« Previous : 1 : ... 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : Next »

공기 저항에 대한 생각

물이나 공기 같은 물질은 고정된 형체가 없기 때문에 물리학적으로 유체(fluid)라고 분류된다. 얘들은 비록 형체가 없을지언정 자신만의 밀도와 점성이 있기 때문에 그 안에 담겨 있는 다른 물질(기체 속의 액체/고체, 혹은 액체 속의 고체)을 상대로 이것저것 힘을 작용한다. 부력은 가만히 있기만 해도 저절로 작용하는 힘이지만 양력과 항력은 유체 속에서 고유한 운동을 하는 놈에게만 덤으로 생기는 힘에 속한다.

유체역학에서 항력이라고도 불리는 이 저항은 물체의 운동에 필요한 에너지를 계산하는 일을 무척 어렵고 복잡하게 만든다.
가장 기초적으로는, 종이나 나뭇잎을 높은 데서 떨어뜨렸는데 자유 낙하하지 않고 팔랑거리며 천천히 떨어지는 게 공기의 저항 때문이다. 미개하던 시절에는 사람들이 공기 저항과 중력 가속도라는 개념을 이해하지 못해서 막연하게 가벼운 물체는 천천히 떨어지고 무거운 물체는 빨리 떨어지는 줄 알았던 듯하다.

하지만 공기를 쫙 뺀 진공 속에서는 깃털과 쇠구슬이 엄연히 동일한 속도로 떨어진다. 또한 달에 간 아폴로 월면차가 인증을 했듯이, 거기는 그 가벼운 흙먼지조차도 지구처럼 자욱한 연기 형태로 남지 않고 파도 물보라처럼 곧장 깔끔하게 낙하해 없어지는 걸 알 수 있다. 지구의 물보라보다 천천히 떨어지기 때문에(중력 가속도가 더 작음) 뭔가 실사 같지 않고 게임에서 나타나는 흙먼지 이펙트 같다는 느낌이 든다. 이런 걸 1970년대 초에 CG로 재연한 게 아니라면 이건 지구에서 자연스럽게 촬영하기란 불가능하다.

공기의 저항이란 게 없다면 낙하산도 존재할 수 없다. 그리고 더 근본적으로 이 공기 저항 덕분에 무려 수 km에 달하는 높은 고도의 구름에서 떨어지는 빗방울을 맞고도 사람이 다치거나 물건이 부서지지 않는다. 이거 생각해 보면 꽤 신기하고 다행스러운 일이다. 빗방울이 일정 속도 이상으로는 더 가속이 되지 않는 덕분이다.

하물며 공기보다 밀도가 월등히 더 높은 물의 저항은 두 말할 나위가 없다.
공기 중에서 총알을 빠르게 발사시키는 총은 물 속 불과 수십 cm 깊이에 잠겨 있는 목표물에도 거의 무용지물이다. 운동 에너지 1/2 mv^2에서 차라리 v를 크게 희생하고 m이라도 더 높인 작살총을 쏘는 게 더 나을 정도이다.

물 속에서 다리로 바닥을 저벅저벅 디디면서 빠르게 걷기란 저항 때문에 불가능에 가깝다. 작정하고 수영을 하며 나아가는 사람을 절대로 따라잡을 수 없다. 신발조차도 거추장스럽기 때문에 벗어야 할 정도이다.
수영은 단순히 물에 떠서 생존하는 것뿐만 아니라 물에서 빠르게 나아갈 수 있게 한다는 의미도 있다. 비행기가 단순히 공중에 뜨는 것뿐만 아니라 빠르게 비행하는 것도 중요하듯이 말이다.

유체 속에서 운동하는 물체에 작용하는 항력은 물체의 속도가 올라갈수록 급격히 커진다. 설마 지수함수 급은 아니지만 일단 유체와 그 물체 사이의 상대속도의 '제곱'에 비례하며, 이것 말고도 유체의 밀도와 물체의 운동 방향 단면적, 그리고 유체의 모양이 결정하는 '공기저항(항력) 계수'에 비례한다. 더 자세한 것은 위키백과 설명과, 이 분야 전공자로 추정되는 어떤 분의 블로그 글을 링크하는 것으로 설명을 생략하겠다.

이 저항을 극복하기 위해 필요한 동력은 아예 속도의 3제곱에 비례한다. 저 항력 방정식에다가 속도가 한번 더 곱해지기 때문이다. 이러니 공기 중에서 달리는 차량은 고속에서의 가속이 급격히 힘들어지며, 일정 속도 이상부터는 공기 저항에 적극 대비하는 설계가 대단히 중요해진다.

물론, 정지 상태에서 첫 출발하는 것도 정지 마찰력의 극복 때문에 힘이 대단히 많이 필요하며, 저단 기어가 이런 이유 때문에 존재한다. 하지만 경제 속도를 넘어선 고속은 안 그래도 엔진이 토크가 떨어지고 힘을 쥐어 짜다시피하는 상태인데 공기 저항 때문에 더욱 어려워진다.

