« Previous : 1 : ... 18 : 19 : 20 : 21 : 22 : 23 : 24 : 25 : 26 : ... 31 : Next »

※ 윈도우 프로그래머라면 누구나 다 알 만한 내용에 대한 정리이다.
보면 아시겠지만 1~5까지 등장하는 기술들은 서로 동등한 차원의 관계에 있는 것들이 아니다.

1. 윈 API

kernel32, gdi32, user32를 주축으로 운영체제가 응용 프로그램에다 자신의 기능을 제공하는 가장 원초적인 매체이다. 우리에게 친근한 CreateWindowEx, DispatchMessage, CreateFile 등등등! 20년에 달하는 역사를 자랑하며, Windows라는 운영체제와 PC 데스크톱 애플리케이션이라는 영역 자체가 존속하는 한 결코 없어지지 않는다. 과거의 도스 API는 그냥 인터럽트 호출을 그대로 노출하던 반면, 윈도우 API는 C언어 함수 호출 형태를 근간으로 만들어져 있다.

2. MFC

윈 API만 쓰면 생산성이 크게 떨어지고 불편한 관계로, 1990년대 초에 응용 프로그램의 주 개발 언어가 C에서 C++로 넘어가던 시기에 기존 API를 C++ 라이브러리 형태로 적당히 wrapping하기 위해 이 물건이 개발되었다.
생성자와 소멸자, 오버로딩과 상속, message map 같은 것들 덕분에 생API보다야 개발 생산성이 크게 향상되는 건 사실이나, 이걸 제대로 쓰려면 윈 API도 알아야 되고 객체지향 이념과 MFC가 새로 도입된 개념까지 다 알아야 하기 때문에 초기 학습자의 부담이 커진다. 또한 MFC 자체가 부과하는 오버헤드도 만만찮다.

MS C 7.0의 다음 버전인 비주얼 C++ 1.0때부터 application frameworks라는 이름으로 존재하고 있었다. 16비트 시절부터 존재했으니 역사가 제법 길다.

3. COM

함수 호출 규약, 메모리 할당과 해제 방식, 문자열의 처리 방식, 특정 기능이 담겨 있는 객체를 식별하고 외부에 노출하는 방식 같은 아주 기본적인 바이너리 수준에서의 소프트웨어 컴포넌트 제조 규격을 범언어적으로 통일하는 스펙이다. 가령, 윈API가 DLL 로딩을 위해 전통적으로 지저분한 LoadLibrary(파일명), GetProcAddress나 import library 같은 저수준 방법을 썼다면, COM의 사고방식으로는 CoCreateInstance와 깔끔한 class ID만으로 끝인 것이다.

이건 1990년대 중반의 32비트 윈도우 이래로 도입되었다. 지금은 옛날보다야 중요도가 크게 떨어진 게 사실이지만 DirectX, 탐색기 셸, 드래그 드롭 같은 일부 분야의 API는 이 COM 방식으로 제공되기 때문에 프로그래머아면 COM의 개발 취지와 기본 개념 정도는 알 필요가 있다. 한편, MFC도 이런 COM 규격을 만족하는 컴포넌트를 새로 구현하는 데 쓰이는 공통 필수 기능을 지원한다.

4. GDI+

클래식 윈 API 중에서 GDI 계층을 계승하는 그래픽 라이브러리로, MS가 제공하는 API로는 드물게 C와 더불어 순수 C++ 기반으로 만들어졌다. 또한 사용하는 자료형이나 명칭들이 윈 API와는 완전히 다르며 서로 관련이 없다는 특징이 있다. 비록 GDI+는 기존 GDI보다 느리고 오버헤드가 크지만, 알파 블렌딩, 그러데이션 같은 최신 그래픽 카드를 활용하는 고급 그래픽 기능에 더욱 특화되어 있으며, 일부 그리기 기능은 반드시 GDI+만 써야 가능한 것도 있다.

가령, 안티앨리어싱이 적용된 글자를 찍는 건 재래식 GDI로도 가능하지만 안티앨리어싱이 적용된 선을 그리는 건 GDI+를 써야만 가능하다. 그리고 윈도우 비스타/7의 glass 영역에다가 알파 채널이 적용된 그림/글자를 제대로 그리는 것도 역시 GDI+로만 가능하다.

5. .NET

기계어가 아닌 바이트코드 가상 기계(common language runtime)를 기반으로 하면서, 운영체제 API를 객체지향 위주로 완전히 새로 설계한 윈도우 프로그래밍 플랫폼이다. 예전에는 비주얼 베이직이 얼추 이런 개발 환경을 지향하고 있었지만 닷넷은 그보다 스케일이 범언어적으로 훨씬 더 커졌다. .NET 환경에서의 주력 개발 언어인 C#은 최신 언어답게 디자인이 깔끔하고 빌드 생산성이 우수하다. 하지만 네이티브 기계어 프로그램만치 빠르거나 운영체제 내부를 세밀하게 지어하지는 못하며, 닷넷 프레임워크 위에서만 돌아갈 수 있다는 한계도 있다.

.NET에서는 기본 그래픽 API가 GDI+이다. 둘 다 윈도우 XP부터는 기본 내장이고, 윈도우 98부터 2000/ME까지는 운영체제에 배포판을 추가 설치해서 쓸 수는 있다. 다만, 윈95는 지원을 끊었다.
윈도우 8에서는 닷넷조차도 다른 언어와 플랫폼으로 대체되었는지 WinRT라는 플랫폼이 등장하며, C++ 언어도 C++/CX라고 대대적으로 칼질이 가해졌다. 이게 앞으로 6번으로 추가되어야 할 듯하다.

맥 OS는 운영체제의 API가 저런 식의 내력을 거친 게 있으려나 궁금하다. 코코아, 카본 같은 건 어느 위상에 속할까?

Posted by 사무엘

2013/01/03 08:38 2013/01/03 08:38
, , ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/778

템플릿 인자로 또 템플릿 타입을 받는 타입의 변수 선언이

A<B<C > > d;
이런 식으로 돼 있는 옛날 C++ 코드를 보니 문득 감회가 새롭다.

예전에는 템플릿 인자를 닫는 > 가 중첩될 때, 여러 >를 >>로 붙일 수가 없었다.
타입 선언인지 일반 연산인지 문맥을 고려하지 않는 전통적인 parser는, 이것을 비트 shift 연산자로 인식하기 때문이었다. 따라서 오류크리.
그래서 > 사이를 강제로 띄워 줘야 했는데 이것이 보기에 그리 좋지는 않음이 자명한 노릇이었다.

일단 C++ 계보의 언어들은 문법 차원에서 변수 선언을 명시하는 토큰이 없고(파스칼의 var과 콜론, 베이직의 Dim과 as 같은), 달랑 “타입 변수명”이라는 아주 문맥 의존적인 문법만을 바탕으로 변수 선언을 컴파일러가 알아서 추론해야 하기 때문에 파싱이 까다로운 게 사실이다. 게다가 C++부터는 변수 선언은 객체 선언과 동급이 되어, 함수 몸체 내부 어디에서나 마음대로 올 수 있지 않은가.

훗날 C++ 언어가 C++11로까지 확장되면서, 언어가 명시하는 스펙 자체가 바뀌면서 >>를 붙여 써도 괜찮게 되었다.
비주얼 C++의 경우, 2003은 >>가 확실하게 인식되지 않았는데, C++11이 정식으로 제정되기 전부터 2008쯤부터 이미 >>를 지원하고 있었다.

이런 문법의 변화로 인해, 클래스 A는 type을, 클래스 B는 int를 받는 템플릿 클래스라고 했을 때

A<B<30>>1> > p;

라는 코드가 과거에는 30>>1이 15라고 계산되어 컴파일이 되었지만, 이제는 되지 않는다. >>가 템플릿 인자를 닫는다는 의미로 먼저 인식되었기 때문이다. 이것은 함수 호출 문맥에서는 ,가 콤마 연산자가 아니라 인자 구분자로 먼저 인식되는 것과 비슷한 맥락이다.
바뀐 문법에서는

A<B<(30>>1)>> p;

라고, 뒤의 >를 붙일 수 있는 대신 진짜 템플릿 인자 내에서의 산술 연산은 괄호로 싸 줘야 <, > 사이의 모호성을 막을 수 있다.
사실, 템플릿 인자 안의 숫자는 어차피 컴파일 시점에서 값이 다 결정되는 것들이기 때문에, 복잡한 연산이 들어갈 일은 거의 없다. 산술 연산을 괄호로 반드시 싸야 하게 만들고 그 대신 템플릿 인자의 < >에 편의를 더 주는 것이 훨씬 더 합리적인 정책인 것이 사실이다.

뭐, 괄호도 해 주고 >를 띄워 주기까지 하면, 어느 구닥다리 C++ 컴파일러에서나.. 컴파일 가능한 코드를 만들 수 있긴 하지만, 미관은 제일 떨어지겠지. ㅋㅋ

그러고 보니 옛날에는 일반 함수 포인터 말고, C++ 멤버 함수 포인터를 명시할 때 그냥 이름만 써 줘도 괜찮은 수준이었는데
나중에는 반드시 &를 붙이고 scope도 명시해 줘야 하게 문법이 좀 더 엄격하게 바뀐 걸로 기억한다. 한 VC++ 2005쯤부터이다. for(int x=0; ... )에서 x의 scope만큼이나 전형적인 호환성 문제이다.

이렇듯 C++이 어제나 오늘이나 큰 뼈대는 변함없고 계속 새로운 기능이 추가만 되는 것 같아도,
이미 있던 문법도 야금야금 바뀌어 온 게 좀 있다.

Posted by 사무엘

2012/12/10 08:30 2012/12/10 08:30
Response
No Trackback , 5 Comments
RSS :
http://moogi.new21.org/tc/rss/response/767

C++의 템플릿에서 인자로 쓰이는 것은 정수 아니면 자료형이다. 자료형은 class 또는 typename으로 명시해 줄 수 있으며, 이 자료형 인자는 (1) 클래스 내부의 멤버 변수의 자료형, 또는 (2) 멤버 함수의 인자나 리턴값의 자료형으로 쓰일 수 있다.

template<typename T>
class Foo {
public:
    T Bar;
};

그러니 위와 같이 생긴 클래스는 Foo<int>, Foo<char *>, Foo<RECT> 등 여러 형태로 활용할 수가 있는데,
이건 뭐지..?

Foo<int(PCSTR)> f;

이것은 int (*)(PCSTR)처럼 함수의 포인터를 지정한 것도 아니고, 일반적인 상황에서는 있을 수 없는 타입 문자열이다.
이것은 템플릿 인자에서만 허용되는 문법인데, 클래스의 멤버 함수의 프로토타입을 지정한 것이다. 이렇게 선언된 클래스에서는 Bar가 멤버 변수가 아니라 아래와 같이 호출 가능한 멤버 함수가 된다! 클래스의 형태가 완전히 달라지게 된다.

int x = f.Bar("hello, world!");

물론, Bar 함수의 몸체는 사용되는 템플릿 인자별로 모두 정의를 해 줘야 한다. 안 그러면 링크 에러가 난다.

template<>
int Foo<int(PCSTR)>::Bar(PCSTR p)
{
    return (int)p;
}

결국 멤버 함수의 인자와 리턴값이 템플릿의 인자에도 들어가고 함수 자체에도 중복 기재되는 셈이다.

Bar에 대해서 f.Bar()처럼 함수 호출이 가능하려면 Bar는 ()연산자가 오버로드되어 있는 클래스 개체이거나, 함수 포인터 타입이거나 함수 포인터로 형변환이 가능한 클래스 개체여야 한다.
그런데 그에 덧붙여 클래스 멤버 문맥에서는 위와 같은 멤버 함수 선언도 들어갈 수도 있으니, C++의 템플릿은 정말 귀에 걸면 귀걸이, 코에 걸면 코걸이가 아닐 수 없다. 심지어 virtual int(PCSTR) 같은 가상 함수 선언도 가능하다!

export 키워드가 괜히 백지화된 게 아님을 느낀다. 템플릿은 워낙 너무 방대한 언어 규격이기 때문에, 템플릿의 몸체를 다른 번역 단위로부터 끌어다 쓸 수 있으려면 템플릿으로 할 수 있는 일의 범위를 좀 더 좁혀야 할 것이다.

그런데 저렇게 멤버 함수를 완전히 customize하는 문법은, 단순히 신기한 것 이상으로 활용 방안이나 유용한 구석이 있는지 잘 모르겠다. 내가 C++ 프로그래밍을 10년이 넘게 해 왔지만, 템플릿으로 저런 것까지 가능하다는 걸 알게 된 건 1년이 채 되지 않았다.
비주얼 C++ 2003도 저게 가능할 정도이니 이건 최신 문법은 아닌 게 분명해 보인다. 그 반면 xcode에서는 이게 지원되지 않는다.

