를 쓸 거면 아예 별도의 프로세스를 만들어서 돌리게 해야 한다.

그런데 여기서 한 가지 의문이 생긴다. 각 드라이브별로 직전까지 작업하던 디렉터리 정보가 운영체제 차원에서 자동으로 보존될까, 그렇지 않을까?

C:\>cd windows

C:\Windows>d:

D:\>cd doc

D:\doc>c:

C:\Windows>d:

D:\doc>


드라이브별 커런트 디렉터리란, 위의 예에서 C에서는 Windows가 보존되고, D에서는 doc가 보존되는 것을 말한다.

그런데 정답부터 말하자면 그건 운영체제가 일일이 자동으로 기억하고 챙겨 주지 않는다.
당장 탐색기나 파일 열기 대화상자의 주소창에서 c: 나 d: 라고만 달랑 쳐 보아라. 이 경우 언제나 해당 드라이브의 루트 디렉터리로만 가지, 명령 프롬프트일 때처럼 직전에 해당 드라이브에서 마지막으로 살펴보던 디렉터리를 기억하지 않는다. 오히려 명령 프롬프트가 예외적으로, 유일하게 그걸 별도로 지원해 주고 있다.

그럼 질문의 초점이 이렇게 바뀔 것이다. 명령 프롬프트만 왜 그러는 걸까?
물론 명령 프롬프트는 GUI와 달리 '뒤로' 같은 버튼이 없으니 디렉터리를 기억해 주는 게 사용자의 입장에서 편리하다. 그리고 더 큰 이유는 먼 옛날 MS-DOS와의 호환을 위해서이다.

MS-DOS의 최초 버전인 1.0은 무려 1981년에 출시되었으며, 얘는 파일 시스템에 디렉터리라는 개념을 지원하지 않았었다. 즉, 모든 디스크는 루트 디렉터리만 존재했으며, 파일 이름에 (역)슬래시 기호가 들어갈 일이 없었다.

마치 Windows 1.0이 프로그램 창을 겹치게 배열하는 게 지원되지 않았던 것과 동급으로 정말 믿어지지 않는다. (뭐, 기술적인 한계 때문은 아니고, 애플 사와의 특허 분쟁을 피해 가느라 일부러 기능을 cripple시킨 것이지만) 1980년대 초의 열악한 컴퓨터는 무슨 매체든 디스크의 공간이 상상하기 힘들 정도로 작고 좁았으니 굳이 디렉터리 계층 구조의 필요가 존재하지 않았던 듯하다.

그러다가 DOS 2.0부터는 드디어 파일 시스템 차원에서 디렉터리가 도입됐다.
그런데 DOS 1.0용으로 개발된 프로그램은 디렉터리라는 걸 전혀 인식하지 않고 역슬래시 문자도 아예 사용하지 않으니 2.0에서 루트가 아닌 다른 디렉터리에 있는 파일을 읽고 쓸 방법이 없다.

그러니 이 문제를 최대한 호환성을 존중하며 해결하기 위해, :₩로 시작하지 않는 경로는 이제부터 상대 경로로 간주시켰다. 그리고 각 드라이브별로 커런트 디렉터리라는 개념을 도입하여, 상대 경로는 루트 고정이 아닌 커런트 디렉터리에 있는 파일에 접근하는 것으로 정책을 바꿨다. 운영체제가 일종의 state machine 역할을 대신해 주는 셈이다.

Windows는 앞서 살펴보았듯이 모든 드라이브를 통틀어서 단일 current directory만 관리하지 DOS처럼 동작하지 않는다. 단지 명령 프롬프트에서는 특수한 환경변수를 운용해서 사용자가 돌아다닌 디렉터리를 드라이브별로 추적하여 도스의 동작을 흉내 내 준다. 이건 물론 오늘날까지도 전적으로 호환성 차원에서 해 주는 것일 뿐이다. the old new thing 블로그를 보면 더 자세한 설명을 볼 수 있다. 환경변수를 사용하는 이유는 이 프로세스로부터 새로 실행된 child 프로세스에게까지 current directory 변경의 여파가 자동으로 이어지게 하기 위해서라 한다.

“타 드라이브의 current directory”라니, 지금까지 한 번도 진지하게 생각해 본 적이 없었는데.. 굉장히 흥미로운 사실을 알 수 있었다. 예전에 Windows 9x에서 존재하던 CD ... (점 3개 이상)처럼 뭔가 호환성과 관련된 사연이 있었던 것이다.

1.
컴퓨터에서 옛날에는 하나밖에 없는 게 당연하다고 여겨졌으나 나중에는 여러 개 존재할 수도 있게 된 것의 예로는 디렉터리뿐만 아니라 CPU 코어(멀티코어!)라든가 모니터(최소한 듀얼..)도 해당되지 싶다.
그러니 하나밖에 인식을 안 하는 소프트웨어에 대해서는 무조건 붙박이가 아니라 현재 default로 지정되어 있는 것 하나를 기준으로 동작하게 운영체제가 샌드박스 처리를 잘 해 줘야 할 것이다.

하드웨어 말고 소프트웨어적인 요소 중에서도 클립보드 같은 건 운영체제 API 차원에서 다변화될 가능성이 있다. 그것 말고는... 설마 한 컴퓨터에 마우스 포인터 같은 게 둘 이상 존재할 일이 있을지는 모르겠다.
마우스 말고 터치스크린은 여러 손가락이 동시에 눌러질 수 있다. Windows 98에서 멀티모니터 지원이 최초로 도입됐다면 Windows 7부터는 멀티터치 지원 기능이 최초로 추가됐는데, 본인은 지금까지 멀티터치 관련 기기나 API를 접할 일이 전~혀 없었다. 문자 입력과도 분명 연계가 가능할 텐데 그쪽으로 연구할 기회가 없었다.

2.
그러고 보니 시스템 전체 차원에서의 current 설정 vs 특정 항목별 current/default 설정이라는 양대 구도는 Windows의 IME에서도 동일하게 찾아볼 수 있다.
Windows에서 돌아가는 모든 UI 스레드들은 어떤 입력 언어/로케일과 연결돼 있다. 이것은 영어 드보락, MS 일본어 IME, 날개셋 등등 중 하나로.. 키보드 드라이버, IME/TSF 모듈을 모두 통합하는 개념이다.

각 스레드들이 서로 다른 입력 언어와 연결 가능하지만(Alt+Shift, Ctrl+Shift, 또는 도구모음줄 클릭), 어떤 스레드가 새로 생성되었을 때 맨 처음 기본으로 지정되는 'default 입력 언어'라는 건 따로 있다. 이건 제어판에서 변경 가능하다. 이게 디렉터리로 치면 current directory에 가깝다.

그런데, 사실은 한국어, 중국어, 일본어 등 각 언어별로도 말 그대로 default 입력 언어가 있다. 한 언어에 속하는 IME들이 여러 개 있을 때, 사용자가 Alt+Shift로 언어만 그걸로 전환하면 그 언어의 default IME에 속하는 놈이 기본 선택된다. DOS에서 존재하던 드라이브별 current directory처럼 말이다.

내 경험상 전체 default IME라든가, 언어별 default IME 같은 건 프로그래밍을 통해 알아 내거나 변경하는 뾰족한 방법이 없다. MSDN을 뒤져 보면 비슷한 기능을 하는 API가 있긴 하지만 current, active, default 등 용어도 혼란스럽고 기능들이 문서화된 대로 정확하게 동작하질 않는다. 더구나 Windows 8부터는 Win+Space를 통해 IME들을 언어 구분 없이 한 리스트에서 쭉 고르게 UI가 바뀌어서 언어별 default IME라는 건 개념이 굉장히 모호해지기도 했다.

이 방식은 운영체제에 설치된 입력기가 적을 때는 깔끔하지만 10개 가까이 많아지면 화면이 굉장히 난잡해진다. 언어별로 구분하는 Windows 7 이하 기존 방식도 여전히 필요하다고 생각된다.

Posted by 사무엘

2017/08/04 08:35 2017/08/04 08:35
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1389

* 3년 전에 썼던 글을 내용을 보충하여 리메이크 한 것이다.

Windows 운영체제에서 생성하는 윈도우들은 그 본질이 크게 overlapped, popup, 그리고 child 이렇게 셋으로 나뉜다. 이해를 돕기 위해 아래의 Windows 1.0 사진을 한번 살펴보도록 하자. 그때는 이 세 종류의 구분이 지금보다 훨씬 더 명확했기 때문이다.

사용자 삽입 이미지

1. overlapped

1985년에 발표된 Windows 1.0 첫 버전은 기술적인 한계 때문..은 아니고, 애플 사와의 이상한 특허 분쟁에 얽히는 바람에 응용 프로그램 창들이 서로 겹치지를 못하고 타일 형태의 배치만 가능한 정말 괴상한 형태로 개발되었던 걸로 유명하다.
그러다 Windows 2.0에서는 타일 제약 봉인이 풀렸기 때문에 이 윈도우들은 겹쳐지는 게 가능해졌으며 Z-order라는 개념도 생겼다. 그게 워낙 뜻깊은 일이었던지라 명칭에까지 OVERLAPPED가 붙은 것이다.

그리고 저렇게, 타일 형태의 배치가 가능한 응용 프로그램의 최상단 껍데기 윈도우가 바로 오늘날의 개념으로 치면 overlapped 윈도우이다. 캡션이라고 불리는 제목 표시줄이 달려 있고 크기가 언제든지 유동적으로 바뀔 수 있으며, CreateWindow(Ex) 함수에다 위치와 크기를 지정할 때 CW_USEDEFAULT(대충 적당히 알아서)를 줄 수 있는 유일한 타입의 윈도우이다.

사실, WS_OVERLAPPED의 값은 그냥 0이다. popup이나 child 같은 속성이 따로 지정되지 않은 윈도우는 기본적으로 overlapped 속성이 지정된다. 여기에다가 최소화/최대화(WS_M??MIZEBOX)/닫기(시스템 메뉴 WS_SYSMENU) 버튼, 크기 조절 가능한 굵은 껍데기(WS_THICKBORDER) 비트들이 합쳐진 것이 바로 WS_OVERLAPPEDWINDOW 스타일이다.

2. popup

그럼 popup은 무엇이냐 하면 저 위의 About 대화상자처럼, overlapped window의 위에 겹쳐져서 배치될 수 있는 윈도우이다.
그런데 당장 Windows 2.0부터 오버랩은 말 그대로 overlapped window에서도 다 가능해졌으니, 둘의 실질적인 차이가 없어졌다고 볼 수도 있다. 하지만 둘은 여전히 완전히 동일하지는 않다.

popup 윈도우는 기본적으로 캡션이 없는 형태이며, WS_CAPTION 같은 별도의 옵션을 줘야만 캡션이 달린다. 그러나 overlapped 윈도우는 옵션을 주지 않아도 캡션이 무조건 달려 나온다. Windows 2~3 시절까지만 해도 응용 프로그램에서 캡션이 없고 제목이 없는 대화상자는 지금보다 훨씬 더 흔하게 볼 수 있었다.

지금은 대화상자들도 다 캡션이 달려 있으며 일반적인 응용 프로그램처럼 아이콘에다 최소· 최대화 버튼과 두꺼운 프레임까지 별도로 스타일로 주고 나면.. popup 형태의 대화상자 프로그램과, overlapped 형태의 일반 프로그램 창과 외형상의 구분은 사실상 다 사라지는 건 사실이다.