심지어 자동차에 에어컨이 아무리 엔진 힘을 깎아 먹는다 해도, 어지간한 고속 주행 중엔 그냥 그 에어컨을 켜는 게 창문을 열어서 바람 저항을 받는 것보다 더 나을 정도이다. 승객도 시원하고 차에도 부담이 덜 가고.. 공기의 저항이란 게 에어컨의 오버헤드에 맞먹을 정도라는 뜻이다.

이러니 부가티 베이런이 500마력에서 1000마력으로 엔진 출력을 두 배로 올렸는데도 최고 속도는 시속 300대에서 겨우 400대로밖에 못 올렸다.
아예 공기와의 마찰열까지 고려해야 하는 건 왕복엔진 자동차 수준에서 걱정할 일은 아니겠지만 차체는 아니어도 타이어가 열받는 것 정도는 현실성이 있다. 이건 무슨 법칙에 근거해서 발생하는 현상이며 무슨 변수로 기술 가능한지 잘 모르겠다.

공기 저항의 극복을 위해서는 물체의 단면적을 그저 작게만 만드는 게 장땡이 아니다. 일명 '유선형'이라고 불리는 매끄러운 설계가 필요한데, 그 수학 이론적인 배경은 잘 모르겠다. 단지 베지어 곡선이라는 것도 비행기를 설계하는 어느 엔지니어가 이 분야만 파다가 만들어 낸 곡선이라는 사실을 알고 있을 뿐이다. 공기 저항 공식에서 단면적 외의 다른 변수가 바로 '항력 계수'이며, 주요 도형에 대해 알려진 항력 계수는 다음과 같다. 유명한 그림이다.

사용자 삽입 이미지

저 계수들은 도형의 모양을 기술하는 수식에 대해 온갖 적분 등 복잡한 연산을 동원해서 산출했는지, 아니면 그저 경험적으로 얻었는지 그건 잘 모르겠다. 아, measured라고 써 놓은 걸 보니 경험적으로 얻은 값인 듯.

위의 그림을 보면 알 수 있듯, 의외로 그저 동글동글하게만 만드는 것도 장땡이 아니다. 물론 걔도 아예 각이 진 놈들보다는 계수가 작지만 말이다.
정말로 동글동글하게 만들어야 하는 건 사방팔방으로부터 가해지는 극심한 수압을 견뎌야 하는 잠수정이다. 그리고 걔들은 고속 주행이 목표인 물건이 아니다.

하다못해 골프공조차도 매끈한 구가 아니며, 표면이 온통 옴푹 패여 있다. 이 역시 나름 유체역학적으로 공기 저항을 극복하고 잘 날아가라고 일부러 그렇게 만든 것이며, 골프공 제조사의 고유한 기술과 노하우가 담겨 있다. 이걸 영어로 dimple이라고 하는데, 사람 얼굴에 옴푹 패인(?) '보조개'라는 뜻도 갖고 있다.

우리나라의 경우, 20여 년 전 대우 에스페로가 광고에서 항력(공기 저항) 계수가 0.29라고, 그 당시 국산 양산차들 중 최저인 과학적인 외형이라며 이 수치를 최초로 공개적으로 거론하고 자랑을 쳤었다. 마치 뇌세포의 성분 DHA가 들어간 '아인슈타인 우유'처럼 뭔지 잘은 모르겠지만 왠지 좋아 보이게 마케팅을 한 셈이다. 본인은 이를 똑똑히 기억하고 있다.

사용자 삽입 이미지

(에스페로는 첫 출시되었을 때는 쏘나타 같은 2000cc급으로 시작했다가 나중에 후기 모델들은 아반떼 같은 준중형급으로 엔진을 다운사이징한 게 이례적이다. 물론 차체의 크기는 동일한 채로 말이다.)

한편, 이륜차는 단면적이 일반 자동차보다 작음에도 불구하고 공기 저항에는 의외로 그리 유리한 외형이 아니다.
오토바이는 워낙 가볍고 단위 중량 당 마력이 큰지라 초반 가속은 자동차를 아득히 관광 태운다. 하지만 의외로 시속 200 이상급의 고속은 헉헉대는데, 다름아닌 공기 저항에 걸리기 때문이다. 이륜차가 그런 고속 주행을 하면 안전 관점에서도 심각하게 안 좋기도 하고 말이다.

엔진 없이 사람의 발로 페달을 밟아 달리는 자전거도 돈지랄을 한 경량화에다 기어비 최적화, 초인적인 라이더 같은 최상의 변수를 동원하면 순간적으로나마 거의 시속 100을 능가하는 고속을 낼 수 있다. 그런데 이것만으로는 충분치 않다. 기네스북에 등재될 정도의 초고속 주행 기록은 앞에서 커다란 우산? 양산?을 후방으로 펼쳐 주고 주행하는 자동차를 바짝 붙어서 따라가면서 세운 거라고 한다. 다시 말해 공기 저항을 앞의 자동차가 대신 받아 주니 고속 주행이 가능했다는 뜻이다.