함수 개체를  함수의 인자로 전달할 때는 전통적인 함수 포인터뿐만이 아니라 C++11에서 추가된 람다 함수 오브젝트를 손쉽게 넘겨 줄 수 있다. 이때 템플릿이 아주 유용한 역할을 한다. 가령, 정렬 함수를 호출할 때 비교 함수를 익명 함수로 간단히 알고리즘을 짜서 전해 주면 되니 얼마나 편리한지 모른다.

그 반면 클래스가 함수 오브젝트를 멤버로 받는 건 아무 의미가 없고 가능하지도 않다. 그 대신 클래스 멤버가 템플릿일 때는 이것이 멤버 변수도 되고 아예 멤버 함수도 될 수 있는 자유도가 제공된다고 이해하면 되겠다.

Posted by 사무엘

2012/12/01 19:21 2012/12/01 19:21
,
Response
No Trackback , 3 Comments
RSS :
http://moogi.new21.org/tc/rss/response/763

들어가는 말

  • 프로젝트 단위: 말 그대로 한 개의 결과물을 생성하는 것을 목표로 하는 한 비주얼 C++ 프로젝트당 하나씩만 생성되는 파일이다. 리소스는 특수한 경우가 아니면 보통 프로젝트마다 하나만 있기 때문에, per-프로젝트인 것으로 간주된다.
  • configuration 단위: 한 프로젝트 내에서 debug나 release 별로 따로 생성되고, x86이나 x64 같은 플랫폼별로 다 따로 생성되는 파일이다.
  • 소스 단위: 번역 단위(translation unit)별로 다 제각각 생성되는 파일이다. configuration에도 물론 종속적이며, 다 따로 생성된다.

※ 프로젝트를 열면 생성되는 것

APS (프로젝트 단위)

전통적인 윈도우용 실행 파일(EXE/DLL)을 빌드하기 위해서는 잘 알다시피 컴파일된 코드뿐만 아니라 리소스도 같이 들어가는데, 그 리소스를 명시해 주는 '리소스의 소스', 일명 리소스 스크립트는 바로 *.rc 파일이다. 그리고 *.rc와 일반 소스 코드 *.cpp는 resource.h에 정의된 심벌들을 통해 동일 리소스를 식별하게 된다.

그런데 매번 일반 텍스트 형태로 된 rc 파일을 resource.h와 엮어서 파싱하자니 불편하다. 리소스 스크립트는 텍스트 에디터를 써서 사람이 손으로 편집한 뒤 컴파일하기에는 적합하지만, IDE 같은 소프트웨어가 자동으로 다뤄 주기에는 비효율적인 구조인 것이다.

그래서 비주얼 C++은 리소스 ID까지 포함하여 리소스 스크립트의 바이너리 representation을 따로 만들어 두고 지낸다. APS 파일이 존재하고 이게 RC나 H 같은 텍스트 소스에 비해 outdate되지 않았다면, 프로그램은 매번 텍스트를 파싱하는 게 아니라 APS 파일을 곧장 읽는다.

비주얼 C++에서 프로젝트를 처음으로 열어서 리소스 뷰로 리소스들을 처음 열람하면, 프로그램이 리소스 컴파일러를 가동해서 뭘 파싱하면서 시간이 오래 걸린다. 하지만 다음에 열 때부터는 리소스가 곧바로 빨리 열리는데, 이것이 바로 APS 파일 덕분이다.

CLW (프로젝트 단위) deprecated

이것은 비주얼 C++ 4~6 사이에, 그 이름도 유명한 MFC Class Wizard (클래스 마법사) 때문에 도입되었던 부가정보 파일이다.
MFC 클래스에서 파생된 윈도우 클래스 같은 데서 메시지 핸들러(마법사의 용도가 굳이 메시지 핸들러뿐인 건 아니지만)를 추가하려면 일단 헤더 파일에 afx_msg void OnXXXX가 추가되어야 하고, 메시지 맵 BEGIN_MESSAGE_MAP() 밑에 ON_MESSAGE_***가 추가되어야 하고, 끝으로 소스 파일에 해당 멤버 함수의 몸체가 추가되어야 한다.

그런데 이 일을 모든 소스 코드를 일일이 파싱하면서 추가 지점을 찾아서 하기란 여간 어려운 일이 아닐 수 없다.
C++은 선언 따로, 정의 따로이고(C#, 자바는 그렇지 않다) 정의부가 반드시 어느 번역 단위에 존재해야 한다는 제약이 전혀 없다. FM대로 하는 건 15년 전의 펜티엄 컴으로는 무리였다.

그래서 편의상 클래스의 선언부와 메시지 맵의 주변엔 클래스 마법사만이 식별하는 문자열이 들어간 주석이 있고, 클래스 마법사는 그 구간을 대상으로만 작업을 신속하게 했다. 그리고 그걸로도 부족해서 클래스 마법사의 파싱 결과가 CLW 파일에 들어갔다. 식별자 주석을 건드리면 클래스 마법사가 제대로 동작하지 못했다.

21세기에 나온 비주얼 C++ .NET과 그 이후 버전은 CLW 파일을 만들거나 사용하지 않으며, 클래스 마법사 주석 없이도 멤버 함수나 핸들러의 추가를 그럭저럭 정확하게 해낸다. 사실 클래스 마법사 자체가 비주얼 C++ 200x에서는 사라졌다가 2010에서부터 부활했다.

※ 빌드하면 생성되는 것

OBJ (소스 파일 단위)

비주얼뿐만이 아니라 전세계의 어느 C/C++ 컴파일러를 돌리더라도, 소스 코드를 컴파일하면 이것이 매 소스, 즉 번역 단위별로 생성된다. 소스 코드를 번역한 기계어 코드가 obj 파일 포맷에 맞게 들어있는데, 때로는 기계어 코드뿐만 아니라 각종 디버깅 정보와 링크 때 링커가 참고할 만한 메타데이터도 잔뜩 가미된다.

static library라고 불리는 LIB는 별개의 포맷이 아니라, 그냥 여러 번역 단위들을 컴파일한 obj들의 컬렉션일 뿐이다. obj를 단순히 lib로 합치기만 할 때는 링크 에러가 나지 않는다(즉, 선언된 심벌들이 반드시 정의되어야 할 필요가 없다.)

RES (configuration 단위)

리소스 스크립트를 컴파일하여 생성되는 결과물이다. 리소스 스크립트의 바이너리 최적화 형태인 APS와 무엇이 다르냐고 물으신다면, 차이가 적지 않다.
APS는 리소스 스크립트 파일의 표현 형태만 메모리 친화적으로 바꾼 것이기 때문에 ID_RADIO1 같은 상수 명칭의 문자열 원형과 심지어 조건부 컴파일을 위한 스펙까지 다 보존되어 있으며, 참조하는 비트맵 같은 데이터 파일도 파일명 형태로 존재한다. APS 파일로부터 RC 파일과 resource.h 파일을 복원해 낼 수 있다.

그러나 RES는 상수는 다 숫자로 박히고 참조하는 데이터 파일도 모두 내부에 embed되었으며, 이 상태 그대로 실행 파일에다 링크되어 들어가기만 하면 되는 상태인 것이다.

PCH (configuration 단위)

pre-compiled header인 stdafx.h와, 이에 대응하는 번역 단위인 stdafx.cpp를 컴파일하여 얻은 각종 컴파일 context들, 즉 함수와 클래스 선언, #define 명칭 등등을 바이너리 형태로 보관하고 있는 파일들이다. 이게 있으면 stdafx.h를 인클루드하라는 명령은 실제 헤더 파일을 파싱하는 게 아니라 그냥 pch 파일을 참조하는 것으로 대체된다.

컴파일러의 버전이 올라가고 각종 플랫폼 SDK의 크기가 커질수록 이 파일의 크기도 야금야금 커져 왔다. 이거 없이는 C++은 살인적인 인클루드질 때문에, 느린 빌드 속도를 도저히 감당할 수 없다.

PDB (configuration 단위)

빌드 결과 만들어진 EXE/DLL에서 기계어 코드의 어느 부분이 어느 소스의 몇째 줄에 대응하는지(소스 코드 자체는 없고 소스의 경로만), 이 함수에서 이 지역변수의 이름이 무엇인지 등을 담고 있는 디버그 정보 데이터베이스이다.

디버그 모드가 아니라 릴리스 모드로 빌드한 최적화된 실행 파일이라도, PDB 파일을 참조하게 하는 최소한의 정보만이라도 남겨 두면, 나중에 프로그램이 뻗는다거나 할 때 소스상으로 최소한 어느 지점에서 뻗었는지를 개발자의 컴에서 확인해 볼 수 있다. 개발자의 컴엔 직전에 이 바이너리를 빌드하면서 같이 생성된 PDB 파일이 존재하기 때문이다.

ILK (configuration 단위. 대개 디버그 빌드에서만)

증분 링크(incremental link)를 위한 context 정보가 들어있다.
이것은 프로그램의 빌드 속도를 올리기 위한 테크닉이다. 매번 링크를 처음부터 일일이 새로 하는 게 아니라, 처음에 빌드할 때 바이너리를 좀 여분을 둬서 듬성듬성 큼직하게 만들어 두고, 다음부터는 바뀐 obj 파일 내용만 기존 바이너리의 자기 지점에다 대체하는 방식으로 빌드를 신속하게 끝낸다. 혹은 뒷부분에다가 새로운 빌드 내용을 계속 추가해 넣기만 하고, 예전 빌드 내용을 무효화시키는 방법도 쓴다.

요즘 디버그 빌드가 단순히 최적화를 안 한 것 이상으로 릴리스 빌드보다 빌드된 바이너리의 크기가 유난히 큰 이유가 여기에 있다. 게다가 Edit and continue 기능을 위해서도 여분 공간이 필요하기 때문에 크기가 커질 수밖에 없다. 디버그 빌드 바이너리를 바이너리 에디터로 들여다보면, 온통 0xCC (no op)으로 도배가 되고 내부가 헐렁함을 알 수 있다.

MS 오피스도 2007 이전 버전을 보면 방대한 워드/엑셀 문서를 편집할 때 바뀐 내용만 짤막하게 저장하는 옵션이 있었다. 그게 일종의 증분 저장 기능이다. 지금은 그게 보안상으로 문제가 되기도 하고 문서 파일 포맷이 크게 바뀌었으며, 굳이 증분 저장을 안 써도 될 정도로 PC 성능이 좋아졌다고 여겨져서 그런 기능이 없어졌지만 말이다.
증분 링크는 보통은 디버그 모드 빌드에서만 쓰인다.

VC???.idb (configuration 단위. 대개 디버그 빌드에서만)

ILK 파일과 마찬가지로 빌드 시간의 단축을 위해 존재하는 파일이다.
디버그 모드로 빌드를 해 보면, 헤더 파일이 바뀌었더라도 해당 헤더를 인클루드하는 cpp 파일들이 전부 리빌드되는 게 아니라 가끔 'Skipping.. (no relevant changes detected)'이러면서 넘어가는 파일도 있다. 그리고 대체로 이런 컴파일러의 판단이 맞다. 헤더 파일을 고쳤더라도 클래스의 선언부 같은 크리티컬한 부분이 아니라 그냥 주석 같은 trivial한 부분만 바뀌었기 때문에 굳이 리빌드가 필요하지 않다는 걸 어떻게 판단할까?

컴파일러가 제공하는 Enable Minimal Rebuild (/Gm) 옵션 때문에 가능하다. 이게 지정되면 빌드 과정에서 프로젝트명이 아니라 고정된 이름의 의존성 판단용 부가정보 파일이 생긴다. ???는 해당 비주얼 C++의 버전이다. 2008의 경우 90, 2010의 경우 100.

정리하자면, 빌드와 함께 생성되는 파일들 중, 실제로 링커에 의해 EXE/DLL 따위를 만드는 데 동원되는 파일은 OBJ, RES이다.
빌드 시간을 단축시키는 데 쓰이는 파일은 PCH, IDB, ILK이다.
PDB는 프로그램의 문제 추적을 위해 추후에 쓰이는 파일이다.

※ 편의 기능 + 빌드

SBR (소스 파일 단위), BSC (configuration 단위)

자, 이 파일은 빌드를 하면 생성되지만, 프로그램의 빌드나 디버깅을 위해서 반드시 생성해야만 하는 파일은 아니다.
방대한 양의 소스 코드를 컴파일하고 나면 컴파일러는 그 소스 코드의 모든 내부 구조에 대해서 알게 된다. 그걸 알아야만 기계어 코드를 생성할 수 있을 테니까.