그럼에도 불구하고 popup과 overlapped의 구분이 원래 저런 데서 시작되었다는 것을 알면 되겠다. 다른 창의 내부에 종속되지 않고 독자적으로 화면에 떠 있으면서 캡션 같은 외형이 없거나 취사선택 가능한 모든 custom 윈도우라면, 묻지도 따지지도 말고 그냥 WS_POPUP을 주면 된다.

대화상자 리소스 편집기에서도 이 대화상자의 초기 스타일을 지정해 줄 수 있다. 프로퍼티 페이지처럼 다른 대화상자의 내부에 들어가는 대화상자이면 WS_CHILD를 주면 되고, 나머지 경우에는 WS_OVERLAPPED는 신경 쓸 필요 없고 그냥 WS_POPUP을 지정하면 된다.
여담이지만, 인터넷을 하면서 수시로 튀어나오는 웹브라우저 팝업창은 명칭과는 달리 사실은 overlapped 윈도우라고 생각하면 된다. 팝업창에도 웹브라우저 창 고유의 캡션과 프레임은 그대로 남아 있기 때문에 overlapped 윈도우의 정의에 훨씬 더 부합하는 걸 알 수 있다.

3. child

끝으로, WS_CHILD는 동작 방식이 위의 둘과는 굉장히 다르니 이해하기 쉽다.
자기의 위상이 독자적이지 않고 외형상 부모 윈도우의 내부에 종속된 모든 윈도우들은 child 윈도우이다. 대화상자의 내부 컨트롤들이 대표적인 예임.

얘는 컨트롤 ID라는 정보도 갖는다. HWND는 운영체제가 창들을 식별하기 위해 부여하는 가변적인 번호인 반면, ID는 창을 생성하는(= 운영체제에다 생성을 요청하는) 주체 측에서 고정붙박이로 부여하는 번호라는 차이가 있다. GetDlgItem은 이름처럼 굳이 대화상자의 자식 컨트롤뿐만 아니라 부모-자식 관계를 갖는 아무 윈도우에서나 ID값으로부터 자식 창을 얻을 때 사용 가능하다.

popup이나 overlapped 윈도우에는 저런 ID라는 개념이 존재하지 않으며, 그 대신 메뉴를 표시하는 기능이 있다.
뭐, child 윈도우도 비록 메뉴는 태생적으로 없을지언정 마치 overlapped 윈도우처럼 캡션과 프레임, 그리고 시스템 메뉴를 갖는 건 불가능하지 않다. 그 대표적인 예는 MDI 프레임 윈도우이긴 한데.. 그래도 그걸 빼면 캡션과 프레임을 갖춘 child 윈도우는 매우 드물다. 캡션과 프레임 자체가 최상위 윈도우의 상징과도 같으니 말이다.

이렇게 보면 overlapped와 popup이 한 묶음이고, 성격이 다른 child가 혼자 좀 따로 노는 것처럼 보인다. 하지만 동일한 클래스의 윈도우가 상황에 따라서 popup과 child 속성을 취사선택해서 동작하는 경우도 의외로 있다. 콤보 박스에서 내부적으로 쓰이는 ComboLBox라는 리스트 박스가 대표적인 예이다.

콤보 박스의 타입이 Simple이어서(대표적인 예는 글꼴 선택 대화상자) 리스트가 언제나 표시되어 보일 때는 얘는 콤보 박스에 딸려 있는 child 윈도우이다.
그러나 콤보 박스를 클릭하거나 F4를 눌렀을 때만 리스트가 표시되는 drop list 상태일 때는 그 리스트는 대화상자의 위에 별도로 표시되는 popup 윈도우 형태로 생성된다. 이해가 되시겠는가?

차일드 윈도우의 표시 위치는 자기 부모 윈도우의 클라이언트 위치를 기준으로 상대적으로 산정된다. 그런데 자기가 현재 부모 윈도우의 클라이언트 위치 기준으로 어디에 있는지를 한 번에 얻는 게 은근히 힘들다. 대화상자 크기에 따라 차일드 컨트롤들을 적절하게 재배치하는 코드를 작성해 보았다면 이 말이 무슨 뜻인지 잘 알 것이다.

이 경우 GetWindowRect를 한 후에 부모 윈도우를 기준으로 ScreenToClient를 하여 화면 좌표를 한번 거쳐야 하거나, 아니면 번거로운 구조체 초기화를 해야 하는 GetWindowPlacement 함수를 호출해야 한다. 후자 함수의 경우, 최대화된 윈도우라도 원래 있던 위치와 크기까지.. 그 윈도우의 위치와 관련된 모든 정보를 되돌려 주기 때문에 유용하다. 응용 프로그램이 종료 후 나중에 재실행될 때 원래 위치를 100% 그대로 실행되기를 원할 때 이 구조체 값을 백업해 두면 된다.

4. 윈도우 간의 부모/자식 관계

child 윈도우야 그 정의상 태생적으로 부모 자식 관계가 명백하게 존재할 수밖에 없다. 하지만 popup 윈도우도 비록 child처럼 표시되는 위치와 영역이 부모 윈도우 내부로 한정되는 급까지는 아니더라도, 부모 자식 관계 비스무리한 개념이 물론 존재한다.

popup 윈도우는 Z-order상으로 자기 부모 윈도우를 가리고 언제나 더 앞에 출력되며, 부모 윈도우가 소멸될 때 자기도 같이 없어진다. 요렇게 child가 아닌 popup 윈도우의 부모 역할을 하는 윈도우를 개념상으로 owner 윈도우라고 따로 부르기도 한다.

그럼 popup 말고 overlapped 윈도우는? 지금까지 살펴보았듯이 쟤는 애초에 주 용도가 응용 프로그램의 최상단 프레임 껍데기이다. 그러니 태생적으로 부모 윈도우 같은 걸 지정하지 않고 생성되며 부모 자식 관계를 따지는 건 딱히 의미가 없다고 봐야 할 것이다.

그런데, 여기서 유의해야 할 점이 있다. EnumChildWindow나 GetWindow(GW_CHILD) 함수에서 찾아 주는 건 순수하게 child 윈도우들뿐이다. Spy++를 실행하면 계층 구조로 표시된 윈도우 트리를 볼 수 있는데, 이것도 child 윈도우들의 관계만 볼 수 있다.
쉽게 말해 어떤 대화상자 내부의 대화상자(프로퍼티 페이지)라든가 각종 컨트롤들은 계층 구조로 표시되지만, 대화상자에서 얘를 owner로 삼아서 또 다른 modal 대화상자를 꺼내 놓은것을 계층 구조로 보여주지는 않는다는 뜻이다.

자신을 부모(정확히는 owner)로 갖는 서열상 하위의 popup 윈도우들을 한번에 찾아 주는 API는 의외로 존재하지 않는다. 난 이게 당연히 있을 줄 알았는데 없는 걸 발견하고는 개인적으로 굉장히 놀랐다.
일단 top-level 윈도우들을 다 enumerate 한 뒤, 얘들의 owner가 일치하는 놈을 일일이 뒤져 봐야 한다. 그래서 Spy++가 표시해 준 윈도우 리스트가 생각보다 직관적이지 않고 top-level 윈도우가 많은 것이었구나.

이상이다. Windows 프로그래밍을 15년 가까이나 판 본인도 몇 년 전까지만 해도 child는 그렇다 치더라도 popup과 overlapped는 도대체 왜 존재하는 구분인지를 잘 몰랐다. 그리고 parent 윈도우와 owner 윈도우의 관계도 정확하게 모르고 있었고 owned 윈도우는 child 윈도우 조회하듯이 곧장 조회가 가능하지 않다는 것도 미처 생각을 못 하고 있었다. 그러다가 요 근래에야 어렴풋이 이해하게 된 것들을 이렇게 정리해 보았다.

Posted by 사무엘

2017/05/10 08:35 2017/05/10 08:35
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1358

임시 파일 다루기

수 년 전에 회사에서 만들어 놨던 코드가 업무상 다시 필요해져서 새 컴퓨터에서 돌려 봤다. 빌드 과정에서는 별 문제가 없었고 실행도 잘 되는 듯했으나.. 데이터 내용을 파일로 잠시 직렬화 덤프한 뒤에 서버로 전송하는 부분이 동작하지 않고 있었다.
문제를 추적해 보니 개발 당시에는 전혀 볼 일이 없었던 엉뚱한 파일명이 내부에 생성된 것이 원인이었다.

그리고 최종적으로 밝혀진 근본 원인은 이러했다. tmpnam_s 함수가 Visual C++ 2015부터는 동작 방식이 싹 바뀌었기 때문이다.
원래 tmpnam은 \ 로 시작하는 파일명만 달랑 되돌렸다. 그러나 2015부터는 운영체제의 공인 임시 디렉터리까지 포함한 전체 경로를 되돌리게 됐다.
예전에는 tmpnam_s의 결과에다가 또 임시 파일 저장용 디렉터리를 붙이는 후처리를 해야 했으나 지금은 그럴 필요 없다. 문자열의 형태가 달라져 버렸으니 기존 코드는 당연히 오동작을 하게 된 것이다.

알고 보니 tmpnam은 Visual C++ 2015 문서의 breaking changes에도 응당 명시돼 있는 아이템이다. 난 보통은 이런 거 꼼꼼히 다 읽어보는 편인데 이 함수는 어쩌다 보니 놓쳤다.
breaking changes는 단순히 어떤 함수· 변수를 제거하거나 형태를 바꾸는 것들이 대부분이기 때문에 기존 코드에 대한 여파는 명백한 컴파일 경고· 에러나 링크 에러 형태로 드러나는 게 대부분이다. 하지만 외형의 변경 없이 내부 동작만 잠수함 패치되어서 동작이 달라지는 식의 변화는 드물다. 프로그램을 실제로 돌려 보기 전까지는 부작용을 알 수 없기 때문이다.

이 코드가 나중에 어디서 또 어떻게 쓰일지 알 수 없는 관계로, 결국은 tmpnam을 감싸는 함수를 만들어야 했다. 얘의 몸체는 #if _MSC_VER >= 1900 이냐 아니냐로 구분해서 어느 VC++에서나 동일한 결과가 나오게 조치를 취했다.
귀찮은 일을 겪긴 했지만 임시 파일이라는 건 십중팔구 전용 임시 디렉터리에다 잠시 만들었다가 지우는 게 바람직하다. 임시 파일과 임시 디렉터리는 마치 바늘과 실처럼, 정수 나눗셈에서 몫과 나머지만큼이나 서로 따라다니는 명칭인 셈이다. 그러니 VC++ 2015에서의 변화는 궁극적으로는 긍정적인 변화이다.

프로그램을 개발하다 보면 임시 파일을 만들어야 할 때가 있다. 하긴, 옛날에 컴퓨터에 메모리가 아주 부족하던 시절에는 페이지 스왑 파일도 임시 파일의 범주에 들었는데 이건 아무래도 응용 프로그램 개발자가 직접 건드리는 파일은 아니다. 디렉터리 이름으로 TEMP라는 명칭을 본인이 최초로 본 게 아래아한글 2.0의 임시 파일 디렉터리였다.
디렉터리 트리 구조, 글꼴 캐시 파일 같은 건 없어도 실행에 지장은 없지만 그래도 반영구적으로 보관하고 참조하라고 만들어진 임시 파일이라는 점에서 성격과 용도가 약간 다르다.