단체 관광버스들이 교통사고의 위험이 매우 높음에도 불구하고 앞뒤로 대열운행, 일명 떼빙을 여전히 일삼는 이유는 1차적으로는 다같이 무리해서 스케줄을 맞추기 위해서일 것이다. 허나, 보조적인 이유로는 연비 때문이기도 하다고 한다. 커다란 선두가 공기 저항을 다 받으면서 출발하니까 뒷차들은 상대적으로 나아가기가 쉽다고..
그 정도로 연료 절감 효과가 존재하고 경험적으로 입증 가능한지는 잘 모르겠지만, 이 원리는 철도 차량에도 적용 가능할 듯하다. 단순히 쇠 레일+쇠 바퀴로 인한 마찰 계수 감소 말고, 다수 차량의 밀집 운행으로 인한 효율 증대도 장점이 되겠다.

사실, 자동차의 옆에 툭 튀어나와 있는 백미러는(후면경) 유체역학적으로는 굉장히 안 좋으며, 방해가 되는 물건이다. 비행기의 날개처럼 양력을 얻기 위해 의도적으로 돌출된 것도 아니고..
허나 운전을 위해서는 절대로 없어서 안 되는 필요악이기 때문에 달려 있다. 이걸 자그마한 카메라로 100% 대체가 가능하다면 연비 개선에는 도움이 될 수 있다.

이상...;;
열역학에서는 이상 기체라는 개념까지 설정해서 기체가 열과 압력을 받아서 액화나 기화하고 그 과정에서 열을 수송하는 과정을 수식으로 설명한다. 거기는 물리뿐만 아니라 반쯤은 화학에도 속하는 영역 같다. 물론 엔진이나 냉동 기관 같은 게 다 열역학 이론에서 비롯된 기계이므로 이건 굉장히 중요한 학문이요 기술이다. 에어컨이 발명된 덕분에 인간이 거주하고 도시를 건설할 수 있는 영역이 크게 넓어졌으며, 냉장· 냉동고가 발명된 덕분에 식품의 장거리 수송과 장기간 보존이 가능해졌다. 동력 엔진의 발명이야 더 말할 필요도 없고.

하지만 유체역학에서는 그렇게 기체의 상태 변화에는 별 관심이 없고 그 안에서 운동하는 강체의 에너지 효율을 다룬다. 서로 영역이 다른 셈이다. 하지만 자동차나 비행기가 만들어졌는데 걔네가 조금이라도 연료를 덜 소모하고 더 경제적으로 움직이게 하려면 차체를 유체역학적으로 잘 디자인 하는 게 필수이니 두 역학 분야는 동일 목표를 달성하기 위해 바늘과 실 같은 관계를 맺고 있다고 봐야 할 것이다.

Posted by 사무엘

2016/11/11 19:29 2016/11/11 19:29
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1293

공기를 구성하는 기체들

지구 대기권을 구성하는 '공기'라는 물질은 아무 색도 맛도 냄새도 없어서 '공기수송'처럼 존재감 없음을 비유하는 대상이 되곤 한다. 하지만 이 공기는 실제로는 생각보다 구성이 복잡하고 무게와 압력도 있는 물질이다. 공기 덕분에 양력이라는 게 존재할 수 있어서 그 무거운 비행기가 뜰 수 있으며, 반대로 자동차나 비행기는 공기에 의한 마찰과 저항 때문에 일정 수준 이상의 고속화가 힘들다.
즉, 공기는 물리적으로 엄연히 존재감이 있으며, 화학적으로 성분도 제법 다양하다. 오늘은 오랜만에 기초 과학 상식을 복습해 보고자 한다.

기체는 눈에 안 보이고 몹시 가볍기 때문에 양 내지 성분 비율을 논할 때 부피가 참 직관적이긴 하지만, 그건 온도와 기압을 동기화시켜야 제대로 된 비교가 가능하다는 맹점이 있다. 기체의 '질량(무게)'과 '부피'는 중학교 과학 시절부터 날 참 헷갈리게 했던 주제이며 지금까지도 별로 와 닿지가 않는다. (그냥 시험 점수를 위해서 달달 외우는 정도를 넘어 본질과 원리를 밑바닥부터 싹 이해하지 못했다는 뜻)

'몰'이라는 단위도 따지고 보면 질량을 가리키는 개념이다. 하지만 공기 중의 약 78%가 질소라고 할 때 그 비율은 일단 내가 알기로 1기압에서의 부피 비율이다. 실생활에서 기체의 양이라고 했을 때 현실적으로 더 큰 의미를 갖는 건 질량보다는 부피이기 때문이 아닐까 싶다.