컴파일이 끝났다고 그 정보를 그냥 버리는 건 아깝기 때문에, 일정한 파일 포맷을 제정하여 이것을 소스 코드에 대한 browsing에 활용할 수 있다. 가령, 이 클래스 멤버 함수의 정의는 어디에 있고, 이 함수가 호출하는 함수와, 이 함수를 호출하는 함수와의 그래프 관계는 어떻고 하는 것 말이다. 소스 코드가 텍스트라면, browse 정보는 정교하게 짜여진 색인인 셈이다.

이 개념과 파일 포맷은 비주얼 C++의 아주 초창기 시절부터 존재했다.
그리고 비주얼 C++은 버전 6까지는, 프로젝트를 빌드할 때 browse 정보도 같이 이렇게 덤으로 빌드되게 해서 browse 정보를 조회하는 기능을 갖추고 있었다. SBR과 BSC의 관계는 C/C++ 소스 코드에서 OBJ와 EXE의 관계와 정확히 같다. 한 번역 단위를 컴파일하면 한 SBR이 생겼고, SBR들을 뭉쳐서 BSC 파일이 생성되었다.

물론 이렇게 하면 빌드 시간이 더욱 길어졌고, 굳이 browse 기능을 쓰지 않는 사람도 있었기 때문에 이 기능은 철저히 선택사항이었다. 그리고 닷넷부터는 이 정보를 만들지 않더라도, 뒤에서 설명할 인텔리센스 정보만으로 IDE 차원에서 browse 대체 기능을 갖추기 시작했다.

※ 인텔리센스

NCB (프로젝트 단위) deprecated

sbr/bsc보다는 나중에, 시기적으로는 clw와 비슷한 타이밍(비주얼 C++ 4)에 만들어진 파일 포맷이다.
바야흐로 비주얼 C++ 4에서는 최초로 Class View라는 게 생겨서 프로젝트에 존재하는 모든 클래스와 멤버, 전역 변수/함수들을 표시하는 기능이 추가되었다. ncb는 browse 정보를 만드는 것만치 소스를 심도 있게 일일이 다 까 보지는 않고, 그보다는 단순하게 코드를 파싱하여 해당 기능을 빠르게 구현하는 데 필요한 부가 정보를 저장했다.

Class View가 도입되었던 초창기에는 소스 코드를 매번 빌드는 아니어도 저장을 해야만 컨텐츠가 업데이트되었다. 그나마 저장하지 않고도 실시간으로 업데이트가 되기 시작한 건 VC 6부터이다.
그리고 VC 6에서는 잘 알다시피 초보적인 수준의 인텔리센스 및 멤버 표시/자동 완성 기능이 구현되었고, 그 정보 역시 ncb 파일에다 저장되었다. 당연히 같은 프로젝트를 만들어도 ncb 파일의 크기는 더욱 커지게 됐다.

비주얼 C++이 버전업되면서 인텔리센스는 성능이 더욱 강력해졌다. 바로 닷넷에서부터는 #define 심벌이 추가로 인텔리센스의 혜택을 입기 시작했으며 템플릿도 제대로 지원되기 시작했다. 오동작 빈도도 더욱 줄었다.

그러나 이 모든 것은 여전히 10년 전의 ncb 파일을 기반으로, 진품이 아닌 가짜 parser를 임기응변 식으로 확장하면서 구현된 것이기 때문에, 어느 수준 이상의 정확도를 낼 수는 없었으며 복잡한 C++ 문법의 모든 것을 수용하는 데에도 근본적인 한계가 있었다.

가령, 클래스 멤버 함수의 선언이 복잡한 #define 매크로 안에 숨어 있으면 Class View에 이것이 제대로 나타나지 않았다. 갑자기 빌드 configuration이나 플랫폼을 확 바꿔 버리면 인텔리센스가 멘붕을 일으켰으며, 복잡한 조건부 컴파일 구간에 숨어 있는 코드도 인텔리센스가 상황 파악을 제대로 못 하는 경우가 많았다. 멘붕의 정도가 심하면 인텔리센스가 아예 동작을 멎어 버리기도 했기 때문에, 수시로 ncb 파일을 지우고 다시 만들어 주는 건 필수 작업이었다.

SDF (프로젝트 단위), IPCH (configuration 단위)

위와 같은 기존 ncb 기반 인텔리센스의 문제를 극복하고자 비주얼 C++ 2010은 안 그래도 C++11 때문에 문법도 대폭 확장해야 하는데 이 기회에 인텔리센스 엔진을 완전히 갈아 엎었다. SQL server compact edition이라는 전문 DB 엔진을 쓰기 시작했다.

2010부터는 가짜 parser가 아니라 진짜 컴파일러와 똑같은 수준의 parser가 background에서 모든 소스와 헤더 파일들을 일일이 파싱하여 실시간으로 심벌 정보를 고친다. 정확한 문맥을 파악하고 있기 때문에 100% 정확한 인텔리센스가 제공되며, 예전처럼 좀 오동작한다 싶어도 잠시 기다려서 파싱 정보가 갱신되고 나면 곧장 똑바로 동작하기 시작한다.

다만, 이런 첨단 기술이 공짜로 된 건 아니기 때문에, 어지간한 C++ 프로젝트는 이제 인텔리센스 파일만 수십~100수십 MB씩 디스크를 쳐묵쳐묵 하는 대가를 감수해야 한다. 어느 프로젝트를 열든지 동일하게 공유되는 MFC나 플랫폼 SDK의 인텔리센스 정보는 여러 프로젝트들이 한데 공유만 할 수 있어도 인텔리센스의 용량이 크게 줄어들 텐데, 무척 아쉽다.

그래도 비주얼 C++ 제작진에서 일말의 배려를 했다 싶은 대목은, 인텔리센스 DB 파일이 생성되는 곳만 한 곳에 따로 대체 지정이 가능하다는 것이다. 프로젝트-옵션이 아니라 도구-옵션에서 “텍스트 편집기-C/C++/고급”으로 가면 fallback location을 지정하는 옵션이 있으며, 이것만 해 주면 비주얼 C++로 만드는 모든 프로젝트들의 인텔리센스 DB는 거기 아래로 한데 모이게 된다.

이렇듯, 비주얼 C++ IDE나 컴파일러가 생성하는 보조 파일들의 용도와 배경에 대해서 공부하면 C/C++ 언어의 특성을 알 수 있고, 프로그래밍 언어에 대한 비판적인 안목, 그리고 언어의 비효율을 극복하고 조금이라도 개발 도구의 생산성을 올리기 위해 해당 제작진이 어떤 꼼수를 동원했는지에 대해서도 알 수 있다.

Posted by 사무엘

2012/10/16 08:30 2012/10/16 08:30
,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/744

문자의 집합인 문자열(string)은 어지간한 프로그래밍 언어들이 기본으로 제공해 주는 기본 중의 기본 자료형이지만, 그저 기초라고만 치부하기에는 처리하는 데 내부적으로 손이 많이 가기도 하는 자료형이다.

문자열은 그 특성상 배열 같은 복합(compound) 자료형의 성격이 다분하며, 별도의 가변적인 동적 메모리 관리가 필요하다. 또한 문자열을 어떤 형태로 메모리에 저장할지, 복사와 대입은 어떤 형태로 할지(값 내지 참조?) 같은 전략도 구현체에 따라서 의외로 다양하게 존재할 수 있다.

그래서 C 언어는 컴퓨터 자원이 열악하고 가난하던 어셈블리 시절의 최적화 덕후의 정신을 이어받아, 언어 차원에서 따로 문자열 타입을 제공하지 않았다. 그 대신 충분히 크게 잡은 문자의 배열과 이를 가리키는 포인터를 문자열로 간주했다. 그리고 코드값이 0인 문자가 문자열의 끝을 나타내게 했다.

그 이름도 유명한 null-terminated string이 여기서 유래되었다. 오늘날까지 쓰이는 역사적으로 뿌리가 깊은 운영체제들은 응당 어셈블리나 C 기반이기 때문에, 내부 API에서 다 이런 형태의 문자열을 사용한다.
그리고 파일 시스템도 이런 문자열을 사용한다. 오죽했으면 이를 위해 MAX_PATH (=260)같은 표준 문자열 길이 제약까지 있을 정도이니 말 다 했다. 그렇기 때문에 null-terminated string은 앞으로 결코 없어지지 않을 것이며 무시할 수도 없을 것이다.

딱히 문자열만을 위한 별도의 표식을 사용하지 않고 그저 0 문자를 문자열의 끝으로 간주하게 하는 방식은 매우 간단하고 성능면에서 효율적이다. 지극히 C스러운 발상이다. 그러나 이는 buffer overflow 보안 취약점의 근본 원인을 제공하기도 했다.

또한 이런 문자열은 태생적으로 문자열 자기 내부엔 0문자가 또 들어갈 수 없다는 제약도 있다. 하지만 어차피 사람이 사용하는 표시용 문자열에는 코드 번호가 공백(0x20)보다 작은 제어 문자들이 사실상 쓰이지 않기 때문에 이는 그리 심각한 제약은 아니다. 문자열은 어차피 문자의 배열과는 같지 않은 개념이기 때문이다.

문자열을 기본 자료형으로 제공하는 언어들은 대개 문자열을 포인터 형태로 표현하고, 그 포인터가 가리키는 메모리에는 처음에는 문자열의 길이가 들어있고 다음부터 실제 문자의 배열이 이어지는 형태로 구현했다. 그러니 문자열의 길이를 구하는 요청은 O(1) 상수 시간 만에 곧바로 수행된다. (C의 strlen 함수는 그렇지 않다)

그리고 문자열의 길이는 대개 machine word의 크기와 일치하는 범위이다. 다만, 과거에 파스칼은 이례적으로 문자열의 크기를 16비트도 아닌 겨우 8비트 크기로 저장해서 256자 이상의 문자열을 지정할 수 없다는 이상한 한계가 있었다. 더 긴 문자열을 저장하려면 다른 특수한 별도의 자료형을 써야 했다.

과거에 비주얼 베이직은 16비트 시절의 버전 3까지는 “포인터 → (문자열의 길이, 포인터) → 실제 문자열”로 사실상 실제 문자열에 접근하려면 포인터를 이중으로 참고하는 형태로 문자열을 구현했다. 어쩌면 VB의 전신인 도스용 QuickBasic도 문자열의 내부 구조가 그랬는지 모르겠다.

그러다가 마이크로소프트는 훗날 OLE와 COM이라는 기술 스펙을 제정하면서 문자열을 나타내는 표준 규격까지 제정했는데, COM 기반인 VB 4부터는 문자열의 포맷도 그 방식대로 바꿨다.

일단 기본 문자 단위가 8비트이던 것이 16비트로 확장되었다. 마이크로소프트는 자기네 개발 환경에서 ANSI, wide string, 유니코드 같은 개념을 한데 싸잡아 뒤죽박죽으로 재정의한 것 때문에 문자 코드 개념을 좀 아는 사람들한테서 많이 까이고 있긴 하다. 뭐, 재해석하자면 유니코드 UTF16에 더 가깝게 바뀐 셈이다.

OLE 문자열은 일단 겉보기로는 null-terminated wide string을 가리키는 포인터와 완전히 호환된다. 하지만 그 메모리는 OLE의 표준 메모리 할당 함수로만 할당되고 해제된다. (아마 CoTaskMemAlloc) 그리고 포인터가 가리키는 메모리의 앞에는 문자열의 길이가 32비트 정수 형태로 또 들어있기 때문에 문자열 자체가 또 0문자를 포함하고 있을 수 있다.

그리고 문자열의 진짜 끝부분에는 0문자가 1개가 아니라 2개 들어있다. 윈도우 운영체제는 여러 개의 문자열을 tokenize할 때 double null-termination이라는 희대의 괴상한 개념을 종종 사용하기 때문에, 이 관행과도 호환성을 맞추기 위해서이다.

2중 0문자는 레지스트리의 multi-string 포맷에서도 쓰이고, 또 파일 열기/저장 공용 대화상자가 사용하는 확장자 필터에서도 쓰인다. MFC는 프로그래머의 편의를 위해 '|'(bar)도 받아 주지만, 운영체제에다 전달을 할 때는 그걸 다시 0문자로 바꾼다. ^^;;;

요컨대 이런 OLE 표준 문자열을 가리키는 포인터가 바로 그 이름도 유명한 BSTR이다. 모든 BSTR은 (L)PCWSTR과 호환된다. 그러나 PCWSTR은 스택이든 힙이든 아무 메모리나 가리킬 수 있기 때문에 그게 곧 BSTR이라고 간주할 수는 없다. 관계를 알겠는가? BSTR은 SysAllocString 함수를 통해 생성되고 SysFreeString 함수를 통해 해제된다.