이 정도로 저수준 시스템스러운 것이 아니더라도 특정 API나 기능에 접근하기 위해서, 입력 데이터를 반드시 파일 형태로 줘야 할 때 임시 파일을 만들게 된다. <날개셋> 한글 입력기의 경우 내부적으로 <날개셋> 변환기를 잠시 호출해서 구버전 입력 설정 파일을 변환할 때, 키보드 드라이버 관련 레지스트리 값을 변경하기 위해 레지스트리 편집기를 호출할 때 이런 테크닉을 쓴다.

tmpnam 같은 C 표준 함수 말고 운영체제 API에도 임시 파일과 디렉터리 이름을 얻어 오는 함수가 존재한다.
먼저 디렉터리는... 무슨 C:\asfa\zfdaaf 이렇게 무슨 악성 코드마냥 임의로 생성해서 쓰는 건 아니고, '내 문서', 'Program Files'처럼 임시 파일들의 생성과 보관을 위한 known 위치가 각 사용자 계정별로 따로 있다. GetTempPath 함수를 호출하면 이 위치를 얻어 올 수 있다. 하긴, 사용자 계정이라는 개념이 없던 시절엔 위치가 무슨 시스템 디렉터리처럼 쿨하게 Windows\temp이긴 했었다.

임시 디렉터리는 모든 프로그램들이 한데 공유하는 일종의 공공장소이다. 그래서 임시 파일을 많이 생성하는 프로그램이라면 그 디렉터리 밑에다가 자기 회사나 제품명으로 디렉터리를 또 만들어서 거기에다 파일을 저장하기도 한다. 그 정도로 복잡한 일을 하는 프로그램이 얼마나 될지는 모르겠지만 말이다. 참고로 <날개셋> 한글 입력기는 일부 기능에서 끽해야 파일 하나만 달랑 만들었다가 곧장 지우며, 임시 파일의 생존 주기가 함수 하나의 실행 주기를 벗어나지 않는다.

그럼 디렉터리 다음으로 파일 이름을 구체적으로 어떻게 지을지가 문제로 남는다. 무작위하게 이름을 붙이되, 그게 이미 있는 파일과 겹치지 않는다는 게 보장되어야 한다. 굳이 다른 프로그램이 아니어도 나 자신도 여러 인스턴스 형태로 동시에 실행될 수 있기 때문이다.
그렇기 때문에 임시 파일의 이름은 "자기 고유 명칭 + 숫자"의 형태로 붙곤 한다. 그래서 이 이름의 파일이 이미 존재하면 중복이 없을 때까지 숫자를 1식 증가시켜서 다시 시도한다.

GetTempFileName 함수가 정확하게 이런 일을 한다. 본인은 이 함수의 존재를 알기 전에 저 알고리즘을 수동으로 구현해서 임시 파일 이름을 생성했는데, 나중에 전용 함수에 대해 알게 되자 적지 않게 놀랐다.
이 함수는 '자기 고유 명칭'에 해당하는 접두사를 딱 세 글자 길이까지 받는다. 그 뒤 번호를 인자로 받는데, 유니크한 임시 파일 이름을 생성하는 게 목적이라면 번호는 그냥 0으로 주면 된다. 그러면 생성된 번호를 리턴값으로 돌려주며, 그 이름의 텅 빈 0바이트 파일을 실제로 생성도 해서 '찜'해 준다. 파일 이름을 얻고 파일을 여는 그 짧은 순간에도 혹시나 다른 프로세스나 스레드가 이 이름을 새치기로 찜하지 못하게 하기 위해서이다. 철두철미한 놈..;;

혹시 한 프로그램이 생성해 놓은 임시 파일을 다른 프로그램이 참조해야 한다면 참조하는 프로그램에다가 저 무작위하게 생성된 번호만 전해 주면 된다. 그럼 거기서는 GetTempFileName에다 동일한 접두사와 동일한 디렉터리를 넘기되, 번호는 0이 아니라 외부로부터 받은 그 값을 주면 그 임시 파일의 전체 경로와 이름을 얻을 수 있다.

지금도 어느 컴퓨터에서든 Users\계정명\AppData\Local|Temp 디렉터리에 가 보면 수백· 수천 개의 정체를 알 수 없는 임시 파일들을 볼 수 있다. 특히 "3글자 + 4자리 16진수.tmp"인 파일들은 100% GetTempFileName 함수에 의해 작명된 파일이다. 심지어 Visual C++도 실행해서 프로젝트를 열어 놓은 중에는 edgXXXX.tmp라는 수십 MB에 달하는 임시 파일을 여기에다 만들어서 사용하더라. 저건 Edison Design Group의 이니셜이니 인텔리센스 컴파일러가 사용하는 듯. IDE를 종료하면 물론 지워지고 없어진다.

GetTempFileName는 임시 파일 이름을 생성하는 것과 이미 생성된 명칭을 얻는 것이 모두 가능하며 나름 편리하게 잘 만들어져 있긴 하다. 다만, 파일의 확장자 지정이 안 되고 언제나 tmp로 고정되는 건 약간 불편하다.
(1) 임시 파일을 이름을 무작위 생성해서 파일도 새로 생성하기 또는 (2) 이미 있는 파일을 이름부터 id로부터 얻어 와서 열기 이건 일종의 정형화된 패턴이 있어서 본인은 클래스를 만들어서 사용하고 있다.

이 클래스의 소멸자는 임시 파일을 삭제도 해 준다. 임시 파일의 처리가 별도의 스레드에서 행해진다면 클래스 개체를 스택이 아닌 heap에다 new로 선언해서 개체의 delete 처리를 스레드 함수에게 시키면 된다. 뭐, 별도의 프로세스라면 내가 delete를 해서는 안 될 것이고.
삭제를 제대로 안 해 주면 이것도 일종의 메모리 leak 같은 부작용을 야기할 것이다. 시간이 흐를수록 임시 파일 디렉터리는 수천 개의 쓰레기들이 쌓여서 난장판이 될 테니 말이다. 요즘이야 하드디스크가 용량이 워낙 방대하니 디스크 용량 고갈보다는 파일 관리 성능· 효율 저하 문제가 더 크게 와 닿을 것으로 보인다.

이상. 이렇듯, 디스크의 파일은 메모리와는 달리 기록 효과가 영구적이며, 모든 프로세스에서 32/64비트도 가리지 않고 동일하게 공유 가능하기 때문에 프로세스 간의 데이터 공유와 통신 수단으로도 쓰일 수 있다.
단, 프로세스 사이의 통신 수단으로는 WM_COPYDATA라는 아주 유용한 물건도 있다. 그렇기 때문에 두 프로그램이 모두 윈도우를 생성해 있고 그 창의 주소를 알고 있다면 굳이 임시 파일을 만들었다가 지울 필요 없이 메시지만 주고받아도 된다.

<날개셋> 편집기와 입력 패드는 자기 프로그램이 중복 실행되었을 때 자기가 받아서 갖고 있던 명령줄을 기존 인스턴스에다가 넘겨 주기만 하고 자신은 실행을 종료하는 기능이 있다. 파일을 여는 등의 작업 요청은 기존 인스턴스가 받아서 대신 수행하게 된다. 예전에는 커스텀 메시지 + 임시 파일을 이용해서 명령줄을 전달했으나, 근래에는 훨씬 더 간편한 WM_COPYDATA 기반으로 구현 형태를 변경했다. 왜 진작부터 이 메시지를 안 썼나 모르겠다.

단, 명령줄을 자신의 타 인스턴스로 전달할 때 주의해야 할 점이 있다. 사용자가 명령줄로 전달하는 건 대체로 파일과 경로이다. 이게 절대경로인 경우는 흔치 않으니, 나의 current directory도 같이 전해서 저 경로가 무엇에 대한 상대경로인지를 알 수 있게 해야 한다. 안 그러면 내 쪽에서는 찾을 수 있는 파일을 명령줄을 받는 기존 인스턴스에서는 못 찾게 될 수도 있다. current directory는 프로세스 단위로 고유하게 갖고 있는 상태 정보이다.

Posted by 사무엘

2017/03/30 08:39 2017/03/30 08:39
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1344

1. WNDCLASS와 HCURSOR

GUI 환경에서 키보드로 글자 입력을 받기 위해 캐럿(caret, 혹은 cursor)이라는 깜빡이는 세로줄이 나타난다면, 마우스의 입력을 받기 위해서는 마우스 포인터라는 게 떠 있다. 키보드 문자 입력과 마우스는 상호 배타적인 관계이다 보니, 문자 입력이 시작되면 마우스 포인터는 화면을 가리지 말라고 쏙 사라지곤 한다. 그 반면, 키보드 단축키와 마우스는 전혀 배타적이지 않고 상호 보완적이므로 이 경우는 마우스 포인터가 사라질 필요가 없다. 간단히 말해 스타를 하는 경우를 생각하면 된다.

Windows 운영체제 내부에서 생성되는 모든 창(window)들은 마우스 포인터가 자기 영역을 지날 때 어떤 모양의 포인터를 표시할지를 자유롭게 지정할 수 있다. 가장 static하고 간단한 방법으로는 윈도우 클래스를 등록할 때 WNDCLASS의 hCursor 멤버에다가 지정해 주면 된다.

HCURSOR라는 타입은 마우스 포인터의 모양을 나타내는 자료구조의 포인터이다. 마우스 포인터는 아이콘(HICON)과 거의 동급으로 취급되며, 아이콘에다가 중심 위치(hot spot) 정보만이 추가되었을 뿐이다. 화살표 그림의 경우 화살표가 가리키는 뾰족한 지점이 바로 hot spot의 위치가 되는 것이다.

그리고 그 아이콘이라는 것은 개념적으로 AND 연산용 비트맵(마스크)과 XOR 연산용 비트맵(그리기)이 추가된 정사각형 비트맵(HBITMAP) 쌍이다.
마우스 포인터 자체를 프로그램 코드를 통해 동적으로 생성하고자 한다면 이런 관계에 대해서도 이해할 필요가 있다. 이런 구조 덕분에 배경색을 반전시키는 마우스 포인터도 만들 수 있다. 또한, Windows에서 아이콘과 마우스 포인터가 매우 유사하게 취급된다는 것은 GetIconInfo 함수나 ICONINFO 구조체의 스펙을 보면 금방 수긍할 수 있다.

색깔 중에 system color가 있고 DC 오브젝트들(브러시· 펜 따위) 중에도 stock object가 있으며, 클립보드 포맷 중에 표준 포맷(CF_TEXT ...)이 있는 것처럼.. 마우스 포인터 중에도 용도가 고정되었고 운영체제 차원에서 모양을 공통으로 관리하는 것이 몇 종류 있다. 이런 공용 포인터의 예로는 일반 화살표, 모래시계, 입력란용 I-beam 등 우리에게 친숙한 것이 있으며, 이들은 제어판을 통해 그 모양을 바꿀 수 있다. 응용 프로그램에서는 LoadCursor(NULL, IDC_*)를 호출해서 이들의 HCURSOR 값을 얻을 수 있으며 이를 응당 클래스 등록 시에 사용하면 된다.

그래픽 에디터라든가 게임 급으로 정말 아주 튀는 GUI를 제공하는 프로그램을 만드는 게 아니라면, 공용 포인터 말고 다른 독자적인 포인터를 쓸 일은 잘 없을 것이다. 하지만 튀지 않는 일반 업무용 프로그램에서도 custom 포인터가 필요한 경우가 가끔은 있다.