1. 질소

공기에서 3/4 내지 4/5 가까이 차지하는 가장 많은 물질은 질소이다. 무슨 유독가스가 '공기보다 무겁다/가볍다'라고 할 때 그 레퍼런스와 가장 가까운 기체는 응당 질소이다. 질소는 원자 번호가 7번으로 얘보다도 가벼운 원소는 수소, 헬륨 등 극히 드물다. 공기보다 가벼운 가스보다는 무거운 가스가 더 많다.

무색 무미 무취 무독성에 안정적이고 물질의 변화를 촉진하지 않는 기체가 지구 공기의 대부분을 차지한다는 것은 무척 다행스러운 점으로 보인다. 질소처럼 공기 중에 75~80%씩이나 들어있는데도 호흡 시 인체에 아무 탈을 내지 않는 기체는 생각보다 많지 않다.
물론 산소가 없이 질소'만' 그렇게 꽉 차 있으면 사람은 응당 질식(사)할 것이다. 그리고 사람이 고압 심해에서 있다가 갑자기 나올 때 혈관 내에서 기포를 형성해 혈관을 막는 '잠수병'의 주범 기체도 질소이다. 아무래도 대기에서 차지하는 성분이 많기 때문에 그렇다.

변질 걱정 없이 굉장히 장기간 보존해야 하는 공산품은 진공 포장을 하는데, 식료품의 경우 산화 방지를 위해 일명 '질소 밀봉 포장'을 해서 보존한다. 이게 과도하다 보니 "질소를 한 봉지 구입하시면 감자칩을 요만치 보너스로 드립니다"라는 개드립이 나오기도 했다.
비행기 랜딩기어 타이어에는 일반 공기가 아니라 100% 질소를 주입한다. 착륙 마찰열로 인한 발화· 연소의 가능성을 원천봉쇄하기 위해서다. 얘를 액화한 액체 질소는 초강력 냉각과 냉동 용도로 쓰인다. 산소보다도 끓는점이 더 낮다.

그런데 얘는 그저 안정적이고 다른 원소와 결합하지 않는 비활성 기체냐 하면 그건 또 아니다. 자동차 실린더 같은 고온 고압에서는 환경 오염 물질인 질소 산화물로 합성되기도 한다. 그리고 질소 화합물은 아이러니하게도 폭발물의 제조에도 쓰인다.
더욱 신기한 것은 이런 질소가 의외로 단백질의 주요 구성 성분이고 비료의 원료라는 것이다. 산소만큼이나 질소도 알고 보면 생명 유지에 매우 중요한 원소인 셈이다. 물론 이건 대기 성분으로서가 아니라 그냥 원소로서의 특성일 뿐이기 때문에 공기 중의 질소를 쌩으로 바로 활용하는 건 가능하지 않았다. 그러다 '질소 고정' 같은 과학 기술의 발전을 통해 20세기에 와서야 가능해졌다.

2. 산소

질소가 단백질을 구성하여 생명체를 존재 가능하게 한다면, 산소는 그 생명체가 본격적으로 생명 활동을 할 수 있게 한다. 산소가 없이는 인간 포함 코로 호흡하는 생명체들은 단 몇 분간도 살 수 없다.
공기 중에 산소 농도가 높으면 사람 역시 조금만 숨을 쉬어도 더 크고 많은 신체 활동을 할 수 있다. 반대로 산소가 부족한 고산지대에서는 전문 훈련을 받지 않은 일반인이라면 발을 땅에서 떼어서 걷는 것만으로도 100미터 전력질주를 한 듯이 숨이 차서 고생하게 된다.

모든 신체 활동에 산소가 쓰인다. 하지만 근육을 쓰는 비중이 더 높기 때문에 오래 했을 때 근육이 땡겨서 못 하는 건 무산소 운동이다. 반대로 팔다리 근육은 그다지 힘든 상태가 아닌데 오로지 숨이 차서 못 하는 건 유산소 운동이다.
가만히 있으면서 무거운 기구를 들거나 옮기기를 반복하는 힘 쓰는 운동은 대체로 무산소이다. 그 반면, 수영· 등산· 달리기처럼 순간적으로 강한 근력을 필요로 하지 않으면서 꾸준한 신체의 이동을 수반하는 운동들은 대체로 유산소 운동이다. 둘은 비슷한 자질 같지만 서로 완전히 동등하지는 않다.

화학적인 관점에서 보면, 산소는 말 그대로 '산화'라고 불리는 물질의 화학 반응에 그야말로 터보 모드 가속을 넣는다.
익히 아는 바와 같이, 꺼져 가는 불씨를 순수 산소 속에다 집어넣으면 불길이 확 일어나서 탄다. 자동차 엔진의 터보차저는 본질적으로 하는 일이 공기를 더 집어넣는 건데, 더 정확하게 표현하면 산소를 더 집어넣는 거라고 볼 수 있다.