'내 문서', '프로그램 파일' 등 운영체제가 특수한 용도로 예정하여 사용하는 디렉터리를 구하는 함수로 SHGetSpecialFolderPath가 있다. 이 함수는 MAX_PATH만치 확보된 메모리 공간을 가리키는 문자 포인터를 입력으로 받았으며, 특수 폴더들을 CSIDL이라고 불리는 일종의 정수값으로 식별했다.

그러나 윈도우 비스타에서 추가된 SHGetKnownFolderPath는 폴더들을 128비트짜리 GUID로 식별하며, 문자열도 아예 포인터의 포인터 형태로 받는다. 21세기에 도입된 API답게, 이 함수가 그냥 메모리를 따로 할당하여 가변 길이의 문자열을 되돌려 준다는 뜻이다. 260자 제한이 없어진 것은 좋지만, 이 함수가 돌려 준 메모리는 사용자가 따로 CoTaskMemFree로 해제를 해 줘야 한다. SysFreeString이 아님. 메모리만 COM 표준 함수로 할당했을 뿐이지, BSTR이 돌아오는 게 아닌 것도 주목할 만한 점이다.

예전에 FormatMessage 함수도 FORMAT_MESSAGE_ALLOCATE_BUFFER 플래그를 주면 자체적으로 메모리가 할당된 문자열의 포인터를 되돌리게 할 수 있는데, 이놈은 윈도우 NT 3.x 시절부터 있었던 함수이다 보니, 받은 포인터를 LocalFree로 해제하게 되어 있다.

이렇게 운영체제 API 차원에서 메모리를 할당하여 만들어 주는 문자열 말고, 프로그래밍 언어가 제공하는 문자열은 메모리 관리에 대한 센스가 추가되어 있다. 대표적인 예로 MFC 라이브러리의 CString이 있다.

CString 자체는 BSTR과 마찬가지로 언뜻 보기에 PCWSTR 포인터 하나만 멤버로 달랑 갖고 있다. 그래서 심지어 printf 같은 문자열 format 함수에다가 "%s", str처럼 개체를 명시적인 형변환 없이 바로 넘겨 줘도 괜찮다(권장되는 프로그래밍 스타일은 못 되지만).

그런데 그 포인터의 앞에 있는 것이 단순히 문자열 길이 말고도 더 있다. 바로 레퍼런스 카운트와 메모리 할당 크기. 그래서 문자열이 단순 대입이나 복사 생성만 될 경우, 그 개체는 동일한 메모리를 가리키면서 레퍼런스 카운트만 올렸다가, 값이 변경되어야 할 때만 실제 값 복사가 일어난다. 이것을 일명 copy-on-modify 테크닉이라고 하는데, MFC 4.0부터 도입되어 오늘날에 이르고 있다. 이는 상당히 똑똑한 정책이기 때문에 이것만 있어도 별도로 r-value 참조자 대입 최적화가 없어도 될 정도이다.

메모리 할당 크기는 문자열에 대해 덧셈 같은 연산을 수행할 때 메모리 재할당이 필요한지를 판단하기 위해 쓰이는 정보이다. MFC는 표준 C 라이브러리에 의존적이기 때문에 이때는 응당 malloc/free가 쓰인다. 재할당 단위는 보통 예전에 비해 배수 단위로 기하급수적으로 더 커진다.

CString이 그냥 포인터와 크기가 같은 반면, 표준 C++ 라이브러리에 존재하는 string 클래스는 비주얼 C++ 2010 x86 기준 개체 하나의 크기가 28바이트나 된다. 길이가 16 이하인 짧은 문자열은 그냥 자체 배열에다 담고, 그보다 긴 문자열을 담을 때만 메모리를 할당하는 테크닉을 쓰기 때문이다. 그리고 대입이나 복사를 할 때마다 CString 같은 reference counting을 하지 않고, 일일이 메모리 재할당과 값 복사를 한다.

글을 맺겠다.
C/C++이 까이는 여러 이유 중 하나는 라이브러리가 지저분하고 동일 기능의 중복 구현이 너무 많아서 혼란스럽다는 점이다. 문자열도 그 범주에 정확하게 속하는 요소일 것이다. 메모리 할당과 해제 자체부터가 구현체 중복이 한둘이 아니니... 어지간히 덩치와 규모가 있는 프레임워크 라이브러리는 그냥 자신만의 문자열 클래스 구현체를 갖고 있는 게 이상한 일이 아니다. 하지만 그건 C/C++이 쓰기 편리한 고급 언어와 시스템 최적화 오덕질이라는 두 토끼를 모두 잡으려다 어쩔 수 없이 그리 된 것도 강하다.

문자열에 대한 이야기 중에서 일부는 내가 예전 블로그 포스트에서도 한 것도 있지만, 이번 글에 처음으로 언급한 내용도 많을 것이다. 프로그래밍 언어 중에는 문자열을 다루기가 기가 막히게 편리한 것이 있는데, 그런 것도 내부적으로는 다 결국은 컴퓨터가 무진장 고생해서 결과물을 만들어 내는 것이다.
컴퓨터가 받아들이고 뱉어내는 문자열들이 내부적으로 어떤 구현체에 의해 어떤 처리를 거치는지를 생각해 보는 것도 프로그래머로서는 의미 있는 일일 것이다.

Posted by 사무엘

2012/10/13 08:26 2012/10/13 08:26
, , , ,
Response
No Trackback , 8 Comments
RSS :
http://moogi.new21.org/tc/rss/response/743

※ 들어가는 말

정렬은 검색과 더불어 컴퓨터가 인간에게 유용한 결과물을 내놓기 위해 내부적으로 가장 빈번히 수행하는 계산 동작에 속한다. 다른 알고리즘의 내부 과정으로 즐겨 쓰이기도 하고 말이다. 전산학 내지 컴퓨터 과학에서 정렬 문제가 얼마나 중요한지에 대해서는 더 말이 필요하지 않다.

정렬은 문제의 목표가 너무나 명확하고 실용적이며, 다양한 관점에서 문제의 접근이 가능하고 좋은 알고리즘과 나쁜 알고리즘의 차이도 아주 드라마틱하게 알 수 있기 때문에... 예로부터 그 특성과 해법이 연구될 대로 연구되어 왔다. 시간 복잡도 관념이 없던 초짜 프로그래머가 O(n^2)와 O(n log n)의 어마어마한 차이를 깨우치는 계기도 대체로 정렬 알고리즘을 공부하고부터이다.

n개의 원소에 대한 정렬 작업은 n개의 원소를 임의의 방식으로 늘어놓는 n!가지의 순열 중에, 원소들의 값 순서가 오름차순이나 내림차순이 유지되는 순열을 선택하는 작업이라고 볼 수 있다. 그리고 일반적인 정렬 알고리즘은 임의의 두 원소와의 비교를 통해 거기서 가능한 선택의 범위를 좁혀 나간다.

이런 원론적인 분석을 통해, 비교 연산 기반 정렬 알고리즘의 시간 복잡도는 아무리 기가 막힌 알고리즘을 고안하더라도 O(n log n)보다는 결코 더 좋을 수가 없다는 것이 증명되어 있다. 그리고 정렬 알고리즘 중, 제자리(in-place)라는 특성을 지닌 알고리즘은 교환(swap)이라는 동작도 공통적으로 사용하게 된다.

정렬 문제는 NP 완전 문제라고 알려져 있는 외판원 문제(TSP)에서 정점(vertex)들이 일렬로 쭉 나열되어 있는 특수한 경우라고 볼 수도 있다. 가까운 순서대로 순서대로 방문하는 게 정답일 테니 결국 정점들이 정렬된 것이나 마찬가지이다. 비록 domain이 1차원이 아닌 2차원 이상으로 가면 난이도가 곧바로 안드로메다 급으로 치솟지만 말이다.

※ O(n^2) 또는 O(n log n)인 비교 기반 알고리즘

역사적으로 굉장히 많은 수의 정렬 알고리즘이 고안되었으며 이들은 제각기 장단점과 특성이 있다. 알고리즘을 평가하는 주 잣대로는 자료 개수 n에 대한 시간 복잡도와 공간 복잡도가 있으며, 이들도 평균적일 때와 최악의 상황일 때를 따로 평가한다. 이 외에도 자료의 상태에 성능이 민감하게 달라지는지, 그리고 값이 같은 원소의 상대적인 순서가 보존되는지를 나타내는 순서 안정성(stability)을 따지기도 한다.

시간 복잡도가 O(n^2)에 속하는 정렬 알고리즘은 일명 '발로 짠 알고리즘'에 속한다. 직관적이고 구현하기 매우 쉬우나 성능이 쥐약이라는 뜻.
거품 정렬, 선택 정렬, 삽입 정렬이 대표적인데, 거품의 경우 배열이 아니라 아예 random access가 불가능한 연결 리스트 같은 컨테이너에다가 적용해도 좋을 정도로 바로 옆 원소와의 비교와 교환밖에 하지 않는다. 그 때문에 성능이 대단히 나쁘다.

선택 정렬은 비교에 비해 대입 연산이 적고 자료의 상태에 그리 민감하지 않은 게 특징이다. 그에 반해 삽입 정렬은 자료 상태에 따른 성능 편차가 크고 O(n^2) 알고리즘 중에서는 성능이 나은 편이기 때문에, 작은 범위의 입력에 한해서 종종 쓰이는 경우가 있다. 실제로 비주얼 C++의 qsort 함수 구현을 보면, 퀵 정렬을 쓰다가 구간이 8개 이하의 원소로 감소하면 거기는 삽입 정렬로 때운다.

O(n^2) 알고리즘들은 원리가 간단하기 때문에 공간 복잡도는 대체로 O(1)인 in-place이다. 한 쌍의 원소를 그때 그때 교환하기 위한 고정된 크기의 메모리밖에 쓰지 않는다는 뜻 되겠다. 시간이 비효율이면 공간 오버헤드라도 없어야 하지 않겠는가.

이론적인 시간 복잡도에 부합하는 O(n log n)급 알고리즘으로는 힙, 병합, 퀵 등이 있다. 이들은 시간 복잡도만 동일할 뿐 내부적인 특징은 정말 제각각이다.

일단 힙 정렬은 위의 세 알고리즘 중에서 유일하게 메모리 복잡도가 O(1)인 검소한 녀석이다. 그 대신 한 배열 안에서 왔다 갔다 하는 작업이 많아서 그런지 속도는 미세하게 다른 알고리즘보다 더 느린 편. 한 배열 안에서 heap 자료구조를 만든 뒤, 이것으로부터 정렬된 형태의 배열을 역순으로 만드는 두 단계의 과정이 무척 기발하며, 인간의 머리로 어째 이런 걸 생각해 낼 수 있는지 놀라움을 느낀다.

병합 정렬은 동급 시간 복잡도 알고리즘 중에서는 꽤 직관적인 편이고 또 유일하게 안정성도 있어서 좋다. 그러나 FM대로 구현한 녀석은 배열 복사본이 하나 더 필요하기 때문에 메모리 복잡도가 O(n)이나 되며, 대입에 대한 비용이 큰 자료구조에 대해서는 성능 하락의 폭이 큰 게 흠이다.

※ 퀵 정렬

한편, Tony Hoare이라는 영국의 전산학자가 1960년대에 20대 중반의 나이에 고안한 퀵 정렬은 정렬 알고리즘계의 종결자, 야생마, 이단아 같은 존재이다. pivot이라 불리는 중간값을 설정하여, 주어진 구간을 “pivot보다 작은 값, pivot, pivot보다 큰 값” 조건을 만족하게 swap 연산을 통해 바꾼다. 그 뒤, pivot을 기준으로 구간을 양분하여 양 구간도 재귀적으로 똑같은 작업을 한다. 알고리즘도 너무 명쾌하고 깔끔하지 않은가?

이 알고리즘은 대충 부분적으로 정렬되었거나 아예 완전히 무작위인 데이터에 대해서 매우 대단히 좋은 성능을 자랑한다. 그러나 pivot을 어떻게 정하느냐에 따라서 알고리즘의 성능이 크게 좌지우지되며, 자료의 상태에도 매우 민감해진다는 점이 간과될 수 없는 특성이다.

pivot이 데이터의 적당한 중간값으로 설정되지 못하고 하필이면 최소값이나 최대값으로 설정된 경우, 알고리즘 수행 후에도 구간은 깔끔하게 양분되지 못하고 하나씩만 줄어들게 된다. 이 경우 알고리즘의 수행 시간은 O(n log n)이 아니라 O(n^2)에 가까워진다! 역순으로 정렬된 데이터를 정렬하는데 구간의 맨 앞이나 맨 뒤의 값을 pivot으로 쓴다고 생각해 보자.