  • 워드 프로세서의 경우, IDC_IBEAM의 변형이 필요할 때가 있다. 이탤릭체 글자에서는 포인터의 모양도 살짝 기울어지며, 세로쓰기 모드에서는 포인터의 모양 역시 90도 돌아간다.
  • drag & drop 상태를 표시하기 위해, 화살표 밑에 사각형 테두리와 [+] 마크가 붙은 포인터가 필요할 때가 있다. 이것도 의외로 공용 포인터에는 존재하지 않으며, ole32.dll 내부에 있는 비공식 리소스를 몰래 뽑아 와서 쓰는 경우가 많다.
  • 먼 옛날, IDC_HAND가 존재하지 않던 Windows 95/NT4에서는 winhlp32.exe의 내부에 있는 손가락 링크 모양 비공식 리소스를 몰래 뽑아 와서 하이퍼링크를 구현할 때 쓰기도 했다.

LoadCursor는 원래 모듈(EXE/DLL)의 리소스로부터 마우스 포인터 그림을 추출하는 함수이다.
CreateCursor 함수는 HBITMAP을 받는 게 아니라 쌩짜 AND/XOR 비트맵 배열만을 입력받아서 포인터를 생성해 주는데, 그 말인즉슨 얘는 애초에 모노크롬 포인터밖에 못 만든다는 뜻이다. 컬러를 지원하지 않는다.

그러고 보니 마우스 포인터는 마치 GIF처럼 애니메이션 가능한 버전도 생겨서 단순 아이콘과 차별화가 이뤄지긴 했다. ico 파일에는 크기와 화질이 다른 여러 아이콘들이 있을 수 있다면, ani에는 동일 아이콘의 여러 프레임이 들어갈 수 있게 된 것이다. 교집합인 정보가 있지만 서로 완전히 호환되지는 않는 미묘한 관계가 됐다.

2. WM_SETCURSOR와 SetCursor 함수

윈도우 클래스를 등록할 때 hCursor 멤버에다가 NULL을 지정하면 그 윈도우는 마우스 포인터가 기본적인 화살표로 지정된다거나, 아니면 말 그대로 아무것도 없는 올투명 이미지가 지정되어서 포인터가 사라진다거나 하지 않는다.
어찌 되는가 하면, 이 윈도우 영역으로 들어오기 직전에 유지되었던 마우스 포인터가 변경 없이 그대로 유지된다..! 마치 C언어에서 초기화되지 않은 변수처럼 undefined 상태가 되는 것이다.

이런 동작을 원하는 프로그래머나 기대하는 사용자는 전무할 것이다. 그러므로 클래스 차원에서 지정된 기본 포인터가 없는 윈도우는 자신의 윈도우 프로시저 내부에서 매번 실시간으로 마우스 포인터를 지정해 줘야 한다. 어떻게? WM_SETCURSOR라는 메시지가 왔을 때 SetCursor라는 함수를 호출해서 하면 된다.
아니 사실은 클래스 포인터가 이미 지정돼 있는 창이라도 필요하다면 이렇게 마우스 포인터를 실행 중에 얼마든지 변경할 수 있다. 동일한 웹브라우저 창이라도 포인터가 링크 위를 가리키고 있을 때는 조건부로 손가락 모양으로 바뀌어야 할 테니까 말이다.

윈도우 안에서 마우스 포인터가 움직이면 WM_MOUSEMOVE만 오는 게 아니라 그 전에 WM_SETCURSOR부터 날아온다. 그에 반해 SetCursor는 굳이 WM_SETCURSOR 메시지 타이밍이 아니어도 아무 때나 언제든지 호출 가능하다. 이 함수 자체는 지금 포인터가 나 자신이(스레드 단위) 생성한 윈도우에만 있으면 위치 불문하고 포인터 모양을 즉시 바꿔 준다. WM_PAINT 타이밍 때에만 사용 가능한 BeginPaint/EndPaint처럼 특정 메시지에 매여 있는 게 아니라는 뜻이다.

그럼 왜 굳이 WM_SETCURSOR라는 메시지가 따로 있는 것일까? 그 이유는 저렇게 일상적으로 마우스 포인터가 움직였을 때 빼고는 얘는 WM_MOUSEMOVE와는 설계 철학과 생성 조건이 매우 다르기 때문이다.

  • 윈도우가 disable됐을 때는 그 윈도우로 마우스가 움직이더라도 통상적인 WM_MOUSEMOVE가 오지 않는다. 그러나 이때에도 WM_SETCURSOR는 전달하는 상황 정보(hit-test code)만 달라진 채 언제나 온다.
  • hit-test code가 같이 온다는 점에서 유추할 수 있듯, WM_SETCURSOR는 클라이언트와 논클라이언트를 가리지 않고 온다. 그에 반해 WM_MOUSEMOVE는 클라이언트 영역 전용이고 WM_NCMOUSEMOVE가 따로 있다.
  • 마우스가 capture된 뒤부터는 마우스가 움직이면 반대로 WM_MOUSEMOVE만 오지 WM_SETCURSOR는 오지 않는다. 마우스의 포커스가 포인터 위치와 무관하게 이 윈도우에 집중되었기 때문에 포인터의 모양도 잠시 고정된다.
  • 그리고 결정적으로.. WM_MOUSEMOVE는 지금 화면을 대면하고 있는 최하위 child 윈도우에 직통으로 전달되는 반면, WM_SETCURSOR는 최상위 parent 윈도우에 먼저 전달되어서 얘들이 처리를 포기/거부했을 때에만 child로 내려간다.

마지막 항목이 중요하다. 이런 메커니즘의 차이로 인해 두 메시지는 서로 호환성이 전혀 없으며 별도의 메시지로 분리되어야만 한다. 이 메시지가 그냥 이 시점에서 표시할 HCURSOR 값만 곱게 얻는 게 목적이라면 WM_SETCURSOR 메시지는 SET이 아니라 GET이라는 동사가 붙어서 WM_GETCURSOR, WM_QUERYCURSOR처럼 명명됐을 수도 있다. 대화상자의 WM_GETDLGCODE 메시지처럼 그냥 return (LRESULT)LoadCursor(...)의 형태.
그런데 그게 아니기 때문에 자기가 직접 마우스 포인터를 재지정할 의향이 있다면 WM_SETCURSOR가 올 때마다 SetCursor를 수동으로 매번 호출도 해야 하고, 그러면서 리턴값도 0이 아닌 값으로 되돌려야 한다. 특히 DefWindowProc를 호출해서는 안 된다.

DefWindowProc가 WM_SETCURSOR 때 하는 일 중에는 논클라이언트 영역에서 포인터를 화살표 내지 창의 크기 조절 손잡이 모양으로 바꾸는 것이 포함돼 있다.
하지만 클라이언트 영역에서 DefWindowProc은 "난 마우스 포인터 모양을 자체적으로 처리할 의향이 없으니, (1) 내 부모 윈도우에서 이의 없으면 (2) 최종 처리를 내 자식 윈도우에 맡기겠소"라는 의미가 된다. Def..없이 return 0은 (2)만을 담당한다.

참고로, SetCursor(NULL)을 하면 클래스 WNDCLASS::hCursor = NULL과는 달리 비로소 마우스 포인터가 화면에서 사라진다. 이것은 HideCursor / ShowCursor 함수와 비슷한 효과를 낸다. 이들 함수는 포인터의 레퍼런스 카운터를 1 증가나 감소시켜서 카운터가 양수이면 포인터를 계속 표시시키고, 그렇지 않으면 계속 감추고 있는다. 캐럿을 표시하거나 감추는 ShowCaret / HideCaret과 비슷한 원리로 동작한다.
그에 반해 SetCursor(NULL)은 효과가 일시적이므로 해당 윈도우가 WM_SETCURSOR에서 계속해서 SetCursor(NULL)을 해 줘야만 포인터가 없는 상태가 유지된다.

사소한 사항이다만, WM_MOUSEMOVE는 메시지 큐에 post 형태로 전해지는 반면, WM_SETCURSOR는 리턴값을 꼼꼼히 확인해야 하기 때문에 언제나 sent된다는 차이도 있다. 마우스 메시지 훅킹 같은 걸 한다면 요런 차이가 민감하게 와 닿을 것이다.

3. 대기 상태 표현하기

프로그램이 파일을 읽고 쓰고 복잡한 계산을 시작해서 대략 0.n초 정도 짤막하게 사용자의 응답(더 정확히는 운영체제 메시지)에 반응을 하지 않게 됐다면, 이에 대해 가장 간단하게 피드백을 주는 방법은 SetCursor(LoadCursor(NULL, IDC_WAIT))를 해서 마우스 포인터를 그 악명 높은 모래시계 모양으로 바꾸는 것이다.

물론 처리가 끝났다면 포인터 모양을 원상복구 해야 한다. 이것은 SetCursor의 리턴값을 보관하고 있다가 도로 전달하는 것으로 쉽게 구현 가능하며, 이렇게 시작과 끝을 생성자와 소멸자에다 넣어서 간단한 C++ 클래스를 구현할 수도 있다. MFC에 있는 CWaitCursor가 그 예이다.
모래시계로 변해 있던 동안 마우스 포인터가 조금이라도 다른 곳으로 이동했거나, 위치가 안 바뀌었더라도 그 사이에 포인터 아래의 윈도우가 바뀌었다면.. 프로그램이 의식을 회복(?)했을 때 WM_MOUSEMOVE와 그에 상응하는 WM_SETCURSOR도 오기 때문에 포인터 모양이 자동으로 갱신되긴 한다. 그러나 그런 외부적인 변화가 전혀 없었더라도 포인터 모양이 원상복귀 되어야 하니까 말이다.

마우스 포인터의 움직임은 일종의 하드웨어 인터럽트 형태로 발생하며, 응용 프로그램이 WM_SETCURSOR 메시지에 응답하지 않고 있더라도 포인터가 움직인 것에 대한 반응은 해야 한다. 그렇기 때문에 프로그램이 처리를 열심히 하고 있는 동안에는 좀 전에 지정된 모래시계 모양이 유지된다. 물론, 포인터가 정상적으로 응답 중인 다른 프로그램 창 위에 놓여 있으면 거기 모양으로 바뀌며, 한 프로그램이 수 초 이상 너무 오랫동안 응답을 안 하고 있으면 그건 그것대로 문제가 된다. 내 프로그램 창이 고스트 윈도우로 바뀌는 일은 없어야 한다.

시간이 굉장히 오래 걸리는 작업을 한다면 프로그램의 디자인 형태가 바뀐다. 작업은 백그라운드 스레드에다 담당시키고 프로그램은 현재 진행 상황을 출력하면서 UI 메시지 반응도 평소처럼 한다. progress 컨트롤이 장착된 대화상자가 이 역할을 하며, 사실 Windows Vista부터는 task dialog로 이걸 간단하게 띄울 수도 있게 됐다.
동영상 인코더처럼 input 데이터를 직접 생성하고 작성하는 기능은 없고, 이미 있는 데이터를 변환하는 일이 전부인 프로그램이라면 별도의 대화상자 없이 자기 main frame window 자체가 통째로 진행 상황을 표시하는 용도로 쓰이기도 한다. <날개셋> 변환기도 이런 형태의 프로그램이다.