철 같은 금속도 불꽃을 일으키며 맹렬하게 타 버려서 어떻게 태우느냐에 따라 산화철로 바뀌거나 아예 녹는다. 금속을 녹일 정도인 초고온의 불꽃을 만들기 위해서는 연료를 특수한 걸로 많이 투입해야겠지만, 고농도의 산소를 공급하는 것 역시 매우 중요하다.

산소는 자신은 아무 변화 없이 화학 반응을 촉진만 하는 '촉매'가 아니다. 화학 반응을 일으킨 뒤 자신은 다른 원소와 결합하여 '산화물'이라는 다른 물질로 바뀌어 버린다. 제일 흔하고 만만한 산화물은 바로 이산화탄소 되겠다. 동물은 호흡으로, 그리고 각종 동력 엔진들은 폭발과 연소를 통해 온통 산소를 없애고 이산화탄소를 배설하기만 하는 반면, 녹색 식물은 광합성이라는 경이로운 메커니즘을 통해 물과 빛, 이산화탄소를 역으로 산소와 양분으로 바꾼다.

현대 과학으로도 이런 식물이 하는 일을 흉내 내고 대체하는 기계는 못 만들고 있다. 그나마 인간이 백열등과 형광들을 거쳐서 LED라는 사기적인 빛을 만드는 것까지 성공한 덕분에, 미래엔 날씨를 안 가리는 실내 농업이 가능할지 논하는 정도이다. 질소 공급이 해결됐고 빛 문제도 해결됐다고 치는데 다음으로 물 문제는 변덕스러운 자연에 의존하지 않고 자체 조달이 가능할지 모르겠다.

산소는 여러 모로 유익한 기체이긴 하나, 그렇다고 산소가 공기 중에 지금의 질소가 있는 것만치 대부분을 차지해 버리면 그건 그것대로 문제가 된다. 불이 너무 쉽게 붙고 화재 진압을 하기 너무 어려워진다. 그리고 사람 같은 생물체 역시 폐에 과부하가 걸리고 산소 중독이 발생하여 신체 이곳 저곳에 탈이 난다.
나중에 언급할 일산화탄소 중독에 걸려서 죽어 가는 사람이라면 헤모글로빈에 달라붙은 일산화탄소를 떼어내기 위해서 100% 고압 산소 주입 처방을 내리긴 한다. 허나 그건 예외적이고 특수한 응급 상황이기 때문에 그러는 거다.

산소에는 지금까지 언급한 것과 같은 유익한 산소만 있는 게 아니다. 노화를 촉진하고 인체의 수명을 깎아먹는 '활성산소'라는 것도 있다. 둘 다 같은 O2이지 않은지? 이게 화학적으로 무슨 차이가 있는지 모르겠다. 물도 경수만 있는 게 아니라 얼음이 가라앉는 '중수'라는 게 있을 수 있는데 활성산소도 뭔가 돌턴의 원자설 범위를 넘어서는 미세한 차이가 있는 산소인가 하는 의문이 든다.

3. 이산화탄소

탄소는 그야말로 마법에 가까운 화합물을 만드는 능력이 있는 만능 원소이다. 다이아몬드, 흑연, 그을음 검댕이 다 동일 원소 기반의 물질이라는 게 믿어지지 않는다.
얘가 불꽃을 활활 내어 타면서 산소와 결합하고 난 기체 찌꺼기가 이산화탄소이다. 그나마 식물이 있으니 산소와 이산화탄소 사이를 오가면서 탄소가 재활용 순환이 가능하다.

단, 이것도 조건이 있다. 산소 공급을 잘 받으면서 '완전 연소'를 이뤘다면 불꽃이 파랗고 에너지도 더 많이 나면서 이산화탄소가 발생하지만, 그렇지 못하고 좀 답답하게 '불완전 연소'를 했다면 불꽃은 노래지고 에너지가 덜 나며 연기· 그을음이 발생하면서 부산물도 일산화탄소가 나오게 된다.

이산화탄소는 질소나 산소 같은 기체와는 특성이 많이 다르다. 끓는점이 그런 기체들보다 훨씬 더 높아서 비교적 쉽게 액화나 응고 가능하다. 드라이아이스라고 다 들어 보셨을 것이다. 또한 얘는 물에도 더 잘 녹는 편이며, 이때 물을 탄산이라는 비교적 약한 산성으로 바꾼다. 탄산은 톡 쏘는 맛이 좋아서 청량음료를 만들 때 쓰인다.