문제는 이때 시간 복잡도만 늘어나는 게 아니라는 것이다. 분할 정복법을 쓴다는 특성상 퀵 정렬은 재귀호출을 써서 구현되는데, 구간이 반씩 시원하게 안 쪼개지고 하나씩만 쪼개지면 재귀호출의 깊이도 자칫 n회가 될 수 있다는 뜻이다. 이 경우 프로그램은 stack overflow 오류가 발생하며, 이는 프로그램의 보안에도 악영향을 끼치게 된다.

다만, 쪼개진 구간 중에 원소 수가 많은 구간이 아니라 의도적으로 적은 구간부터 골라서 재귀적으로 처리하는 경우, 메모리 복잡도는 O(log n)으로 원천적으로 줄일 수 있다. 퀵 정렬 함수의 구현체 자체에 딱히 동적 배열 같은 게 없더라도 재귀호출 때문에 메모리 복잡도가 올라가며, 원소들이 정확하게 반씩 분할될 경우에 log n에 해당하는 깊이까지 간다는 뜻이다.

일반적으로 퀵 정렬의 구현체는 그냥 구간의 정중앙에 있는 원소만 pivot으로 지정하는 게 보통이다. 이렇게만 하더라도 O(n^2)의 최악 시간 복잡도를 만드는 입력 데이터를 일부러 만들기란 대단히 어려우며, 수학적으로 발생하기도 불가능에 가까운 건 사실이다.

하지만 공격자가 퀵 정렬 구현체의 알고리즘을 알고 있는 경우, 의도적으로 해당 알고리즘이 pivot을 요청할 만한 위치에 일부러 구간의 최대값이나 최소값을 집어넣어서 매 단계별로 퀵 정렬을 엿먹이는 게 불가능하지는 않다! 세상엔 그것만 전문적으로 연구한 사람도 있다. anti quick sort라고 검색해 보셈.. 이것이 퀵 정렬의 진정 오묘하고 이상한 면모라 하겠다.

이걸 이용하여 비주얼 C++의 qsort 함수로 테스트하면, 평소 같으면 인텔 i5 기준 눈 깜짝할 사이에 끝나는 정수 10만 개의 정렬이 수 초 대로 떡실신하는 기현상이 벌어지는 걸 볼 수 있다. 그런데 xcode의 C 라이브러리가 제공하는 qsort는 퀵 정렬을 쓰지 않는지 그런 것의 영향을 받지 않더라..

※ C/C++ 언어에서의 지원

C 라이브러리에 있는 qsort 함수는 콜백 함수에 전달해 줄 사용자 데이터--가령, 비교 옵션 같은 것--를 받는 부분이 없어서 무척 불편하다. 그래서 별도의 사용자 데이터는 전역 변수나 TLS(thread local storage)를 통해 얻어 와야 하는 번거로움이 있다. 이것이 비주얼 C++ 2005부터 도입된 qsort_s에서는 개선되었다.

한편, C++ 라이브러리에도 잘 알다시피 std::sort라는 함수가 있다. C 함수보다 type-safe할뿐만 아니라 iterator를 통해 포인터보다 더 추상적인 자료형도 정렬할 수 있으며, 비교도 직관적인 비교 연산자 아니면 functor로 편리하게 지정할 수 있어서 좋다. 또한 이건 템플릿 형태이기 때문에 정렬 코드가 해당 프로그램의 번역 단위에 최적화된 형태로 embed된다는 것도 더욱 좋다.

C의 경우 비교 연산 함수의 리턴값은 뺄셈 연산을 모델로 삼아서 '음수, 0, 양수' 중 하나를 되돌리게 되어 있다. 그러나 C++ 버전은 < 연산을 모델로 삼아서 그냥 true/false boolean값만 되돌리면 된다는 차이가 있다. 사실, 그것만 있어도 정렬이 되니까 말이다.

C++ 라이브러리에는 sort뿐만이 아니라 stable_sort도 있다. 하지만 실생활에서 꼭 stable_sort를 써야만 할 상황이 있는지는 모르겠다. 실제로 정렬 성능은 굳이 안정성이 지켜지지 않아도 되는 sort가 더욱 뛰어나다.

※ 기타 정렬 알고리즘

정렬 알고리즘의 시간 복잡도는 굳이 O(n^2) 아니면 O(n log n) 중 하나로만 떨어지는 게 아니다. 그 범주에 속하지 않는 대표적인 알고리즘은 셸 정렬이다. 고안자의 이름을 따서 명명된 이 알고리즘은 삽입 정렬이 대충 정렬된 자료에 대한 성능이 뛰어나다는 점을 응용하여, 삽입 정렬을 일정 구간별로 띄엄띄엄 반복해서 적용해 준 뒤 최종적으로 삽입 정렬을 full scale로 한번 돌려서 정렬을 끝낸다.

퀵 정렬이 pivot을 정하는 것이 판타지라면, 셸 정렬은 그 구간을 정하는 방식이 판타지이다. 셸은 분명 O(n^2)보다는 훨씬 더 뛰어난 성능을 보이지만 그렇다고 O(n log n)급은 아니다. 사실, 셸은 구간을 어떻게 설정하느냐에 따라서 시간 복잡도를 계산하기가 대단히 chaotic하고 어렵다.

구간을 두 배씩 좁히는 게 제일 나쁜 방법이이기 때문에 최악의 경우 도로 O(n^2)까지 떨어져 버리나, 약간 머리를 쓰면 O(n^1.5) 정도는 된다. 구간을 가장 잘 잡았을 때 최대 O(n (log n)^2)까지는 갈 수 있다는 것이 알려져 있다. 그래도 셸은 메모리 복잡도가 깔끔한 O(1)이고, 코딩이 상당히 짧고 간결하면서도 O(n^2)보다는 성능이 확실히 낫다는 데 의의가 있다.

앞서 말했듯이 정렬 알고리즘의 시간 복잡도의 한계가 O(n log n)이라는 것은 비교 연산을 사용하는 일반적인 알고리즘이 그렇다는 소리이다. 그런 방식으로 정렬을 하지 않는 알고리즘의 경우, O(n)짜리 알고리즘도 충분히 존재할 수 있다.

가령, 데이터의 도메인이 메달이어서 '금, 은, 동'이라는 세 종류밖에 없는 경우, 자료를 일일이 뒤져 볼 필요 없이, 각 메달의 개수를 세어서 금 a개, 은 b개, 동 c개라고 써 주기만 하면 될 것이다. 부동소숫점이나 문자열처럼 도메인이 굉장히 넓은 자료형은 그런 식으로 정렬할 수 없겠지만, 좁은 범위의 정수 정도면 그런 식으로 발상을 전환하여 비교 연산을 요청하지 않는 정렬 알고리즘을 쓸 수도 있다.

여기에 속하는 대표적인 알고리즘은 기수(radix) 정렬이며, 이 외에도 유사한 전략을 사용하는 알고리즘이 더 있다.

정렬 알고리즘에 대해서는 메아리 풉에도 수학적으로 더 엄밀한 개념 기술이 있으므로 참고하시고, 또 이 홈페이지에는 이미 아시는 분도 있겠지만 본인이 학부 시절에 정렬 알고리즘 모음집이라는 간단한 프로그램을 짜서 올려 놓은 게 있다. 일부 검색엔진에서는 '사이트'로도 등록되어 있다. ㅎㅎ 관심 있으신 분은 거기 소스도 참고하시기 바란다.

* 여담이지만, 전산학 덕후와 해커들의 머리 싸움 덕질에는 끝이 없는지라, 퀵 정렬뿐만 아니라 hash 알고리즘을 엿먹이는 연구도 이미 될 대로 돼 있다.. 특정 해싱 알고리즘에 대해서 충돌만 골라서 일으키는 입력을 생성하는 것 말이다.

Posted by 사무엘

2012/10/04 08:24 2012/10/04 08:24
, , ,
Response
No Trackback , 5 Comments
RSS :
http://moogi.new21.org/tc/rss/response/740

1. C/C++이 빌드가 느린 이유

베테랑 프로그래머라면 이미 다 알기도 하겠지만, C/C++ (특히 C++)은 강력한 대신 정말 만년 굼벵이 언어가 될 수밖에 없는 요인만 일부러 골고루 가진 채 만들어졌다 해도 과언이 아닌 것 같다.

뭐가 굼벵이냐 하면 두 말할 나위도 없이 빌드 속도 말이다. C#, 자바, 델파이 같은 다른 언어나 툴과 비교하면 안습 그 자체. 이건 컴퓨터의 속도만 빨라진다고 해서 극복 가능한 차원의 차이가 아니라 구조적으로 심한 부담과 비효율 때문이다. 이 점에 대해서는 본인도 예전에 여러 글을 블로그에다 언급한 적이 있다.

  • 일단 C++은 태생이 바이트코드 같은 가벼운 가상 기계가 아니라 철저하게 기계어 네이티브 코드 생성 지향이다. 다른 가벼운(?) 언어들과는 위상부터가 다르며, 이 상태에서 최적화까지 가면 부담은 더욱 커진다. 게다가 이 언어는 설계 철학이 컴파일 시점 때 최대한 많은 걸 미리 결정하는 걸 지향하고 있다. 가령, 자바에 inline이라든가 함수 호출 규약, 레지스터, C++ 수준의 static한 템플릿 메타프로그래밍, 혹은 링크 타임 코드 생성 같은 개념이 있지는 않다.
  • 또한 이 언어는 근본적으로 문법이 상당히 문맥 의존적이고 복잡하여, 구문 분석이 어렵다. 단적인 예로 함수 선언과 객체 선언 A b(c); 변수 선언과 단순 연산식 B*c; 형변환 연산과 단순 연산식 (c)+A 가 c가 무엇인지 문맥에 따라 왔다갔다 하면서 완전히 달라진다. 거기에다 C++의 경우 템플릿, 오버로딩, namespace ADL까지 가면 난이도는 정말 안드로메다로. 다른 언어는 O(n log n) 시간 복잡도만으로도 되는 구문 분석 작업이 C++은 반드시 O(n^2)을 쓰지 않으면 안 되는 과정이 있다고 한다.
  • 빌드를 위해 전처리, 링크 같은 복잡한 계층이 존재하며, 특히 링크는 병렬화도 되지 않아 속도를 더욱 올릴 수가 없는 작업이다. 한 모듈에서 참조하는 함수의 몸체가 다른 어느 번역 단위에 있을지는 전혀 알 수 없다!
    그런데 요즘 C++ 컴파일러의 트렌드는 1에서 잠시 언급했듯이 링크 타임 때의 코드 생성과 최적화(인라이닝 포함)여서 이런 병목 지점에서 더욱 많은 작업량이 부과되고 있다. 이런??

이런 특징은 유독 C/C++ 언어만 개발툴/IDE에서 프로젝트를 만들면 온갖 잡다한 보조 데이터 파일들이 많이 생성되는 이유와도 일맥상통한다. 소스 코드를 잽싸게 분석하여 인텔리센스 같은 똑똑한 IDE 기능을 제공하기가 여타 언어들보다 훨씬 더 어렵기 때문이다.

2. 인클루드의 문제점

그런데, 네이티브 코드 생성, 복잡한 문법 같은 것 이상으로 C/C++의 빌드 시간을 더욱 뻥튀기시키고 빌드 작업을 고달프게 하는 근본적인 요소는 전처리 중에서도 다름아닌 #include 남발이다. C/C++은 남이 만들어 놓은 함수, 클래스, 구조체 같은 프로그래밍 요소를 쓰려면 해당 헤더 파일을 무조건 인클루드해 줘야 한다.

일단 이건 문법적으로는 인위적인 요소가 없이 깔끔해서 좋다. 인클루드되는 헤더는 역시 C/C++ 문법대로 작성된 일반 텍스트 파일이며, 내가 짜는 프로그램이 참조하는 명칭들의 출처가 여기 어딘가에는 반드시 있다고 보장됨을 내 눈으로 확인할 수 있다. 그러나 DB 형태로 최적화된 바이너리 파일이 아니라 파싱이 필요한 텍스트 파일이란 점은 일단 빌드 속도의 저하로 이어진다. 이게 문제점 하나.

본격적인 C++ 프로그램을 하나 만들려면 표준 C/C++ 라이브러리뿐만이 아니라 윈도우 API, MFC, 그리고 다른 3rd-party 라이브러리, 게임 엔진 등 갖가지 라이브러리나 프레임워크가 제공하는 헤더 파일을 참조하게 된다. 이것들을 합하면 한 소스 코드를 컴파일하기 위해 인클루드되는 헤더 파일은 가히 수십, 수백만 줄에 달하게 된다.

게다가 이 인클루드질은 전체 빌드를 통틀어 한 번만 하고 끝인 게 아니라, 이론적으로는 매 번역 단위마다 일일이 새로 해 줘야 한다. 헤더 파일 의존도가 개판이 돼 버리는 바람에 헤더 파일 하나 고칠 때마다 수백 개의 cpp 파일이 재컴파일되는 문제는 차라리 애교 수준이다. 문제점 둘.