이를 좀 더 일반화해서 생각하면 이렇다. 어떤 윈도우가 하는 역할이 자신과 별개이고 독립적인 타 작업의 진행 상황을 관찰하면서 표시하는 게 전부라면, 보통은 그 윈도우 내부의 마우스 포인터를 굳이 별도로 모래시계 모양으로 바꾸지 않는다. 설치 프로그램들이 그 예이다. 다만, Windows Installer 엔진의 경우 본격적으로 설치/제거를 수행하는 마법사가 뜨기 전에 준비 작업을 하느라 자그마한 대화상자가 떴을 때는 마우스 포인터를 거기로 가져가면 모래시계로 바뀐다.

사용자 삽입 이미지

요런 게 대화상자 윈도우에서 WM_SETCURSOR를 처리함으로써 구현 가능하다. 이 메시지는 부모-자식 top-to-bottom 형태로 내려가기 때문에, 부모에서 메시지를 가로채 버리면 자식 윈도우의 의도와 상관없이 마우스 포인터를 모래시계 모양으로 바꿀 수 있다. 밑에 지금 무슨 윈도우가 있는지 핸들도 wParam으로 친절하게 전달된다. 여기서 SetCursor 호출만 하고 리턴값으로 nonzero를 지정하지 않으면, 대화상자 배경들만 포인터가 바뀌고 버튼 같은 각종 컨트롤들은 바뀌지 않게 된다. (위의 스크린샷처럼)

이와 대조적으로, 키보드 메시지는 포커스를 잡고 있는 최하위 윈도우에 직통으로 전달되니(bottm-to-top), 그 위에서 공통 단축키 같은 걸 처리하려면 message loop 차원에서의 pre-processing이 필요한 것이다.

<날개셋> 변환기의 경우 변환하는 파일이 적으면 스레드 없이 그냥 비응답 상태로 빠진 채로 변환을 수행한다. 그러나 수십 개, 수MB 이상 분량 파일을 요청하면 대화상자의 모든 컨트롤들을 disable시키고 progress 컨트롤을 출력하고, 대화상자 내부의 마우스 포인터를 모래시계로 바꾼 뒤 변환을 수행한다. 이때는 어차피 대화상자의 다른 기능들을 전혀 사용할 수 없고 ESC나 [X]를 눌러 중간 취소만 가능하기 때문이다.

그리고 하나 더 생각할 만한 상황은.. 딴 작업이 아니라 대화상자 자기 내부에다 출력할 데이터들을 준비하고 초기화하는 작업이 시간이 좀 오래 걸릴 때이다. <날개셋> 한글 입력기 제어판의 대화상자에도 그런 경우가 몇 가지 있다.
이때는 문제의 콤보나 리스트박스가 빈 채로 먼저 대화상자를 출력한 뒤, 스레드를 만들고 마우스 포인터를 IDC_WAIT가 아니라 IDC_APPSTARTING 모양으로 바꿨다. 대화상자가 출력은 됐지만 아직 초기화가 덜 돼서 백그라운드에서 작업 중임을 이렇게 나타낸다.

요렇게 백그라운드의 스레드 작업이 끝난 뒤에는 마우스 포인터를 어떻게 원상복구 할지가 문제가 된다.
아까처럼 스레드 없던 시절에는 작업하던 사이에 포인터 위치가 바뀌었으면 WM_SETCURSOR와 WM_MOUSEMOVE가 자동으로 생겼다. 그러나 지금은 그렇지 않다. 작업이 수행되던 중에 포인터 이동에 대한 처리는 이미 다 이뤄졌기 때문이다.

마우스 포인터의 이동 없이 아래의 창에다가 WM_SETCURSOR를 인위적으로 생성해서 포인터 모양을 원래 것으로 갱신할 수 있어야 하는데.. 이것만 어떻게 하는지 잘 모르겠다.
일단 본인이 사용하는 방법은 GetCursorPos로 현재 포인터 위치를 얻은 뒤, 그거 그대로 SetCursorPos를 하는 것이다. 위치가 바뀐 게 없음에도 불구하고 이렇게 하면 WM_SETCURSOR와 WM_MOUSEMOVE가 생성되기는 하는 것 같더라.
이 정도면 Windows 프로그래밍에서 마우스 포인터 제어와 관련해서 어지간한 문제는 다 다룬 것 같다.

Posted by 사무엘

2017/02/06 08:35 2017/02/06 08:35
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1324

<날개셋> 한글 입력기는 잘 알다시피 16년 전에 개발된 1.0과 지금의 8.6이 요구하는 운영체제 사양(그리고 사실상 하드웨어 사양도)에 차이가 전혀 없는 좀 사기급의 프로그램이다. 32비트 에디션은 Windows 95/NT4 이상에서도 돌아간다. Win95쯤은 안드로이드 스마트폰 내부에서 가상 머신으로도 돌리는 지경이 됐는데도 말이다. 뭐, 내 프로그램은 게임처럼 딱히 최신 사양빨을 타는 분야의 프로그램이 아니며, 한글이 무슨 한자처럼 처리하는 데 메모리가 엄청 많이 든다거나 아랍· 태국 문자처럼 내부 메커니즘이 복잡한 것도 아니기 때문이다.

Windows는 API 함수들이 유니코드를 표방하는 2바이트 문자열을 취급하는 버전(W 함수)과 비유니코드 일명 'ANSI 인코딩'을 표방하는 1바이트 문자열을 취급하는 버전(A 함수)으로 나뉘어 있다. 맥이나 리눅스 같은 타 운영체제에서는 찾을 수 없는 독특한 형태이다. 물론 문자 집합이라는 건 굳이 인코딩 단위에 얽매여 있지는 않으니, 1바이트라는 단위는 그대로 놔 두고 UTF-8만 사용해도 유니코드 지원은 가능했다. 하지만 Windows는 호환성 때문인지 문자 집합과 함께 인코딩까지 완전히 바꿔 버리는 방식을 채택했다. 그래서 wchar_t도 4가 아닌 2바이트이며, UTF-16을 유난히 좋아한다.

Windows NT는 W가 기본이고 A도 호환성 차원에서 지원하지만 Windows 9x는 메모리 부족 문제로 인해 A만 지원하고 W는 아예 제공하지 않았다. 그러니 일반적으로는 Windows 9x를 지원하려다 보면 유니코드를 지원할 수 없어서 깨진 문자 크리 때문에 프로그램의 국제화에 애로사항이 꽃폈으며, 반대로 W 함수만 사용하면 가정에 NT 계열보다 더 많이 보급돼 있던 9x 계열 운영체제를 지원할 수 없었다.

이 딜레마를 해소하는 방법은 일단 프로그램은 W 함수 기반으로 개발한 뒤, 9x에서는 특별히 W 함수 진입로에서 함수 argument를 변환하고 나서 A 함수를 호출하는 일종의 훅/thunk DLL을 구동하는 것이었다. <날개셋> 한글 입력기는 이 테크닉을 사용한다.
훅 DLL의 소스 코드는 동작 방식의 특성상, import table상의 함수 이름 문자열과 거기에 대응하는 훅킹 함수 포인터를 명시한 테이블을 갖고 있다. 또한 기존 Windows API 함수와 프로토타입이 동일하지만, 하는 일에는 살짝 차이가 있는 함수도 즐겨 사용한다.
이런 걸 구현할 때는 C/C++ 언어에 존재하는 다음과 같은 기능들이 유용하게 쓰였다.

1.
함수 훅킹 테이블을 만들 때 #define과 더불어 #(문자열화)와 ##(토큰 연결)라는 전처리기 연산자를 즐겨 썼다.
_FUNC(SetWindowTextW) 하나로 { "SetWindowTextW", (FARPROC)My_SetWindowTextW } 요걸 표현할 수 있으니 전처리기 연산자를 써서 매크로를 정의하는 게 완전 딱이지 않은가?
C언어는 전처리기의 단항 연산자는 # 1개로, 이항 연산자는 # 2개로 표현해서 나름 직관성을 추구했다. 그리고 안 그래도 전처리기 연산자는 C/C++의 고유한 연산자와는 섞여서는 안 되는데 굳이 # 말고 다른 기호를 끌어다 쓰지 않아서 형태 구분이 잘 되게 했다.

그런데 여기서 문제가 하나 있다.
문자열화 연산자는 매크로 전개를 한 놈을 문자열로 바꾸는지, 아니면 언제나 주어진 인자를 문자 그대로 문자열로 바꾸는지를 본인은 엄밀하게 생각을 하지 않고 지냈다. #define ToString(a) #a라고 정의해 주면, ToString(SetWindowText)은 "SetWindowText"로 바뀌는지, 혹은 "SetWindowTextW"나 "SetWindowTextA"로 바뀌는지 궁금했다.

이에 대한 정답을 먼저 말하자면, # 연산자는 그 자체로는 매크로 전개를 전혀 하지 않는다. 그렇기 때문에 저 문제의 정답은 "SetWindowText"이다.
만약 W/A가 붙은 놈을 얻고 싶으면 매크로를 한 단계 더 거쳐 줘야 한다. #define ToString_Expanded(a) ToString(a)를 선언한 뒤, ToString_Expanded(SetWindowText)라고 명령을 내리면 그제서야 "SetWindowTextW"(또는 A)가 얻어진다.

물론 딱히 매크로가 없는 인자를 넘기면 ToString_Expanded는 그냥 ToString과 동일한 결과가 나온다. 이런 차이가 있다는 걸 근래에 알게 됐다.

C/C++ 코드에는 검증과 디버깅을 위해 assert 부류의 매크로를 볼 수 있는데, C 언어 표준 매크로 상수와 연산자들은 상당수가 얘를 구현하기 위해 만들어진 게 아닐까 싶을 정도이다.
상식적으로 생각해 봐도, 실행 파일 내부에 "result > 0이라는 수식의 assertion이 실패했습니다. 아무개.cpp n째 줄입니다." 정도의 검증 명령이 삽입되려면 딱 봐도 __FILE__, __LINE__이 들어가야 했을 것이고 검증 대상 수식은 # 연산자에 의해 문자열로 바뀌었을 거라는 걸 알 수 있다.

파일명과 줄번호는 바이너리 형태의 디버그 심벌에도 포함되긴 하지만, result > 0처럼 대놓고 코드를 구성하는 문자열은 # 연산자 없이는 답이 없다. 이런 사기급의 전처리 기능은 C/C++ 외의 다른 언어에서는 유례를 거의 찾을 수 없지 싶다.

2.
또한 decltype이라는 연산자가 있는 줄을 난생 처음 알았다. 연산자이긴 하지만 되돌리는 게 어떤 값이 아니라 타입 그 자체이다. typeid처럼 RTTI와 관계 있는 기능도 아니며, 컴파일 타임 때 결정되는 고정 타입이다. 그래서

auto x=3.4f;
decltype(3.4f) x = 3.4f;
float x=3.4f;

는 의미가 모두 동일하다. auto와도 어떤 관계인지 바로 알 수 있을 것이다.
sizeof는 값 또는 타입을 모두 받아들여서 값(크기. 고정된 정수)을 되돌리는 반면, decltype은 값을 받아서 타입을 되돌린다는 차이가 있다. 또한 sizeof와 decltype 모두 그 값을 실제로 실행(evaluate)하지는 않는다.

auto는 타입과 동시에 변수값 초기화를 할 때 번거로운 타이핑을 줄여 준다. decltype은 값을 동반하지 않고 타입 자체만을 명시할 때 매우 유용하다. 템플릿 인자를 명시하거나 형변환을 할 때, 길고 복잡한 namespace나 함수 포인터의 프로토타입을 쓰는 수고를 덜어 준다. typedef를 하자니 번거로운 이름을 떠올려야 하는데.. 그럴 필요도 없어진다. 가령,

CAPIPtr<int (*)(int flags, WPARAM wParam)> pfnAbout(hNgsLib, "ngsAbout");

라고 쓸 것을

CAPIPtr<decltype(&::ngsAbout)> pfnAbout(hNgsLib, "ngsAbout");

로 간편하게 대체 가능하다. 함수의 이름만으로 그 함수의 포인터의 프로토타입을 간단히 명시할 수 있으니 얼마나 편리한가? API 훅킹 라이브러리를 만들 때도 이런 문법이 매우 유용할 수밖에 없다. 훅킹 대상인 Wndows API들이야 헤더 파일에 프로토타입이 다 선언돼 있으므로 그걸 decltype의 피연산자로 주면 되기 때문이다..