이산화탄소는 공기에 대략 0.03%(백분율), 혹은 표현을 달리하면 300ppm(백만분율) 정도 존재하니 질소와 산소에 비하면 가히 극미량이다. 사람이 내뱉는 숨은 산소가 몽땅 이산화탄소로 바뀐 게 아니라 20% vs 0.03%이던 것이 16% vs 4% 정도로 바뀐 수준이라고 한다. 다만, 최근에는 화석 연료 소비의 증가 때문에 전지구적인 이산화탄소 농도가 0.04%로 증가했다고 전해진다.

이산화탄소는 연소의 부산물로 나온 물건인 만큼, 산소와는 정반대로 불을 꺼 버리는 효과가 있다. 그리고 질소나 산소보다 인체에 훨씬 더 해롭다. 위키백과의 설명에 따르면, 공기 중에 이산화탄소의 농도가 찔끔찔끔 증가하여 0.x%정도가 되면 슬슬 나른함이 느껴진다고 한다. 그리고 공기 전체의 이산화탄소 농도가 사람의 날숨과 근접하게 되면(이산화탄소 2~3%) 점점 호흡이 거칠어지고 어지러움이 느껴질 지경이 된다.

이산화탄소의 농도가 정상적인 날숨의 농도인 4%대를 초과하게 되면 두통, 구토 등 본격적인 이상 증세가 나타난다. 호흡을 통해서 이산화탄소를 내보낼 수 없는 지경에 이르렀기 때문이다. 폐가 상하고 운동 능력이 떨어진다. 수 시간 이상 이런 환경에 노출되면 영구적인 장애와 사망까지 초래할 수 있다. 그리고 이 정도 이산화탄소 농도이면 촛불쯤은 바람 없이도 곧바로 꺼뜨릴 수 있다고 한다.

10%를 넘는 이산화탄소에 노출되면 사람은 불과 몇 분 만에 활동 불가능에 빠지고 의식을 잃는다. 물에 얼굴까지 잠긴 것과 마찬가지로 신속하게 질식한다. 하물며 이산화탄소가 지금의 산소 농도와 비슷한 수준으로 있다면.. 사람은 그런 곳에 들어가는 즉시 폐가 이산화탄소로 인해 작살이 나면서 기절하고 죽는다.

이런 이산화탄소는 유감스럽게도 온실효과를 일으키며 지구 온난화에도 기여하고 있다. 양도 얼마 안 되는 주제에 인간에게 끼치는 민폐가 꽤 크다. 그래서 세계는 지금도 탄산가스 배출을 줄이려고 안간힘을 쓰는 중이다.

그런데 태양계에서 지구의 이웃인 금성은 대기의 무려 95% 가까이가 이산화탄소이며 양도 엄청 많아서 대기압이 지구의 90배에 달하는 완전 미친 행성이다. 이 정도 공기압은 바닷속 수심 900미터에서 받는 압력과 비슷해서 빈 깡통쯤은 곧장 찌그러지며 어지간한 잠수함들조차 내려가지 못하는(심해 전용 잠수정 필요) 살인적인 압력이다.
이러니 금성은 낮과 밤, 여름과 겨울, 적도와 극지대 구분이 없이 지표면 전체가 1년 내내 섭씨 450~500도에 달하는 고온 고압 불지옥을 자랑한다. 가스형 행성도 아니고 지구와 가장 가까운 행성이 어쩌다 저 지경이 됐는지가 참 안쓰러울 뿐이다.

4. 일산화탄소

일산화탄소는 이름에서 알 수 있듯이 분자에서 탄소 원자가 이산화탄소보다 하나 더 적다. 원래는 이산화탄소가 생겨야 할 상황에서 뭔가 2% 부족한 여건 때문에 생기는 물건에 가까우며, 똑같은 무색 무미 무취..이지만 그런 것치고는 원조인 이산화탄소와 비교했을 때 특성이 달라도 너무 다르다. 마치 같은 산소 원자 기반임에도 불구하고 기체 분자로서 산소와 오존은 서로 확 다르듯이 말이다.

이산화탄소가 섭씨 -100도 이상의 비교적 높은 온도에서도 액화· 응고하는 것과 달리, 일산화탄소는 다시 질소· 산소처럼 -200도에 가까운 엄청나게 낮은 온도에서 액화· 응고한다. 또한 일산화탄소는 이산화탄소처럼 더 반응할 게 없어서 불을 꺼뜨리지 않으며, 산소와는 불꽃까지 내면서 활활 타며 반응해서 원래 의도했던 목적지인 이산화탄소로 변한다.

사실, 진공이라고 해도 정말 아무 물질도 없는 0의 진공은 만들기가 거의 불가능하듯, 현실에서는 대체로 완전연소가 이뤄지는 상황에서도 일산화탄소는 극미량 찔끔찔끔 생긴다. 그렇기 때문에 자동차가 엄청 많이 다니는 도심은 농촌보다 대기 중 이산화탄소뿐만 아니라 일산화탄소의 농도도 상대적으로 더 높다. 불완전연소가 일어나서 사람 건강이나 기계의 동작 효율에 좋을 건 하나도 없다.