보통 헤더 파일에는 중복 인클루드 방지를 위한 guard가 있다.

#ifndef ___HEADER_DEFINED_
#define ___HEADER_DEFINED_

/////

#endif

그런데 #if문 조건을 만족하지 못하는 줄들은 단순히 구문 분석과 파싱만 skip될 뿐이지, 컴파일러는 여전히 중복 인클루드된 헤더 파일도 각 줄을 일일이 읽어서 #else나 #endif가 나올 때까지 들여다보긴 해야 한다.

많은 사람들이 간과하는 사실인데(사실 나도 그랬고), 그때는 컴파일 작업만 잠시 중단됐을 뿐, 전처리기는 전체 소스를 대상으로 여전히 동작하고 있다. 중복 인클루드가 컴파일러의 파일 액세스 트래픽을 얼마나 증가시킬지가 상상이 되는가? guard만 있다고 장땡이 아니며, 이게 근본적으로 얼마나 비효율적인 구조인지를 먼저 알아야 한다. 문제점 셋.

그리고 이 #include의 수행 결과를 컴파일러나 IDE로 하여금 예측이나 최적화를 도무지 할 수가 없게 만드는 치명적인 문제는 극단적인 문맥 의존성이다.
헤더 파일은 그저 static한 함수, 클래스, 변수 선언의 집합체가 아니다. 엄연히 C/C++ 소스 코드의 일부를 구성하며, 동일한 헤더라 해도 어떤 #define 심벌이 정의된 상태에서 인클루드하느냐에 따라서 그 여파가 완전히 달라질  수 있다.

극단적인 예로, 한 소스 파일에서 #define 값만 달리하면서 동일 헤더 파일을 여러 번 인클루드함으로써, 템플릿 비스무리한 걸 만들 수도 있단 말이다. 일례로, 비주얼 C++ 2010의 CRT 소스에서 strcpy_s.c와 wcscpy_s.c를 살펴보기 바란다. 베이스 타입만 #define을 통해 char이나 wchar_t로 달리하여 똑같이 tcscpy_s.inl을 인클루드하는 걸로 구현돼 있음을 알 수 있다...;;

물론 인클루드를 실제로 그렇게 변태적으로 활용하는 예는 극소수이겠지만 인클루드는 여타 언어에 있는 비슷한 기능인 import나 use 따위와는 차원이 다른 개념이며, 캐싱을 못 하고 그 문맥에서 매번 일일이 파싱해서 확인해 보는 수밖에 없다. 문제점 넷이다.

이런 문제 때문에 여타 언어들은 텍스트 파싱을 수반하는 인클루드 대신, 별도의 패키지 import 방식을 쓰고 있으며, Objective C도 #include 대신 #import를 제공하고 헤더 파일은 무조건 중복 인클루드가 되지 않는 구조를 채택하여 셋째와 넷째 문제를 피해 갔다.

비주얼 C++도 #pragma once라 하여 #endif를 찾을 것도 없이 중복 인클루드를 방지하고 파일 읽기를 거기서 딱 중단하는 지시자를 추가했다. 이건 비표준 지시자이긴 하지만 전통적인 #ifdef~#endif guard보다 빌드 속도를 향상시키는 테크닉이기 때문에 프로그래머의 입장에서는 사용이 선택이 아닌 필수이다. 물론, 단순히 중복 선언 에러만 방지하는 게 아니라 특정 헤더 파일의 인클루드 여부를 알려면 재래식 #define도 좀 해 줘야겠지만 말이다.

외부에서 기선언된(predefined) 프로그래밍 요소를 끌어오는데, namespace나 package 같은 언어 계층을 거친 명칭이 아니라 생(raw-_-) 파일명의 지정이 필요한 것부터가 오늘날의 관점에서는 꽤 원시적인 작업이다. 개인적으로는 인클루드 파일의 경로를 찾는 메커니즘도 C/C++은 너무 복잡하다고 생각한다.

""로 싸느냐 <>로 싸느냐부터 시작해서, 인클루드가 또 다른 파일을 중첩으로 인클루드할 때, 다른 인클루드 파일을 자기 디렉터리를 기준으로 찾을지 자신을 인클루드 한 부모 파일의 위치로부터 찾을지, 프로젝트 설정에 명시된 경로에서 찾을지 같은 것 말이다…;; 게다가 인클루드 명칭도 #define에 의한 치환까지 가능하다. #include MY_HEADER처럼. 그게 가능하다는 걸 FreeType 라이브러리의 소스를 보면서 처음으로 알았다.

그런데 그러다가 서로 다른 디렉터리에 있는 동명이인 인클루드 파일이 잘못 인클루드되기라도 했다면.. 더 이상의 자세한 설명은 생략. 내가 무심코 선언한 명칭이 어디엔가 #define 매크로로도 지정되어 있어서 엉뚱하게 자꾸 치환되고 컴파일 에러가 나는 것과 같은 악몽이 발생하게 된다! 문제점 다섯.

이것도 어찌 보면 굉장히 문맥 의존적인 절차이기 때문에, 오죽했으면 비주얼 C++ 2010부터는 인클루드/라이브러리 디렉터리 지정을 global 단위로 하는 게 완전히 없어지고 전적으로 프로젝트 단위로만 하게 바뀌었다는 걸 생각해 보자.

C++ 프로젝트에서 MFC의 클래스나 윈도우 API의 함수를 찍고 '선언으로 가기'를 선택하면 afxwin.h라든가 winbase.h 같은 표준 인클루드 파일에 있는 실제 선언 지점이 나온다. 그 방대한 헤더 파일을 매 빌드 때마다 일일이 파싱할 수가 없으니 인텔리센스 DB 파일 같은 건 정말 크고 아름다워진다.

그에 반해 C# 닷넷 프로젝트에서 Form 같은 클래스의 선언을 보면, 컴파일러가 바이너리 수준에서 내장하고 있는 클래스의 껍데기 정보가 소스 코드의 형태로 생성되어 임시 파일로 뜬다…;; 이게 구시대 언어와 신세대 언어의 시스템 인프라의 차이가 아닌가 하는 생각이 들었다.

그래서 이런 C++ 인클루드 체계의 비효율 문제는 어제오늘 제기되어 온 게 아니기 때문에, 컴파일러 제조사도 좀 더 근본적인 문제 회피책을 간구하게 됐다. 그래서 나온 것이 그 이름도 유명한 precompiled 헤더이다. stdio.h나 stdlib.h 정도라면 모를까, 매 번역 단위마다 windows.h나 afx.h를 일일이 인클루드해서 파싱한다는 건 삽질도 그런 삽질도 없으니 말이다..

3. precompiled header의 도입

일단 프로젝트 내에서 "인클루드 전용" 헤더 파일과 이에 해당하는 번역 단위를 설정한다. 비주얼 C++에서 디폴트로 주는 명칭이 바로 stdafx.cpp와 stdafx.h이다. 모든 번역 단위들이 공용으로 사용하는 방대한 양의 프레임워크, 라이브러리의 헤더를 몰아서 인클루드시킨다. 컴파일러 옵션으로는 Create precompiled header에 해당하는 /Yc "stdafx.h"이다.

그러면 그 헤더 뭉치들은 stdafx.cpp를 컴파일할 때 딱 한 번만 실제로 인클루드와 파싱을 거치며, 이 파일들의 분석 결과물은 빠르게 접근 가능한 바이너리 DB 형태인 프로젝트명.pch 형태로 생성된다.

그 뒤 나머지 모든 소스 파일들은 첫 줄에 #include "stdafx.h"를 반드시 해 준 뒤, Use precompiled header인 /Yu "stdafx.h" 옵션으로 컴파일한다. 그러면 이제 stdafx.h의 인클루드는 실제 이 파일을 열어서 파싱하는 게 아니라, 미리 만들어진 PCH 파일의 심벌을 참고하는 것으로 대체된다! 앞에서 제기한 인클루드의 문제점 중 첫째와 둘째를 극복하는 셈이다.

pch 파일이 생성되던 시점의 문맥과 이 파일이 실제로 인클루드되는 시점의 문맥은 싱크가 서로 반드시 맞아야 한다. 그렇기 때문에 소스 코드에도 문맥상의 제약이 걸린다. PCH를 사용한다고 지정해 놓고 실제로 stdafx.h를 맨 먼저 인클루드하지 않은 소스 파일은 Unexpected end of file이라는 컴파일 에러가 발생하게 된다. PCH 개념을 모르는 프로그래머는 C++ 문법에 아무 하자가 없는 외부 소스 코드가 왜 컴파일되지 않는지 이해를 못 할 것이다.

당연한 말이지만 stdafx.h가 인클루드하는 헤더 파일의 내용이 수정되었다면 PCH 파일은 다시 만들어져야 하며, 이때는 사실상 프로젝트 전체가 리빌드된다. 그러므로 stdafx.h 안에는 거의 수정되지 않는 사실상 read-only인 헤더 파일만 들어가야 한다.

인클루드 파일만 수십, 수백만 줄에 달하는 중· 대형 C++ 프로젝트에서 PCH가 없다는 건 상상조차 할 수 없는 일이다. 얼마 되지도 않는(많게 잡아도 200KB 이내) 소스 코드들이 high-end급 컴에서 그것도 네트워크도 아닌 로컬 환경에서 빌드 중인데 소스 파일 하나당 컴파일에 1초 이상씩 잡아 처먹는다면, 이건 인클루드 삽질 때문일 가능성이 매우 높다. 이 경우, 당장 PCH를 사용하도록 프로젝트 설정을 바꾸고 소스 코드를 리팩터링할 것을 심각하게 고려해야 한다. 이건 작업 생산성과 직결된 문제이기 때문이다.

아놔, 이렇게 글을 길게 쓸 생각은 없었는데 너무 길어졌다.
요컨대 C++ 프로그래머라면 자기의 생업 수단인 언어가 이런 구조적인 비효율을 갖고 있다는 걸 인지하고, 상업용 컴파일러 및 개발툴이 이를 극복하기 위해 어떤 대안을 내놓았는지에 대해 관심을 가질 필요가 있다.

자바, C#, D 등 C++의 후대 언어들은 C++과 문법은 비슷할지언정 이 인클루드 체계만은 어떤 형태로든 제각각 다 손을 보고 개량했음을 알 수 있다. 아까도 언급했듯, 하다못해 Objective C도 중복 인클루드 하나만이라도 자기 식으로 정책을 바꿨지 않던가.

한 가지 생각할 점은, C/C++은 태생이 이식성에 목숨을 걸었고, 언어의 구현을 위해 바이너리 레벨에서 뭔가 이래라 저래라 명시하는 것을 극도로 꺼리는 언어라는 점이다. 그래서 대표적으로 C++ 함수 decoration이 알고리즘이 중구난방인 아주 대표적인 영역이며, 함수 calling convension도 여러 규격이 난립해 있고 모듈/패키지 같은 건 존재하지도 않는다. 그런 차원에서, 비록 비효율적이지만 제일 뒤끝 없는 텍스트 #include가 여전히 선호되어 온 건지도 모르겠다.

4. 여타 언어의 인클루드

여담이다만, 본인은 베이직부터 쓰다가 C/C++로 갈아탄 케이스이기 때문에 인클루드라는 걸 처음으로 접한 건 C/C++이 아니라 퀵베이직을 통해서였다.

'$INCLUDE: 'QB.BI'

바로, 도스 API를 호출하는 인터럽트 함수와 관련 구조체가 그 이름도 유명한 저 헤더 파일에 있었기 때문이다.

C/C++에 전처리기가 있는 반면, 베이직이나 파스칼 계열 언어는 개념적으로 그런 전처리기와 비슷한 위상인 조건부 컴파일이나 컴파일 지시자는 주석 안에 메타커맨드의 형태로 들어있곤 했다. 그러나 여타 프로그래밍 요소를 끌어다 오는 명령은 메타커맨드나 전처리기가 아니라, 엄연히 언어 예약어로 제공하는 게 디자인상 더 바람직할 것이다.

그리고 파워베이직은 퀵베이직 스타일의 인클루드 메타커맨드도 있고, 파스칼 스타일의 패키지 지정 명령도 둘 다 갖추고 있었다.

Posted by 사무엘

2012/09/21 19:25 2012/09/21 19:25
,
Response
No Trackback , 5 Comments
RSS :
http://moogi.new21.org/tc/rss/response/735

요즘 코딩 잡설

1.

<날개셋> 한글 입력기의 개발 작업은 단순히 새로운 기능을 구현하거나 알려진 버그를 수정하는 것 말고도, 멀쩡히 동작하는 기능의 내부 구현 형태를 바꾸는 리팩터링도 무시 못 할 비중을 차지하고 있다.