또한, 과거에는 클래스에서 함수 포인터 형변환 연산자 함수를 선언할 때는 C++ 문법의 한계 때문에 반드시 그 함수 프로토타입을 typedef부터 해야 했다. 하지만 decltype은 여기서도 그런 번거로움을 응당 없애 준다. 아래 코드를 보면 차이를 알 수 있다.

class CMyTable {
    static int _Func();
public:
    //과거
    typedef int (*PFN)();
    operator PFN() { return _Func; }

    //현재
    operator decltype(&CMyTable::_Func)() { return _Func; }
};

decltype 연산자는 Visual C++ 2010부터 지원됐다. 함수 포인터에다가 람다를 바로 대입하는 건 2010은 아니고 2012부터 지원되기 시작했다. 물론 캡처가 없는 람다에 한해서. 람다는 함수 포인터보다 더 추상적인 놈이기 때문에 calling convention은 컴파일러가 알아서 다 해결해 준다.

C++은 잘 알다시피 A *B와 A B(), (A)+B 같은 문장이 A와 B의 정체가 무엇인지에 따라(타입? 값?) 파싱 방식이 완전히 달라진다. 템플릿이 추가된 뒤부터는 <와 >조차도 이항 연산자 vs 타입 명시용의 여닫는 괄호처럼 해석이 달라질 수 있게 되었고, 21세기에 와서는 템플릿 인자를 이중으로 닫을 때 굳이 > > 안 하고 >>로 써도 되게 문법이 바뀌었다. 저게 제대로 돌아가려면 값과 타입의 구분이 더욱 절실히 필요하다.

이런 특성 때문에 템플릿의 컴파일 편의를 위해 typename이라는 힌트 키워드가 도입되었으며, auto와 decltype도 동일한 용도는 아니지만 비슷한 맥락에서 type과 관련된 기술을 돕기 위해 등장한 게 아닌가 싶다.

3.
유니코드 API 훅킹 DLL을 만든다면, SetWindowTextW라면 WCHAR 문자열 형태로 전달된 인자를 char 문자열로 바꾼 뒤 A 함수에다 전달하고, GetWindowTextW라면 먼저 내부적으로 char 버퍼를 준비해서 A 함수를 호출한 뒤, 그걸 WCHAR로 변환해서 사용자에게 되돌리는 형태로 전달한다.

물론 용례가 무궁무진한 메시지를 주고받는 함수라든가 GetOpenFileName처럼 입· 출력 겸용 복잡한 구조체를 운용하는 함수, SystemParametersInfo처럼 PVOID 하나에 온갖 종류의 데이터를 주고받는 함수라면 훅킹 함수를 만들기가 아주 까다로워진다. 하지만 그 함수가 제공하는 모든 기능에다 일일이 변환 기능을 넣을 필요는 없다. 다양한 플래그와 기능들 중에서 내 프로그램이 실제로 사용하는 것에 대해서만 변환을 하면 된다.

그런데 훅킹 함수 중에는 의외로 아무 변환 없이 인자를 그대로 A 함수로 넘기기만 하고 리턴값도 아무 보정 없이 그대로 되돌리는 것도 있다. 훅킹 함수 단계에서 딱히 할 게 없다고 말이다.

그 대표적인 예로는 리소스를 리소스 ID가 아니라 메모리 포인터 차원에서 저수준으로 읽어들이는 DialogBoxIndirect와 LoadMenuIndirect가 있다.
얘들이 인자로 받아들이는 DLGTEMPLATE와 MENUTEMPLATE 구조체는 내부에 PCTSTR 같은 게 없으며, 애초에 A/W 구분이 없다. 왜냐하면 저 구조체는 메모리가 아니라 디스크에 저장되는 리소스 데이터 포맷을 기술하기 때문이다. Windows 9x용이든 NT계열용이든 실행 파일이야 서로 완전히 동일한 포맷이며 리소스들은 모두 유니코드 형태로 저장된다. 그러니 인자가 동일한데 저 두 함수도 원론적으로는 굳이 W/A 구분을 할 필요가 없다.

그럼에도 불구하고 이런 함수에도 굳이 A/W 구분이 존재하는 이유는 얘들이 내부적으로 대화상자와 메뉴 윈도우를 생성할 때 사용하는 CreateWindowEx 함수가 A/W 구분이 존재하며, 9x에서는 W 버전이 존재하지 않기 때문이다. 비록 리소스 데이터 상으로는 원래의 언어 텍스트가 들어있지만, 운영체제가 관리하는 윈도우의 텍스트 버퍼는 ANSI 기반이니 그걸 운영체제의 표준 기능만으로 제대로 표시할 방법도 없다.

그렇다면.. Windows 9x에서는 DialogBoxIndirectW나 LoadMenuIndirectW가 호출 됐을 때,
SetLastError(ERROR_CALL_NOT_IMPLEMENTED); return FALSE / NULL; 을 하지 말고..
return DialogBoxIndirectA( ... ) / LoadMenuIndirectA( ... ); 를 해도 되지 않았나 하는 의문이 남는다. 직통으로 A로 포워딩하는 거 말이다.
그럼 9x에서는 현 ANSI 인코딩으로 표현되지 않는 문자들은 비록 깨져서 출력되겠지만 최소한 메뉴나 대화상자가 뜨고 동작은 하지 않겠는가?

하지만 그건 별 의미가 없다고 생각돼서 조치를 취하지 않은 것 같다. GetOpenFileNameW, CreateFileW, CreateWindowExW, GetMessageW, SendMessageW 등등.. Windows 프로그램의 근간을 이루는 함수들이 유니코드 버전은 몽땅 동작하지 않는데 저런 것만 살려 놔서 뭘 하겠나? Windows 9x에서는 최소한의 유니코드 문자를 찍는 GDI 함수만이 제 기능을 하며, MessageBoxW는 인자들을 char 형태로 변환해서 예외적으로 지원해 주고 있다. 최소한의 에러 메시지를 찍고 종료하는 기능만은 유니코드 API 직통으로 동작하게 말이다. =_=;;

Posted by 사무엘

2017/01/02 08:25 2017/01/02 08:25
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1312

오늘날 Windows에서 실행되는 모든 프로그램들.. exe, dll 따위는 잘 알다시피 portable executable이라는 형식으로 만들어져 있다. 하지만 이 파일 포맷도.. 처음 만들어지던 당시에 여전히 컴퓨터에서 현역이던 도스와 최소한의 호환성을 유지할 필요가 있었기 때문에, 맨 앞에 MZ로 시작하는 16비트 도스 헤더를 여전히 갖추고 있다.

호환성이란 게 딴 게 아니고, 도스에서 Windows용 프로그램이 실행됐을 때 컴퓨터가 다운되는 게 아니라 "이 프로그램은 도스용이 아닙니다" 같은 짤막한 에러 메시지라도 뜨게 하는 것 말이다.

옛날에 Win32s가 제대로 설치되지 않은 상태에서 32비트 프로그램을 Windows 3.1에서 실행했더니.. "상위 버전에서 실행해 주십시오 / Win32s를 다시 설치해 주십시오" 이런 말이 메시지 박스 형태로 뜨는 게 아니라 황당하게 This program cannot be run in DOS mode라고.. 지금 시스템이 아예 Windows가 아닌 듯한 자비심 없는 메시지가 도스창에 떴다. 20여 년 전에 그 인상이 무척 강렬했었다. 요즘은 32비트 OS에서 64비트 exe의 실행을 시도해도 에러 메시지가 그 정도로 막나가는 형태는 아니다.

Windows용 프로그램들은 빌드할 때 그렇게 도스에서 잘못 실행됐을 때를 대비해 짤막하게 대신 실행해 줄 도스용 일명 "stub" 프로그램을 링크 옵션으로 지정할 수 있다. 이름하여 /STUB. 이걸 지정하지 않으면 아까 같은 저런 짤막한 에러 메시지 한 줄만 찍는 기본 stub 프로그램이 들어간다.
16비트 시절에 Visual C++ 1.5x를 보면 그 예제 stub 프로그램 자체가 winstub.exe라고 있었다. 하지만 그 이후부터는 디폴트 stub 프로그램은 그냥 링커 내부에 내장되어 버렸는지 그런 게 따로 있지는 않다.

프로그램을 특수하게 빌드하면 그런 stub을 아예 전혀 집어넣지 않는 것도 가능하다. 맨 앞에 MZ, 그리고 0x3C 오프셋에 PE 헤더가 있는 지점만 들어있으면 되고 나머지 칸은 몽땅 0으로 채움. 심지어 PE 헤더가 0x3C 오프셋보다도 전에, 도스 EXE 헤더가 있어야 할 지점에서 바로 시작하는 것도 가능하다.

미래에 마소에서 빌드하는 EXE/DLL들은 번거로운 This program cannot be ... 메시지를 떼어내고 이렇게 만들어져 나올지도 모른다. 물론 이런 프로그램은 Windows 환경에서 실행하는 건 문제 없지만 만에 하나 어느 레트로 변태 덕후가 그걸 굳이 도스에서 실행해 보면 컴퓨터가 어찌 되는지 책임 못 지는 상태가 될 것이다.

반대로 기본 stub 대신에 꽤 규모 있는 16비트 프로그램을 집어넣어서 동일 EXE가 도스에서도 그럭저럭 기능을 하고 Windows에서도 GUI를 띄우며 제대로 실행되는 프로그램을 만든 경우가 있다. Windows 9x 시절엔 레지스트리 편집기가 그러했다. 이건 Windows에서 보기 드문 하이브리드 universal binary 형태의 프로그램인 것 같다.
16비트 프로그램이 자기 자신 EXE를 열어서 PE 헤더를 파싱해서 리소스 같은 걸 읽어들이는 코드가 같이 빌드되었다면.. 도스 파트가 나중에 합쳐진 Windows 파트와 더불어 한 리소스를 공유하는 형태로 실행될 테니 이 역시 무척 흥미로울 것이다.

이 시점에서 문득 궁금해졌다.
링커가 얹어 주는 기본 stub 프로그램은 명령어가 겨우 몇 바이트밖에 되지 않는다. 얘들은 무슨 의미를 갖고 있는지, 혹시 옛날 16비트 NE 시대와 지금의 PE 시대에 stub 프로그램에 차이가 있는지..?
그래서 오랜만에 도스 API와 8086 어셈블리 명령어 레퍼런스까지 찾아서 stub 프로그램을 분석해 봤다.

stub 프로그램의 코드는 이게 전부이다.