산소는 질소만큼 있으면 위험하고 이산화탄소는 지금의 산소만큼만 있어도 사람을 즉사시킬 정도인데.. 일산화탄소는 그 적은 이산화탄소만큼만 있어도 극도로 위험하다. 이산화탄소는 농도를 논할 때 퍼센트와 ppm이 번갈아가며 쓰이지만 일산화탄소는 스케일이 워낙 작기 때문에 십중팔구 ppm으로 농도를 기술한다.

일산화탄소가 위험한 이유는 잘 알다시피, 사람의 뻘건 혈액 속에 존재하는 철 이온 기반 헤모글로빈이 산소보다 일산화탄소와 반응을 거의 200배가 넘게 더 잘하기 때문이다. 왜 그런 걸까..? 그러니 일산화탄소가 정말 극미량만 있어도 헤모글로빈이 병신이 돼 버리고 뇌 방면 산소 공급에 애로사항이 꽃핀다. 곧바로 두통, 어지럼증, 체력 저하가 발생하며 심하면 사망. 단적으로 말해 연탄가스 중독의 주범이 요놈이다. 옛날에는 이걸로 일가족이 몰살당하는 건 일도 아니었다. 아니면 뇌가 손상되어 평생 장애인이 되거나.

일산화탄소의 부피 대비 농도가 겨우 10ppm만 돼도 당장 죽지는 않지만 거기서 수십 분간 있어 보면 사람의 컨디션이 살짝 달라진다. 호흡 계통에 문제가 있는 환자는 겨우 이것만으로도 몸 상태가 더 나빠질 수 있다.
농도가 지금 대기 중의 이산화탄소와 비슷한 급의 세 자리수 ppm에 진입하면 혈액이 본격적으로 제 기능을 못 하기 때문에 평소보다 금방 숨이 차고 신체 활동이 힘들어진다.

1000ppm이 넘어가는 농도에서 몇 시간째 노출되면 사람은 드디어 금세 의식이 몽롱해지며 얼마 못 가 매우 높은 확률로 픽 쓰러져 죽는다. 이산화탄소가 이 정도 농도이면 아직 그냥 아주 살짝 나른함이 느껴질 정도에 불과하며, 건강과 생명엔 여전히 아무 지장이 없다. 얘는 치사량이 이산화탄소의 수백 분의 1 이하에 불과해서 훨씬 더 위험함을 알 수 있다.

전기의 힘으로 움직이는 로봇은 동력 계통의 유연함이 인간의 근육에 미치지는 못하고 있다. 하지만 기계는 생명체와 달리 방사선 피폭에 강하고, 또 호흡을 하지 않기 때문에 유독성 기체 속에서도 잘 버티는 게 장점이다.
사실, 생명체도 헤모글로빈이 아닌 헤모시아닌(구리 이온) 기반인 무척추동물들은 일산화탄소 중독에 걸리지 않는다. 그러나 헤모시아닌은 산소 운반 효율도 헤모글로빈의 1/4에 불과하다는 게 단점이다. 개미나 바퀴벌레를 터뜨려 죽였는데 무슨 피 빨아먹은 모기도 아닌 것이 죄다 시뻘건 혈흔을 만들어 낸다면 그것도 참 골칫거리이지 싶다.. -_-

5. 특별판: 수소

원래는 지구의 대기에서 질소와 산소 다음으로 많이 있는 기체는 '아르곤'이라는 진짜 비활성 기체이다(부피 비율은 대략 1%가량). 얘도 화학적으로 다른 용도가 있긴 하지만 워낙 화합물을 안 만들고 존재감도 없다 보니 더 자세한 설명을 생략하겠다. 그 대신, 질소, 탄소, 산소 얘기가 다 나온 마당에 왠지 누락된 것 같은 느낌이 드는 수소 얘기를 하고서 글을 맺겠다.

수소는 원자 번호 1번을 당당히 차지하고 있으며, 지구뿐만 아니라 우주를 통틀어서 가장 가볍고 가장 흔하고 많은 원소이다. 그리고 산소와 반응도 아주 격렬하게 한다. 불꽃이 튀면 퍽 하고 타 버리는 게 무슨 천연가스 같다.

하지만 본격적으로 천연가스 같은 연료로 사용하기에는 수소는 너무 가볍고 한편으로 위험하다. 지구 대기에 수소를 거의 찾을 수 없는 이유는 그 가벼운 수소를 대기로 가둬 두기에는 지구의 중력이 충분치 못하기 때문이다. 이게 도대체 무슨 말인가 싶지만, 수소를 채운 풍선이나 비행선이 하늘로 둥둥 뜨는 걸 생각하면 좀 이해가 될 것이다. 너무 가볍고 자유로운(?) 기체답게 액화와 응고는 절대영도보다 겨우 10~20도 높은 극한에 근접해야만 가능하다. 압축과 보관도 평범한 기술로는 할 수 없다.

