수학에서 방정식이란, 미지의 변수가 존재하여 이 변수의 값이 무엇이냐에 따라 성립 여부가 달라지는 등식을 말한다.
사실 일차방정식.. 즉, 미지수에 대해서 잘 해 봤자 상수배의 곱만 존재하는 간단한 방정식만 해도 인간의 지적 수준을 크게 끌어올릴 수 있다. 가령, "아날로그 시계에서 5시와 6시 사이에 긴 바늘과 짧은 바늘이 겹치거나 직각이 되는 시각은?" 같은 것도 일차방정식으로 풀어 낼 수 있으며,
마음속으로 어떤 수를 생각해서 뭘 곱하고 뭘 했는데 언제나 무슨 수가 딱 떨어지게 나오는 것은 마술이나 독심술이 있어서 그런 게 아니라 구조적으로 그렇게 될 수밖에 없다는 것을 증명할 수 있다는 말이다. 놀랍지 않은가?
그리고 차수는 일차인데 변수가 여러 개인 경우가 있다. 미지수도 n개이고 식도 n개. 이런 형태의 문제를 푸는 것은 실용적인 가치가 대단히 높기 때문에, 행렬이라는 추상적인 모델로 간단히 표현하여 선형 대수학이라는 별도의 분야까지 수학에 존재한다. 개인적으로 행렬도 굉장한 발견이라고 생각함. 이런 개념을 만듦으로써 어마어마한 양의 문제를 손쉽게 해결할 수 있게 됐기 때문이다.
식에 미지수 자체의 제곱이 들어있으면 이차방정식으로 방정식의 격이 올라간다. 여기서부터는 제곱근, 인수분해 같은 개념이 등장하고 예전보다 살짝 더 어려워진다. 하지만 2차 정도는 인수분해 뿐만 아니라 일반해를 구하는 근의 공식조차 유도가 가능하다. 이미 수백 년 전에 발견되기도 했고, 그렇게 어렵지 않다.
이공계를 나온 친구라면, 비록 입시 코스를 통과했더라도, 수학 감각 자가유지 테스트 차원에서라도 근의 공식 유도 정도는 이따금씩 해 볼 만하다.
참고로 이차방정식의 양변을 x로 나누면 분수 방정식이 된다. 그래프 모양은 2차 방정식과 완전히 다르지만, 반대로 양변에 x를 곱해서 이차방정식 풀듯 풀면 된다. 단, 풀고 나서는 분모를 0으로 만드는 무연근만 버리면 된다. (수학에서 0으로 나누는 게 용납된다면 "모든 수는 0이다" 같은 궤변도 증명할 수 있고 별별 게 다 가능해진다.) 분수 방정식은 비록 정석적인 형태는 아니지만, 조화평균처럼 나눗셈이 수반되는 곳에 미지수가 있을 때 쓰인다.
2차 방정식보다도 차수가 올라간 3차 이상부터는 일반해를 구하는 공식은 2차 방정식의 근의 공식과는 비교도 못 할 정도로 살인적으로 복잡해진다. 대학교 수학과 교수라도 안(못) 외운다. ^^ 학교에서 3차 이상의 고차 방정식은 인수분해가 안 되는 이상한 식이 다뤄지는 일은 없다고 생각하면 된다.
3차 방정식은 2차항을 소거하여 x^3 + p*x + q = 0 형태로 바꾼 후 푼다. 즉, 임의의 3차 방정식은 저 꼴로 본질적인 정보량을 줄일 수 있다는 뜻이다.
본인의 지인 중엔 손으로 3차 방정식의 일반해 공식을 스스로 유도해 냈다고 자랑하던 녀석이 있었다. 뼛속까지 수학과 물리를 진심으로 벗삼아 즐기는 놈인데, 흠좀무.
4차 방정식 역시 일단 3차항을 소거한 뒤 풀이하는데, 임의의 케이스에 대한 일반해 공식은 3차보다도 더욱 길고 아스트랄하다. 과연 대수학(algebra)의 무서움이다. 그냥 저런 게 있다는 것만 알고 넘어가면 된다. 실용적인 가치는 별로 없으며, 실생활에서 그 정도 방정식을 풀 일이 있으면 그냥 numerical하게 근사해를 사용해도 아무 지장 없다.
그런데..
문제는 5차 이상부터이다.
수학 쪽으로 조금만 상식이 있는 분이라면 잘 알 것이다.
5차 이상의 방정식은 대수적인 방법으로 해를 구하는 방법이 존재하지 않는다.
P=NP 같은 것처럼 아직 해답을 못 찾은 게 아니라, 원천적으로 절대 존재 불가능하다는 게 증명이 되어 있다.
인수분해가 안 되는 놈이라면 얄짤없이 포기하고 일찌감치 numerical 근사해로 만족하라는 뜻.
왜... 왜 없는 것일까? 그것도 왜 하필 5차부터?
2차부터 4차까지 일반해를 대수적으로 구하는 근의 공식을 살펴보면
비록 말도 못 하게 복잡하더라도 그 연산 자체는 평이하며 우리의 이해가 가능한 수준이다. 식의 계수에 대해서 적당하게 사칙 연산 씌우고, 거듭 제곱하거나 (거듭) 제곱근을 구하는 작업을 유한 번 적용해 주면 답이 나온다. 즉, 이들 방정식의 해는 대수적 연산이라는 언어로 기술이 가능하다. (좀 전산학적인 개념이 들어가는군..)