(1) 0E        PUSH CS
(2) 1F        POP DS
(3) BA 0E 00  MOV DX,000E
(4) B4 09     MOV AH,09
(5) CD 21     INT 21
(6) B8 01 4C  MOV AX,4C01
(7) CD 21     INT 21
"문자열"


(1), (2) 맨 앞의 PUSH와 POP은 데이터 세그먼트를 코드 세그먼트의 값과 맞추는(DS=CS) 일종의 초기화이다. 스택에다가 CS 값을 넣은 뒤 그걸 DS로 도로 가져오는 거니까.
지금 이 프로그램은 화면에다 찍을 에러 메시지도 기계어 코드와 정확하게 같은 영역에 있으므로 저건 수긍이 가는 조치이다.

(3) 그 다음으로 DX 레지스터에다가 16진수로 0xE, 즉 14를 기록한다. 저 stub 프로그램은 길이가 정확하게 14바이트이다. 이 값은 프로그램의 시작 지점을 기준(0)으로 해서 그로부터 14바이트 뒤에 있는 문자열을 가리킨다.

(4) AX 레지스터의 high byte에다가 9를 기록한다.

(5) 이렇게 기록된 AX와 DX 레지스터 값을 토대로 0x21 인터럽트를 날려서 도스 API를 호출한다. 도스 API 중 9는 DX가 가리키는 주소에 있는 문자열을 화면, 정확히는 표준 출력에다가 찍는 기능을 수행한다.
그런데 굉장히 기괴한 점이 있는데.. 얘가 받아들이는 문자열은 null-terminated가 아니라 $-terminated여야 한다!

믿어지지 않으면 아무 Windows용 EXE/DLL이나 헥사 에디터로 열어서 앞부분의 에러 메시지 텍스트가 무슨 문자로 끝나는지를 확인해 보시기 바란다.
왜 그렇게 설계되었는지 모르겠다. 파일이나 디렉터리 이름을 받는 도스 API들은 당연히 null-terminated 문자열인데 말이다.

(6) 그 다음, AX 레지스터에다가 0x4C (high)와 0x1 (low)을 기록하고..

(7) 또 도스 API를 호출한다. 0x4C는 프로그램을 종료하는 기능을 하며, 종료와 동시에 low byte에 있는 1이라는 값을 에러코드로 되돌린다. 정상 종료는 0인데 1은 뭔가 오류와 함께 종료되었음을 나타낸다.
사실, 도스 API 레퍼런스를 보면 AH 값으로 0도 프로그램을 종료시키는 역할을 하는 듯하다(도스 1.0때부터 최초). 하지만 모종의 이유로 인해 그건 오늘날은 사용이 별로 권장되지 않으며 0x4C가 원칙이라 한다(도스 2.0에서부터 추가됨).

이렇게 분석 끝. 정말 간결 단순명료하다.
참고로 도스 EXE에서 헤더를 제끼고 기계어 코드가 시작되는 부분은 0x8~0x9 오프셋에 있는 unsigned short값에다가 16을 곱한 오프셋부터이다. 가령, 거기에 04 00 이렇게 적혀 있으면 0x40 오프셋부터 디스어셈블링을 해 나가면 된다. EXE는 헤더에 고정 길이 구조체뿐만 아니라 가변 길이인 '재배치 섹션'이 나오고 그 뒤부터 코드가 시작되기 때문이다.

그럼 과거 16비트 Windows에서 쓰이던 stub은 어떻게 돼 있었을까?
거의 차이가 없긴 한데, 문자열이 들어있는 위치와 얘의 주소를 전하는 방법이 달랐다.

(1) E8 53 00  CALL 0056
"문자열"
20 20 20 20 .. padding 후
(2) 5A        POP DX
(3) 0E        PUSH CS
(4) 1F        POP DS
(5) B4 09     MOV AH,09
(6) CD 21     INT 21
(7) B8 01 4C  MOV AX,4C01
(8) CD 21     INT 21


(1) 맨 먼저 JMP도 아니고 웬 CALL 인스트럭션이 나온다. 기계어로 표기할 때는 인자값이 0x53이어서 3바이트짜리 자기 자신 인스트럭션 이후에 0x53바이트 뒤로 가라는 뜻이 되는데, 영단어로 바꿔서 표기할 때는 자기 자신 원래 위치 기준으로 0x56바이트 뒤가 된다. 이 위치는 그냥 바로 다음 (2) 명령이 있는 곳과 같다.

(2) 함수 호출을 했는데 RET를 하는 게 아니라 스택을 pop하여 DX 레지스터에다 가져온다. 그렇다. 아까 그 call에 대한 복귀 주소에 문자열이 담겨 있으니, 아까 같은 하드코딩이 아닌 요런 방식으로 문자열 주소를 얹었다.

(3) (4) 이제부터는 아까처럼 DS = CS 해 주고,

(5)~(8) 아까와 동일. 문자열을 찍은 뒤 프로그램을 종료한다.

이런 초간단 초미니 프로그램은 exe가 아니라 com 형태로도 만들지 말라는 법이 없어 보인다. com은 그 어떤 헤더나 시그니처도 없이 첫 바이트부터 바로 기계어 코드와 데이터를 써 주면 되는.. 정말 원시적이기 그지없는 바이너리 덤프일 뿐이기 때문이다. 빌드 날짜, 버전, 요구하는 아키텍처나 운영체제 등등 그 어떤 부가정보도 존재하지 않는다.

요즘 프로그래밍 언어들이 기본 제공하는 런타임들의 오버헤드가 너무 크다 보니, 이에 대항하여 세상에서 제일 작은 "Hello world" 프로그램 이런 것에 집착하는 덕후들이 있다. Windows 프로그램의 경우 프로그램을 특수하게 빌드하여 CRT 라이브러리는 당연히 떼어내고, 코드와 데이터도 한 섹션에다 우려넣고, 거기에다 후처리까지 해서 단 몇백 바이트만으로 MessageBoxA(NULL, NULL, "Hello, world!", 0) 하나만 호출하는 프로그램을 만든 예가 있다.

그러나 이런 것들도 com 앞에서는 몽땅 버로우 타야 한다. 얘는 아예 파일 포맷 자체가 없으니까. 이 이상 더 줄일 수가 없다. com 형태로 만든 Hello world 프로그램은 겨우 20몇 바이트가 전부이다.
무슨 명령어를 내렸는지 기억은 안 나지만 컴퓨터를 재시작시키는 com 파일이 있었는데, 얘는 크기가 겨우 2바이트에 불과했다.

(1) BA 0C 01  MOV DX,010C
(2) B4 09     MOV AH,09
(3) CD 21     INT 21
(4) B8 01 4C  MOV AX,4C01
(5) CD 21     INT 21
그 뒤에 "Hello, world!$" 같은 문자열. 따옴표는 제외하고.


com은 exe처럼 코드/데이터 세그먼트 DS=CS 따윈 전혀 신경 쓸 필요 없이, 바로 본론부터 들어가면 된다. 그 대신 com은 16비트 단일 세그먼트 안에서 코드와 데이터 크기 한계가 모두 64K라는 치명적인 한계를 갖는다. 메모리 모델로 치면 그 이름도 유명한 tiny 모델 되겠다. 애초에 exe가 16비트 CPU에서 저 한계를 극복하고, 또 멀티태스킹에 대비하여 재배치도 가능하게 하려고 만들어진 포맷이기도 하다.

아, 아주 중요한 사항이 있다. com에서는 첫 256바이트, 즉 0x100 미만의 메모리 주소는 시스템용으로 예약되어 있어서 사용할 수 없다. 내 코드와 데이터는 0x100부터 시작한다. 그렇기 때문에 저 프로그램의 코드 크기는 12바이트이고, 문자열은 0xC 오프셋부터 시작하긴 하는데 거기에다가 0x100을 더해서 DX에다가는 0x10C를 써 줘야 한다.

Windows PE에다 비유하자면 0x100이 고정된 base address값인 셈이다. 그리고 DX의 값은 그냥 VA이지 RVA가 아니다.
과거에 굴러다니던 exe/com 상호 변환 유틸리티들이 하던 주된 작업 중 하나도 이런 오프셋 재계산이었다. 그리고 com에서 exe라면 모를까 더 넓은 곳에서 좁은 곳으로 맞추는 exe -> com은 아무 exe에 대해서나 가능한 게 물론 아니었다. (단일 세그먼트 안에서만 놀아야..) 과거 도스에 exe2bin이라는 외부 명령어가 있었는데 걔가 사실상 exe2com의 역할을 했다.

아무튼, 저 바이너리 코드와 문자열을 헥사 에디터를 이용해서 입력한 뒤, 파일을 hello.com이라고 명명하여 저장한다. 이걸 도스박스 같은 가상화 프로그램에서 도스 부팅하여 실행하면 신기하게도 Hello, world!가 출력될 것이다.
고급 언어를 사용하지 않고 컴파일러 나부랭이도 전혀 동원하지 않고 가장 원초적인 방법으로 나름 네이티브 실행 파일을 만든 것이다. 사용 가능한 코드와 데이터 용량이 심각하게 작다는 것과, 요즘 64비트 Windows에서는 직통으로 실행조차 할 수 없다는 게 문제이긴 하지만. (네이티브 코드라는 의미가 없다~!)

이런 식으로 컴퓨터에 간단히 명령을 내리고 램 상주 프로그램이나 바이러스 같은 것도 만들기 위해 옛날에는 debug.com이라는 도스 유틸리티가 요긴하게 쓰였다. 간단한 어셈블러/디스어셈블러 겸 헥사 에디터로서 가성비가 뛰어났기 때문이다. edlin 에디터의 바이너리 버전인 것 같다.

오늘날 어셈블리어라는 건 극소수 드라이버/컴파일러 개발자 내지 악성 코드· 보안· 역공학 같은 걸 연구하는 사람들이나 들여다보는 어려운 물건으로 전락한 지 오래다. 하지만 이것도 알면 디버깅이나 코드 분석에 굉장한 도움이 될 듯하다.
디스어셈블리 자체는 주어진 규칙대로 바이트 시퀀스를 몇 바이트씩 떼어서 명령어로 분해해 주는 비교적 간단한 작업일 뿐이다. 파서(parser)가 아니라 스캐너(scanner) 수준의 작업만 하면 된다.

하지만 디스어셈블리가 골치 아프고 귀찮은 이유는 코드의 첫 실행 지점을 정확하게 잡아서 분해를 시작해야 하며, 그래도 어느 게 코드이고 어느 게 데이터인지가 프로그램 실행 문맥에 의해 시시각각 달라지고 무진장 헷갈리기 때문이다. 데이터는 백 날 디스어셈블링 해 봤자 아무 의미가 없고, 오히려 코드의 분석에 방해만 된다. 이런 역공학을 어렵게 하기 위해서 디스어셈블러를 엿먹이는 테크닉도 보안 분야에는 발달해 있다.
하긴, 코드와 데이터가 그렇게 경계 구분 없이 자유자재로 변할 수 있는 게 "폰 노이만 모델 기반의 튜링 기계"가 누리는 극한의 자유이긴 하다.

Posted by 사무엘

2016/12/17 08:34 2016/12/17 08:34
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1306

Visual Studio 201x, MSDN 이야기

1. 도움말 시스템

Visual C++ (지금의 Visual Studio)이 개발된 이래로 IDE가 제공하는 도움말 및 API 레퍼런스 시스템은 다음과 같이 변모해 왔다.