이미 지금도 문제가 없긴 하지만, 열기-닫기 내지 할당-해제 같은 패턴은 어지간하면 클래스의 생성자와 소멸자가 알아서 하게 바꿔서 리소스 누수(leak)를 컴파일러 차원에서 원천적으로 차단하고 있으며,
최근에는 비주얼 C++ 2010으로 갈아탄 덕분에 지저분한 임시 #define 함수들을 지역 변수 형태의 람다 함수로 교체하는 재미가 쏠쏠하다. 예를 들어 이런 것 말이다.

BEFORE
#define PickNumber(e) ((e)[1] ? wcstol((e), &f, 16): *(e))

AFTER
auto PickNumber = [&f](PCWSTR e) -> int { return e[1] ? wcstol(e, &f, 16): *e; };

별도의 함수로 추가하기에는 너무 지엽적이고 한 함수 안에서만 잠깐 쓰고 마는 반복적인 루틴들은 람다로 싸 주는 게 딱이다. type-safety가 보장되고, scope도 엄격하게 정해지고, 이 루틴을 매번 인라인으로 expand할지 아니면 그냥 함수 호출로 처리해서 코드 크기를 줄일지를 컴파일러가 좀 더 유연하게 판단할 수 있기 때문에 아주 좋다.

예전에는 C++에 대해서 C with classes라고 배웠겠지만, 이제는 C++은 C with classes라고만 정의하기에는 설명에 누락된 요소가 너무 많아졌다.
람다 함수를 전역 변수로 선언하는 건 문법적으로 불가능하지는 않으나, 그럴 바에야 그냥 재래식 형태의 함수를 하나 선언하고 말지 아무런 특별한 의미가 없을 것이다.

2.

그런데, 이렇게 리소스 누수를 막기 위해서 노력하고 있지만 구조체에다 함께 넘어온 핸들이나 메모리 포인터는 그것만 따로 클래스의 소멸자가 자동으로 소멸하게 할 수 없으니 구조적으로 여전히 누수 위험이 존재한다.

예를 들어 CreateProcess 함수는 실행 후 해당 프로세스에 대한 핸들을 PROCESS_INFORMATION 구조체에다가 되돌려 준다. 이 값을 이용해서 프로그램은 자신이 새로 실행한 프로그램이 실행이 끝날 때까지 기다린다거나 할 수 있다. 하지만 실행된 프로세스가 종료되더라도 그 프로세스를 가리키던 핸들은 해제되지 않는다. 호스트 프로그램이 핸들을 닫아 줘야만 완전히 해제된다.

CreateProcess 함수를 자주 쓴다면 핸들 해제까지 모든 작업을 자동화해 주는 클래스를 만들어서 쓰는 게 효과적이다. 사실, 이 함수는 받아들이는 인자가 많고 기능 한번 쓰는 게 번거로운 편이기 때문에 클래스를 쓸 법도 하지만, 어쩌다 한 번 쓰고 마는 특수한 함수를 전부 클래스로 감싸는 건 좀 낭비처럼 보이는 게 사실이다.

<날개셋> 편집기에는 있으나마나한 잉여이긴 하지만 명색이 텍스트 에디터이다 보니 인쇄 기능이 있다.
그런데 한때는 인쇄를 한 뒤에 자신이 사용한 프린터 DC를 해제하지 않아서 GDI 개체 누수가 생기는 버그가 있었다.
물론 이건, 리소스 제한이 있는 윈도우 9x에서 이 프로그램을 한 번 실행한 후, 프린터 드라이버를 이용한 인쇄(화면 인쇄 말고) 명령을 연달아 몇백, 몇천 번쯤 내려야(한 번에 몇백, 몇천 페이지를 인쇄하는 것과는 무관) 여파가 나타날 버그이니, 현실적으로는 아무런 위험이 아닌 것이나 마찬가지이다.

이 문제의 원인은 PrintDlg 함수가 PRINTDLG 구조체에다가 넘겨준 hDC 멤버(프린터 DC)를 해제하지 않아서였다.
그런데 이런 실수가 들어갈 법도 했던 게, MSDN에서 해당 함수나 해당 구조체에 대한 설명 어디에도, 사용이 끝난 DC를 처분하는 것에 대해서는 언급이 없었다.
이거 혹시 해제해야 하는 게 아닌지 미심쩍어서 내가 우연히 잉여질 차원에서 다른 예제 코드를 뒤져 본 뒤에야 DeleteDC로 해제를 해야 한다는 걸 알게 되었고, 예전 코드에 리소스 누수 버그가 있음을 깨달았다.

하긴, 내 기억이 맞다면, COM 오브젝트도 프로그래머가 Release를 제대로 안 해서 개체 누수가 하도 많이 생기다 보니 MS에서도 골머리를 썩을 정도였다고 하더라. 현실은 이상대로 되질 않는가 보다.

3.

윈도우 운영체제의 device context에 대해서 보충 설명을 좀 할 필요를 느낀다.
DC라는 건 그림을 그리는 매체가 (1) 화면, (2) 메모리(대부분은 화면에다 내보낼 비트맵을 보관하는 용도), 아니면 (3) 프린터 이렇게 셋으로 나뉜다. 화면용 DC는 GetDC나 GetWindowDC를 통해 HWND 오브젝트로부터 얻어 오고 해제는 ReleaseDC로 한다.

그러나 나머지 두 DC는 화면 DC와는 달리, DeleteDC로 해제한다는 차이가 있다. 화면용 DC는 운영체제가 통합적으로 관리하는 성격이 강한 반면, 나머지는 전적으로 사용자 프로그램의 재량에 달린 비중이 커서 그런 것 같다.

메모리 DC는 화면 같은 다른 물리적인 매체 DC와 연계를 할 목적으로 만들어지는 가상의 DC이므로, 보통 CreateCompatibleDC를 통해 이미 만들어진 DC를 레퍼런스로 삼아서 생성된다. 레퍼런스 DC가 무엇이냐에 따라서 하다못해 pixel format 같은 거라도 차이가 날 수 있기 때문이다.

그 반면 프린터 DC는 대개 가장 수준이 낮은 CreateDC를 통해 만들어지는데, 응용 프로그램이 특정 디바이스를 지목해서 DC를 하드코딩으로 생성하는 경우는 거의 없고 보통은 사용자에게 인쇄 대화상자를 출력한 뒤에 운영체제의 GUI가 생성해 주는 DC를 그대로 사용하면 된다.

사실, 프린터야 인쇄 전과 인쇄 후에 프린터에다 초기화 명령을 내리고 종이를 빼내는 등 여러 전처리· 후처리 작업이 필요하고 그런 저수준 명령은 프린터 하드웨어의 종류에 따라 다 다르다.
메모리는 프린터만치 하드웨어를 많이 가리지는 않겠지만, 그래도 그래픽을 보관하기 위해 메모리를 할당하고 나중에 해제하는 작업이 필요하다.

그에 반해 단순히 화면에다가 그림을 찍는 건 각 context별로 좌표를 전환하고 클리핑 영역 설정을 바꾸는 것 외에는 별다른 오버헤드가 존재하지 않는다. 도스 시절의 그래픽 라이브러리는 그런 DC 같은 추상화 계층 자체가 아예 존재하지도 않았으니 말이다.
그런 오버헤드의 위상이 ReleaseDC와 DeleteDC의 차이를 만든 것 같다.

Posted by 사무엘

2012/09/19 19:32 2012/09/19 19:32
,
Response
No Trackback , 8 Comments
RSS :
http://moogi.new21.org/tc/rss/response/734

프로그래밍 언어가 제공하는 기본 라이브러리에는 단순히 자주 쓰이는 자료 구조나 알고리즘 외에도, 운영체제에다 요청을 해야 지원받을 수 있는 기능이 일부 있다. 메모리를 할당하거나 파일을 읽고 쓰는 작업이 대표적인 예이다. C/C++ 라이브러리라 해도 그런 기능은 궁극적으로 Windows API 같은 저수준 API를 호출함으로써 제공하는 셈이다.

그러니 프로그래머로서는 굳이 이식성을 염두에 두고 작성하는 코드가 아니라면, 언어가 제공하는 API보다 운영체제가 제공하는 API를 직통으로 쓰는 게 성능면에서 낫지 않나 하는 생각을 하게 된다.
이게 완전히 잘못된 생각은 아니다. 그러나 그렇지 않은 경우도 있으므로 주의해야 한다.

예를 들어, 윈도우 API에 있는 ReadFile/WriteFile과, C 라이브러리에 있는 fread와 fwrite를 생각해 보자.
C 라이브러리의 소스를 보신 분은 있겠지만, 일례로 fwrite는 내부적으로 _write 함수를 호출하는 형태이고, 두 함수만 해도 소스 코드가 수백 줄에 달한다. 뭔가 추상화 계층을 거치는 게 있고 복잡하다. 그러면서 _write 함수의 한쪽 구석에 결국은 WriteFile 함수를 호출하는 부분이 있다. fwrie가 WriteFile 직통보다 빠를래야 빠를 수가 없어 보인다.

그런데 윈도우 환경에서 프로그래밍을 오래 해 본 분은 경험적으로 아시겠지만, 몇 바이트짜리 소량의 I/O를 수백, 수천 번씩 반복해서 시켜 보면 fread/fwrite가 ReadFile/WriteFile보다 훨씬 더 빠르게 수행된다.
그렇다. C 함수는 내부적으로 버퍼링? 캐싱?을 해서 소량의 I/O는 뭉쳤다가 몰아서 한꺼번에 하는 반면, 운영체제 API는 곧이곧대로 매번 오버헤드를 감수하면서 I/O를 직통으로 하기 때문이다.

물론, 요즘은 운영체제가 자체적으로 디스크 캐싱을 다 하는 게 대세이지만, C 함수는 더 상위 계층에서도 캐싱을 하는 걸로 보인다. 이게 성능 차이가 굉장히 많이 난다.
<날개셋> 한글 입력기에서 1년 전쯤에 공개된 지난 6.2 버전의 README를 보면, 편집기의 파일 저장 및 변환기의 변환 속도가 훨씬 더 빨라졌다고 적혀 있다. 이것의 비결이 바로 저 특성을 이용해서 파일 I/O 속도를 향상시킨 것이었다.

메모리 할당도 마찬가지이다.
운영체제는 프로세스마다 heap이라는 가상 메모리를 둬서 프로그램이 다수의 작은 메모리 덩어리를 동적으로 요청할 때 빨리 빨리 반응할 수 있게 하고 있다. 연결 리스트나 트리 같은 자료구조는 메모리 할당이 잽싸게 안 되면 성능이 크게 떨어질 테니 말이다.
(이때 heap은 자료 구조 heap하고는 전혀 관계 없는 개념이므로 혼동하지 말 것.) 그래서 윈도우 운영체제에서 C 라이브러리의 malloc 계열 함수는 HeapAlloc이라는 API 함수를 호출하는 상위 계층이다.

내 경험상으로는 요즘의 NT 커널 윈도우는 HeapAlloc와 malloc, 그리고 HeapFree와 free가 성능 차이가 거의 느껴지지 않는다. 그러나 과거의 윈도우 9x 시절에는 그렇지 않았다.
“윈도우 9x에서는 이 함수는 진짜로 작은 메모리 블록에만 최적화되어 있기 때문에, 이걸로 수 MB에 달하는 메모리를 한꺼번에 여러 번 할당하면 성능이 크게 떨어지고 프로그램이 느려짐. 그 경우엔 다른 메모리 할당 함수를 쓰기 바람.”이라는 경고문이 MSDN에 명시되어 있었다.

내부적으로 그 함수가 어떻게 구현되어 있는지는 잘 모르겠지만, 내가 테스트 해 보니 진짜 그랬다. 9x에서는 프로그램이 뻗은 게 아닌가 싶을 정도로 도저히 견딜 수 없이 느려졌다.
이때에도 윈도우 API가 아닌 C 라이브러리의 malloc 함수는 랙 없이 잘 동작했다. 대용량 메모리 할당 요청이 왔을 때 가상 메모리 주소를 다시 잡는 등 대비가 되어 있어서 그런 것 같다.

원론적으로야 추상화 계층이 있는 언어 API보다는 운영체제 API 직통이 더 빠를 수밖에 없는 게 맞다. 사실, Windows API로도 모자라서 NTDLL처럼 아예 문서화되어 있지도 않은 곳에 있는 native API를 사용하는 프로그램이 있기도 하고 말이다.

그러나 프로그램의 이식성까지 희생하면서 굳이 직통 API를 쓰고자 한다면, 위에서 예를 들었듯이, 그 API의 특성을 잘 알고 쓰는 게 무엇보다도 중요하다고 하겠다. C++ 라이브러리야 객체지향 구현을 위해서 bloat되는 게 불가피하다고 쳐도, 그보다는 더 단순한 C 라이브러리의 추상화 계층은 그저 불필요한 잉여밖에 없는 건 아닐 것이기 때문이다.