그런데 5차 이상의 방정식은 해 자체가 그런 대수적인 방법으로 얻을 수 없는 수에 존재할 수 있다는 걸 증명해 냄으로써,
일반해 공식이 원천적으로 존재할 수 없음을 증명한 것이다.
아니, 사실은 저것도 직접적인 증명이 아니라, 5차 방정식의 일반해를 대수적인 방법으로 기술했을 때 모순이 생긴다고.. 귀류법을 이용해 증명했다.
헐, 그런 수는 도대체 어떻게 생겨먹은 수이며 어떤 특성을 가질까? 루트라든가 기존 대수적 조작을 통해서 특성을 기술할 수 없는 수? 그런데 그렇다고 해서 초월수도 아니고?? 아마 이런 수는 별 특성이 없고 의미가 없다 보니 그렇게 연구가 잘 안 돼 있는 것 같다.
그리고 왜 하필 5차부터 그런 경우가 생기는 걸까? 잘 모르겠다. 그런 걸 알면 내가 이 자리에 안 있지.. ㅋㅋㅋ
※ 외전: 방정식 연구자들의 말로
3차 방정식의 근의 공식을 최초로 찾아낸 사람은 타르탈리아라는 수학자이다(16세기 사람). 그는 이 사실을 절대로 외부에 발설하지 말라는 조건을 걸고 카르다노라는 의사 겸 수학자에게 해법을 전수해 줬는데... 제자인지 라이벌이지 뭐 어떤 사이인지는 모르겠다. 그런데 이 카르다노라는 양반, 아예 책을 써서 해법을 공개적으로 발설하는 것도 모자라서, 그걸 자기 이름으로 떠벌리면서 3차 방정식의 해법의 발견자로 '카르다노'라는 이름을 학계에 당당히 올려 버렸다.
타르탈리아로서는 "저런 쌍노무 새퀴, 인간말종 호로자식을 봤나!" 정말 이성을 잃을 정도로 노발대발하고 카르다노를 향해 매일 축시의 저주를 거행했을 것이다. -_-;; 그것 때문이었을까? 카르다노는 아들이 어머니(=카르다노의 아내)를 살해하고 그 죄에 대한 벌로 아들도 덩달아 처형 당하는 가정 팀킬-_-을 겪었다. 그 역시 도박에 빠져 가난하게 지냈으며, 나중엔 죽는 날짜를 예고한 후 자살로 생을 마감했다. 하긴, 타르탈리아도 그 천재성에 비해 가난하고 어린 시절이 불우했으며 후천성 장애를 얻어 말더듬이였으니 더욱 안습.
4차 방정식의 근의 공식은 카르다노의 제자이고 사실상 그의 양자였을 거라고 추정되는 로도비코 페라리가 최초로 발견했다. 이쪽은 다 16세기 이탈리아 라인이구나. 그런데 그 역시 술과 도박에 빠져 지내다 손가락 장애를 얻고 나중엔 무려 애인 또는 여동생으로 추정되는 여인에게 독살 당했다. -_-;;
그리고 끝으로, 5차 이상의 방정식에 대한 연구는 19세기에 와서야 잘 알다시피 갈루아와 아벨이라는 두 천재 덕후 수학자가 확실하게 종지부를 찍었다. 수학사를 조금이라도 아는 사람이라면 이들이 얼마나 불운한 천재였는지 알 것이다.
닐스 헨릭 아벨(노르웨이)은 5차 이상의 방정식은 대수적으로 풀이가 불가능하다는 것을 최초로 증명하고 이외에도 여러 분야에 탁월한 논문을 남겼다. 그 분야 중 하나는 타원 함수는 아마 20세기 말에 와서 페르마의 마지막 정리를 증명하는 데도 쓰인 이론인 걸로 알고 있다.
그런데 그는... 너무 천재여서 능력을 인정을 못 받은 채, 가난에 찌들고 살다가 26세의 나이로 결핵과 영양실조로 인해 사실상 굶어 죽었다... ㅎㄷㄷㄷㄷㄷ 그가 죽고 나서 이틀 뒤에, 드디어 베를린 대학 교수로 임용됐다는 편지가 도착했으니, 지못미 아벨. ㅠ.ㅠ
갈루아(프랑스)는?? 아벨보다 더하면 더하지 못하지는 않은 덕후였다. 불세출의 논문을 하나 쓴 게 프랑스 과학원의 병신 같은 실수로 인해 분실되어 심사도 제대로 못 받았고, 겨우 21세의 나이로 치정 문제에 연루되어 권총 결투 중에 목숨을 잃었다...;;;
죽기 전날 유언장처럼 쓴 노트가 후대의 수학자들을 놀라게 한 논문이 되었다. 그는 아벨과는 다른 방법으로 5차 방정식의 대수적 풀이 불가능성을 증명하고 더 나아가 n차 방정식의 대수적 풀이 가능 조건을 논하면서 군론(group)이라는 분야를 개척했다. 군 이론에 기초한 방정식의 갈루아 이론은 완전히 이해되는 데만 70년이 넘는 시간이 걸렸다.
Posted by 사무엘