  • 1세대 1.x~2.x: 그냥 평범한 WinHelp 기반 hlp
  • 2세대 4.x, 5: 리치 텍스트(RTF) 기반의 자체적인 도움말 시스템이 IDE 내부에 통합되어 제공. 같은 컴퓨터 사양에서 RTF 기반 엔진은 이후에 등장한 IE+HTML 기반 엔진보다 텍스트 표시와 스크롤 속도가 훨씬 더 빨랐다.
  • 3세대 6: RTF 대신 HTML 기반의 외부 도움말로 갈아탐. MSDN이라는 명칭 정립.
  • 4세대 200x (.NET ~ 2008): HTML 기반이지만 CHM 말고 다른 컨테이너를 사용하는 Document Explorer. 도움말을 IDE 내부에 구동할 수도 있고 외부에 구동할 수도 있음. 융통성이 생겼다.
  • 5세대 201x: Help Viewer 도입. 버전도 1.0부터 리셋 재시작.

하긴, 비주얼 C++의 프로젝트 파일 포맷도 이와 거의 비슷한 단계를 거치며 바뀌어 왔다. vcp(1세대), mdp(2세대), 3세대(dsw/dsp), 4세대(sln/vcproj), 5세대(sln/vcxproj)의 순. 단, 비주얼 C++ 5는 2세대 도움말 기반이지만 프로젝트 파일은 예외적으로 3세대 6.0과 동일한 dsw/dsp기반이다.

본인은 지금의 일명 5세대 도움말 시스템을 별로 좋아하지 않았다.
일단 5세대 시대를 처음으로 시작한 Visual Studio 2010은 후대 버전은 안 그런데 얘만 유독 무겁고 시동 속도가 무척 느렸다.
그리고 같이 내장된 Help Viewer 1은 '색인' 탭으로 가면 심한 랙이 걸려서 몹시 불편했다. 재래식 4세대 도움말에 비해 기능 차이는 별로 없는데 느리고 무거워지기만 해서 학을 뗐다.

그나마 2012부터는 IDE가 가벼워지고 도움말의 랙도 없어진 듯하다. 그 대신 2010에는 없던 다른 사이드 이펙트가 생겼다.
첫 구동되어서 Help Viewer 스플래시 화면이 뜰 때 마우스 포인터가 움직이지 않을 정도로 컴퓨터가 잠시 stun(멈칫)된다. 구닥다리 내 컴에서만 그런 줄 알았는데 회사의 초고성능 최신식 컴퓨터에서도 동일한 현상이 발생한다.

먼 옛날의 불안정한 유리몸이던 Windows 9x도 아니고 엄연히 7~10급의 최신 OS에서 하드웨어를 도대체 어떻게 건드렸길래 마우스 포인터조차 움직이지 않는 상태가 되나?

잘 알다시피 요즘 Visual Studio IDE는 평범한 Win32 API로 GUI를 만드는 게 아니라 닷넷 + Windows Presentation Foundation 기반으로 특수하게 하드웨어 가속도 받으면서 아주 뽀대나는 방식으로 그래픽을 출력한다.
글자를 찍는 계층도 뭐가 바뀌었는지, 텍스트 에디터에는 트루타입 글꼴만 지정되지 FixedSys 같은 비트맵 글꼴을 사용할 수 없게 바뀌었다. '굴림'은 트루타입이니 사용은 가능하지만 embedded 비트맵이 대신 찍히는 크기에서도 ClearType이 적용되어 색깔이 살짝 바뀌어 찍히며, 같은 글자끼리도 폭이 좀 들쭉날쭉하게 찍힌다.

이렇듯, 재래식 GDI API로 글자를 찍었다면 절대로 나타나지 않을 사이드 이펙트들이 좀 보인다.
그런 특수한 그래픽/GUI를 사용하기 위해서 마치 게임 실행 전처럼 하드웨어 초기화가 일어나고, 그때 마우스 포인터가 살짝 멈추는가 하는 별별 생각이 든다.

2. GDI API 설명은 어디에?

요즘(2010년대) Visual Studio의 MSDN 레퍼런스엔 왜 GDI API들이 누락돼 있는지 궁금하다. BitBlt, SetPixel 같은 것들. desktop app development에 해당하는 몇백 MB짜리 도움말을 분명히 설치했는데도 로컬 도움말에 포함되지 않아서 저것들 설명은 느린 인터넷 외부 링크로 대체된다.

VS 2010에서는 GDI 관련 API들이 색인으로는 접근 가능하지만 목차에서는 존재하지 않아서 접근불가였다. 그리고 MFC 레퍼런스도 단순한 API wrapper의 경우(가령 CDC::MoveTo) See also 란에 자신의 원래 API 함수에 대한 링크(가령 MoveToEx)가 있는데, 요건 내부 링크가 아니라 인터넷 MSDN 사이트의 외부 링크로 바뀌어 있었다.

즉, 그때부터 GDI API의 설명은 제외될 준비를 하고 있었던 듯하다. 그 뒤로 2012인가 2013 이후부터는 그것들이 색인에서도 제외되고 완전히 없어졌다. 2015도 마찬가지인 걸 보니 GDI의 누락은 단순 지엽적인 실수가 아니라 의도적인 계획인 것으로 보인다.

kernel32, user32, advapi32 등 나머지 API들은 다 남아 있는데 왜 GDI만 없앴는지, 얘는 정말로 완전히 deprecate 시킬 작정인지 알 길이 없다. Windows NT 3.1 초창기 때부터 20년이 넘게 운영체제의 중추를 구성해 온 놈인데 그걸 호락호락 없애는 게 가능할까? 게다가 BeginPaint, GetDC처럼 GDI를 다루지만 실제로는 USER 계층에 속해 있는 기초 필수 API조차 언급이 누락된 것은 좀 문제라고 여겨진다.

이런 것 때문에 본인은 Visual Studio는 옛날 Document Explorer 기반이던 200x도 여전히 한 카피 설치해 놓고 지낸다.
옛날에는 또 Visual C++ 2005의 MSDN만 TSF API 레퍼런스도 없고 뭔가 나사가 빠진 듯이 컨텐츠가 왕창 부실해서 내가 놀랐던 기억이 있다. 2003이나 2008은 안 그랬고 걔만 좀 이상했었다.

3. 프로젝트에 소속되지 않은 소스 코드도 심층 분석

Visual C++. 2013인지 2015인지 언제부턴가 프로젝트에 등재되지 않은 임의의 C/C++ 소스 코드를 열었을 때도 이 파일을 임시로 파싱해서 인텔리센스가 동작하기 시작했다. 이거 짱 유용한 기능이다.
전통적으로 프로젝트 소속이 아닌 파일은 문맥을 전혀 알 수 없으며 빌드 대상도 아니기 때문에 IDE에서의 대접이 박했다. 정말 기계적인(문맥 독립적이고 명백한) 신택스 컬러링과 자동 들여쓰기 외에는 자동 완성이나 인텔리센스 따위는 전혀 제공되지 않았다. 전혀 기대를 안 하고 있었는데 이제는 걔들도 miscellaneous file이라는 범주에 넣어서 친절하게 분석해 준다.

4. Spy++

Visual C++에는 프로그램 개발에 유용하게 쓰일 만한 아기자기한 유틸리티들이 같이 포함돼 있다.
'GUID 생성기'라든가 '에러 코드 조회'는 아주 작고 간단하면서도 절대로 빠질 일이 없는 고정 멤버이다.
옛날에는 'OLE/COM 객체 뷰어'라든가 'ActiveX 컨트롤 테스트 컨테이너'처럼 대화상자가 아닌 가변 크기 창을 가진 유틸리티도 있었는데 OLE 내지 ActiveX 쪽 기술이 인기와 약발이 다해서 그런지 6.0인가 닷넷 이후부터는 빠졌다.

그 반면, 기능이 제법 참신하면서 1990년대부터 지금까지 거의 20년 동안 변함없이 Visual C++과 함께 제공되어 온 장수 유틸리티는 단연 Spy++이다.
얘는 제공하는 기능이 크게 변한 건 없었다. 다만 아이콘이 초록색 옷차림의 첩보요원(4.x..!), 분홍색 옷차림(6.0~200x), 검정색 옷차림(2010~현재)으로 몇 차례 바뀌었으며, 운영체제의 최신 메시지가 추가되고 도움말이 hlp에서 chm으로 바뀌는 등 외형만이 최소한의 유지보수를 받아 왔다.

아, 훅킹을 사용한다는 특성상 2000년대 중반엔 64비트 에디션이 따로 추가되기도 했다. 하지만 GUI 껍데기는 x86용 하나만 놔두고 64비트 프로그램에 대해서는 내부적으로 64비트 서버 프로그램을 실행해서 얘와 통신을 하는 식으로 프로그램을 개발하면 더 깔끔했을 텐데 하는 아쉬움이 남는다. 그러면 사용자는 겉보기로 한 프로그램에서 32비트와 64비트 구분 없이 창을 마음대로 들여다보고 훅킹질을 할 수 있을 테니 말이다.

실제로 <날개셋> 입력 패드도 그런 식으로 동작하며, 당장 Visual C++ IDE도 내부적으로 64비트 IPC 서버를 따로 운용하기 때문에 IDE 자체는 32비트이지만 64비트 프로그램도 아무 제약 없이 디버깅이 가능하다. 하지만 안 그래도 훅킹을 하느라 시스템 성능을 잡아먹는 프로그램인데.. 성능 문제 때문에 깔끔하게 64비트 에디션을 따로 빌드한 것일 수도 있으니 Spy++ 개발자의 취향은 존중해 주도록 하겠다.

Spy++는 워낙 역사가 긴 프로그램이기 때문에 초창기 버전은 창/프로세스들의 계층 구조를 전용 트리 컨트롤이 아니라 리스트박스를 정교하게 서브클래싱해서 표현했다. 쉽게 말해 과거 Windows 3.1의 파일 관리자가 디렉터리 계층 구조를 표현한 방식과 비슷하다. 사실은 리스트박스에서 owner draw + user data로 계층 구조를 표현하고 [+/-] 버튼을 눌렀을 때 하부 아이템을 표시하거나 숨기는 건 1990년대 초반에 프로그래밍 잡지에서 즐겨 다뤄진 Windows 프로그래밍 테크닉이기도 했다.

그러다가 VC++ 2005인가 2008 사이쯤에서 Spy++은 운영체제의 트리 컨트롤을 사용하는 걸로 리팩터링이 됐다. 사용자의 입장에서는 기능상의 변화가 없지만 내부적으로는 창을 운용하는 방식이 완전히 바뀐 것이기 때문에 이건 내부적으로 굉장히 큰 공사였으리라 여겨진다.

그런데 VC++ 2010과 함께 제공된 Spy++는 일부 단축키들이 동작하지 않는 버그가 있었다. 전부 먹통인 것도 아니고 창 찾기 Alt+F3, 목록 새로 고침 F5, 속성 표시 Alt+Enter 같은 게 동작하지 않아서 프로그램을 다루기가 불편했다. 이 버그는 잠깐 있었다가 다시 2012 이후에 제공되는 Spy++부터는 고쳐졌다.

Posted by 사무엘

2016/12/03 08:31 2016/12/03 08:31
, ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1301

« Previous : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : ... 18 : Next »

블로그 이미지

철도를 명절 때에나 떠오르는 4대 교통수단 중 하나로만 아는 것은, 예수님을 사대성인· 성인군자 중 하나로만 아는 것과 같다.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2020/07   »
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  

Site Stats

Total hits:
1405286
Today:
525
Yesterday:
651