Posted by 사무엘

2012/08/20 08:25 2012/08/20 08:25
, ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/722

1. 심벌 검색 기능의 퇴화(?)

예전에도 글에서 언급한 적이 있지만, 비주얼 C++에는 Alt+F12를 누르면 심벌 검색을 할 수 있다. 주어진 프로젝트의 소스 코드에 등장하는 모든 명칭들(클래스, 함수, 전역 변수 등등)의 선언과 정의가 있는 곳을 곧바로 찾아갈 수 있으니 이건 매우 편리한 기능이 아닐 수 없다.

이 기능이 특히 강력한 이유는 내가 해당 프로젝트의 내부에서 선언한 명칭뿐만 아니라, 인클루드 파일에 있는 명칭들도 전부 조회할 수 있기 때문이다. 따라서 C/C++ 라이브러리에 있는 함수나 윈도우 플랫폼 SDK 내지 MFC 라이브러리에 있는 방대한 명칭들도 다 조회가 되어서 해당 명칭의 출처를 쉽게 알아낼 수 있다.

어차피 소스 코드를 빌드하여 precompiled header나 인텔리센스 정보를 만들 때 이런 정보들을 다 한 번씩 파싱을 하기 때문에, 심벌 검색은 최적화된 자체 데이터베이스를 대상으로 신속하게 행해진다. 무식하게 수백, 수천 개의 헤더와 소스 파일들을 텍스트 형태로 찾는 find in files 형태가 아니다.

그런데, 비주얼 C++ 2010을 보니 심벌 검색은 해당 프로젝트에서 직접 선언한 명칭만 가능하고, 그 프로젝트가 stdafx.h에다가 인클루드하여 사용하는 플랫폼 SDK, MFC 같은 것들의 명칭은 조회되지 않는다.
200x 시절과 동일하게 '참조에서 찾기' 옵션을 켜고, 검색 범위를 'All components'로 바뀌었는데도 여전하다. 이 기능에 무슨 문제가 생겼는지 궁금하다.

사용자 삽입 이미지사용자 삽입 이미지

(WM_CREATE 위치가 뜨는 2003 좌, 하지만 뜨지 않는 2010 우)

물론, 소스 코드에서 MFC나 플랫폼 SDK의 명칭을 참조하는 부분에서 F12를 눌러 보면 여전히 해당 명칭의 선언부로 가긴 간다. 하지만 명칭을 직접 입력해서 찾는 심벌 검색 기능은 왜 그게 불가능해진 걸까?

보아하니 그저 닷넷 프레임워크 라이브러리의 명칭을 조회하는 기능에만 신경 쓰느라, C++ 네이티브 개발 쪽은 지원이 간과되기라도 한 건지? 2010은 그렇잖아도 인텔리센스에다 빌드 보조 파일들이(*.sdf, *.ipch) 예전에 비하면 기겁을 할 정도로 방대해졌는데 편의 기능은 도리어 없어지면 어떡하냐 말이다.

2. 메뉴 편집기의 우클릭

C++ 프로젝트를 새로 만들거나 열어서 리소스에서 메뉴 편집기를 연다. 아, 프로젝트를 만들 필요 없이 그냥 리소스 템플릿만 하나 만들어서 메뉴를 생성해도 되겠다.

열었으면 클라이언트 화면의 빈 공간을 아무 데나 우클릭하여 메뉴 편집기에 대한 컨텍스트 메뉴를 연다. 그 후 마우스로 다른 곳을 클릭하거나, 명령을 선택하거나, ESC를 눌러서 컨텍스트 메뉴를 없앤다.
그러면 컨텍스트 메뉴가 화면 좌측 상단에 한 번 또 나타나서 사용자를 성가시게 할 것이다.

이는 명백한 버그이다. 대화상자 같은 다른 리소스 편집기에서는 우클릭을 해도 이런 현상이 생기지 않는다.
2010뿐만이 아니라 무려 2003에서도 동일한 현상이 발견된다. 거의 10년 묵은 버그라는 뜻인데 아무도 신경을 안 쓰는지 지금까지 고쳐지지 않았다.
설마 6.0에서까지 이랬을 것 같지는 않은데 잘 모르겠다. 아직도 6.0 쓰시는 분이 계시면 확인 요망.

여담이지만 마우스가 아니라 Shift+F10 같은 키보드로 컨텍스트 메뉴를 열면 이런 현상이 생기지 않는다.
그리고 화면 빈 공간이 아니라 편집 중인 메뉴 항목의 경우 우클릭하더라도 역시 그 현상이 생기지 않는다.
이건 아주 사소한 코딩 실수로 보이고, 몇 라인만 고치면 바로 제거할 수 있는 버그이다만, 10년에 가까운 시간 동안 발견하고 지적한 사람이 없었나 보다.

C#이나 VB, C++/CLI 같은 닷넷 환경의 경우, 폼(네이티브 개발 환경으로 치면 대화상자)에다가 메뉴 컴포넌트를 집어넣으면 그 자리에서 바로 메뉴를 편집할 수 있게 되어 있으니 네이티브 개발과는 환경이 꽤 다르다.
닷넷 프로그램도 기본 메뉴는 일반 윈도우 운영체제가 제공하는 표준 네이티브 메뉴 형태로 나오지 않겠나 하고 생각해 왔는데, 놀랍게도 그렇지 않다. 비주얼 스튜디오 200x와 비슷한 형태인 싸제 메뉴이다.

3. 툴바 편집기의 화면 잔상

이뿐만이 아니다.
리소스 중에서 툴바 편집기를 보면, 툴바 아이템들을 순서대로 하나씩 찍어 보기만 해도 예전 selection 흔적이 지저분한 잔상으로 잔뜩 남는다. 저건 절대로 multiple selection을 나타내는  게 아니며, WM_PAINT 메시지만 다시 받아도 잔상은 싹 없어진다.

사용자 삽입 이미지
열기, 저장, 모두 저장, 인쇄 아이콘의 테두리에 생긴 잔상들을 보라.
그리고 믿어지지 않겠지만 이건 비주얼 C++ 2003 시절부터 변함없던 버그이다!
전세계에서 압도적인 인지도와 점유율을 자랑하는 개발툴에 이런 초보적인 버그가 있다는 게 믿어지는가? 6.0은 그렇지 않았던 걸로 난 기억한다.

아이콘의 배치 순서를 조정하거나 중간에 여백을 넣기 위해서 드래그 드롭만 해도 잔상이 잔뜩 쌓인다. 구체적으로 재연 조건과 증상을 일일이 기술하기에는 구차하나, 잔상 현상은 2010에서 조금 더 심해졌다.

4. 속성 대화상자

비주얼 C++ 6.0까지는 전통적으로 가로로 길쭉한 자신만의 context-sensitive한(문맥 민감. 사용자가 키보드 포커스를 두거나 선택한 개체나 문서에 따라서 대화상자 내부 내용이 수시로 동적으로 바뀌는) 속성 대화상자가 있어서 Alt+Enter를 누르면 언제든지 그게 떴었다. old timer라면 추억의 옛날 스타일 대화상자를 기억하실 것이다.

사용자 삽입 이미지
그게 닷넷부터는 비주얼 베이직 스타일의 프로퍼티 그리드로 다 바뀌었다.
특히 프로젝트 설정 대화상자(VC6 표준 단축키 기준 Alt+F7)도 이 형태로 리모델링된 것 여러분들 다 아실 것이다.

그러나 프로퍼티 그리드가 커버하지 못하는 UI가 있었으니 그것은 바로 preview 기능이다.
비트맵, 대화상자, 메뉴 등 리소스들을 일일이 열 필요 없이 찍어 보기만 해도 이놈이 대략 어떻게 생겼는지 간략히 표시해서 보여주는 기능인데,
이건 2차원적인 공간에다 뭔가를 그려야 하기 때문에 기존 프로퍼티 그리드로 커버할 수가 없다.

그래서 별도의 버튼을 누르면 결국 과거 6.0 시절의 속성 대화상자와 비스무리하게 생긴 대화상자가 떠서 미리보기를 보여주는 기능이 들어갔다. 뭐, 여기까지는 뭐 나쁘지 않다. 메뉴나 대화상자가 좀 더 깔끔하게 그려졌으면 좋겠는데 10년 전이나 지금이나 하나도 바뀐 게 없이 똑같이 엉성하다는 건 아쉽지만 말이다.

그런데 과거의 200x 시절에는 미리보기를 보는 중에도 키보드 포커스는 각종 리소스들을 고르는 화면에서 계속 유지가 되어서 위· 아래 화살표를 누르며 리소스들을 조회할 수 있었는데,
2010부터는 뭔가를 선택하고 나면, 키보드 포커스가 미리보기 대화상자로 바뀌어 버린다. 그래서 마우스로 해당 아이템들을 일일이 찍어야 한다.

역사적으로 비주얼 C++은 4.0 때 Developer Studio (MSDEV)라는 첫 UI가 갖춰진 이래로 닷넷으로 넘어갈 때 대대적인 리모델링을 거쳤고, 2010 때는 WPF 기반으로 또 IDE의 구현체가 크게 바뀌었다.

요즘 다시 C++11 지원처럼 C++ 지원이 강화되고는 있다지만, 기존 코드들이 리팩터링되는 과정에서 예전에는 없던 사소한 버그들이 끼어 들어가는 게, MS에서 닷넷에 비해 네이티브 환경 개발에 점점 소심해지고 있다는 생각이 들어서 아쉽다. 닷넷과 관련된 개발 환경이라면 저런 버그가 들어갔을 리가 없을 텐데 말이다.

다음은 버그까지는 아니고, 비주얼 C++과 관란하여 추가로 떠오르는 생각들이다.

1. 비주얼 C++은 32비트 시절 이래로(무려 4.x부터) 80비트 초정밀 부동소숫점인 long double을 무시하고, 이것도 일반 double과 완전히 동일한 64비트 부동소숫점으로만 제공하는 것으로 잘 알려져 있다.
난 32비트 CPU에서는 10바이트 단위로 정보를 처리하는 게 불편해저서 long double이 도태한 게 아니겠나 정도로만 생각해 왔다.
그런데 나중에 알고 보니 인텔 CPU엔 80비트 부동소숫점을 연산하는 명령 자체는 존재한다고 한다. 단지, MS 컴파일러가 이를 활용하지 않는다고.

이것까지 지원해야 하면 %타입 문자부터 시작해서 언어 라이브러리에도 그야말로 대대적인 칼질이 가해져야 하는 건 사실일 것이다. 그런데 그렇다고 해서 있는 CPU의 기능을 컴파일러가 활용하지 않는 건 좀 문제가 있어 보이는데?
인텔 컴파일러 같은 다른 벤더 제품 중에는 long double을 쓸 수 있는 놈이 있는지 궁금하다.

2. 오늘날 거의 모든 IDE와 에디터들은 탭을 customize할 수 있다.
화면에 표시되는 탭 길이를 조절하고(보통 거의 다 4를 쓰지만), 코딩용 자동 들여쓰기를 할 때 공백을 삽입할지 탭을 삽입할지를 지정할 수 있다. 그리고 언어별로 어떤 탭 설정을 사용할지도 지정 가능하다.

그런데 여기서 한 발 더 나아가서, 읽어들이는 소스 코드의 형태를 보고 탭 컨벤션을 자동 감지하게 할 수는 없나?
space로 맞춰져 있는 소스 코드에다가 눈치 없게 탭으로 들여쓰기를 삽입한다거나 혹은 그 반대로 하는 것. 불편하다.

자동 들여쓰기를 구현했을 정도라면 앞뒤의 중괄호가 어떻게 돼 있고 whitespace들이 space인지 tab인지 주변 context들은 다 파악했다는 뜻이다.
따라서 조금만 더 센스 있게 동작하게 만드는 것은 마치 코드의 줄바꿈 문자의 종류를 자동 감지하는 것만큼이나 그렇게 어려운 일이 아니리라 여겨진다.

Posted by 사무엘

2012/07/29 08:33 2012/07/29 08:33
, ,
Response
No Trackback , 8 Comments
RSS :
http://moogi.new21.org/tc/rss/response/713

« Previous : 1 : ... 18 : 19 : 20 : 21 : 22 : 23 : 24 : 25 : 26 : ... 31 : Next »

블로그 이미지

그런즉 이제 애호박, 단호박, 늙은호박 이 셋은 항상 있으나, 그 중에 제일은 늙은호박이니라.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2024/04   »
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30        

Site Stats

Total hits:
2674585
Today:
1277
Yesterday:
1540