탄소가 붙은 탄화수소(알코올, 천연가스 등) 계열이 아니라 순수하게 수소만을 연료로 활용할 수 있다면 효율도 좋고 고갈 걱정도 없고 탄산가스가 아닌 수증기만 나오는 매우 깨끗한 엔진을 만들 수 있을 텐데.. 그건 다름아닌 저런 기술적인 난관으로 인해 21세기인 오늘날까지도 아직 제대로 실용화가 안 된 채 떡밥에 머무르고 있다. 또한 원소로서의 수소가 아니라 수소 기체는 지구상에 흔치 않으며, 물을 전기 분해해서 수소를 얻는 비용도 그리 만만찮다는 걸 알아야 한다.

수소는 앞서 소개한 기체들과는 달리, 대기 중 농도가 얼마인 곳에 인체가 노출되면 무슨 반응이 오고, 독성이 있고 하는 자료가 존재하지 않는다. 수소가 그만치 대기 중에 섞여 있었다가는 자기가 진작에 스스로 폭발해서 다른 화합물로 변해 버리고 없기 때문에 인체의 반응 자시고 할 게 없다. 폭발이 위험한 거지 딱히 폐에 생화학적인 민폐를 끼칠 여지는 없다.

이런 수소는 자기 바로 다음으로 가벼운 비활성 기체 원소인 헬륨과는 특성이 완전히 상극이다. 헬륨은 수소 같은 반응성이 없으며, 양도 수소보다 훨씬 적고 값이 더 비싸다.
수소가 들어간 화합물 중에 물이야 워낙 특이하고 유명한 놈이다. 그것 말고 그다지 깨끗하다는 느낌이 들지 않는 화합물로는 다음과 같은 것이 있다.

  • 메탄(탄소+수소): 자연에서는 쓰레기가 썩을 때, 더 구체적으로는 식물이 부패· 분해될 때(초식동물의 소화 과정도 포함) 생성된다. 그러니 쓰레기 매립지에는 이렇게 생성된 메탄을 수집해서 연료로 활용하는 설비도 있다. 하지만 메탄 자체는 천연가스의 주성분이며, 무색 무취로 별로 더럽지 않은 물질이다. 메탄과 메탄'올'의 차이는 CH4와 CH3OH의(수산화기 OH) 차이에서 유래된다.
  • 황화수소(황+수소): 달걀 썩는 악취의 주범으로, 황을 포함한 단백질이 부패할 때 난다.
  • 암모니아(질소+수소): 대변이 아니라 소변 테크로부터 유래되며, 화장실의 지린내와 직접적인 관계가 있다.

Posted by 사무엘

2016/10/17 08:39 2016/10/17 08:39
, , , , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1284

(1) 부력: 공기보다 가벼운 가스를 잔뜩 실어서 뜬다. 배가 물에 뜨는 것과 개념적으로 동일한 원리임. 비행선이나 기구는 둥실둥실 우아하게 뜨고 내릴 수 있으며 공중 정지가 가능하고 연료도 적게 들어서 좋다. 그러나 얘는 중량 대비 동체의 부피가 너무 커지며 비행 속도도 대단히 느려서 실용성이 떨어진다. 엔진이 꺼졌다고 바로 추락하지는 않지만, 피탄 면적이 너무 크기 때문에(가스가 새면?) 그게 안전 관점에서 안 좋다.

(2) 양력(고정익. 동체가 움직여서 생성): 고성능 엔진으로 공기+배기가스 혼합 가스를 내뿜어서 추력을 만들긴 하지만, 추력으로는 앞으로 나아가기만 하고 그 뒤 날개로 양력을 발생시켜서 뜬다. 바른 자세를 유지하며 끊임없이 빠르게 움직여야만 양력을 얻을 수 있기 때문에 조종이 까다로우며, 이착륙 시엔 매우 길고(가속) 넓은(날개 폭..) 활주로가 필요하다. 그래도 장거리 비행에 충분한 비행 속도와 경제성(항속거리)을 얻을 수 있는 가장 좋은 방식이 바로 이 방식이다.

(3) 양력(회전익. 날개 자체가 공기를 휘저어서 생성): 엔진으로 로터를 회전시키고 그걸로 직통으로 양력을 발생시켜서 뜬다. 고정익기보다 더 불안정하고 조종과 자세 제어가 까다로운 데다, 느리고 연비도 안 좋다. 하지만 활주로 없이 달랑 뜰 수 있고 공중 정지가 가능하기 때문에 여전히 고정익기와는 별개의 활용 영역이 존재한다.

(4) 추력: 날개 없이 연료를 태운 배기가스를 내뿜는 반작용 추력만으로 뜬다. 날개도 없이 초기에 굉장한 고도와 속도를 얻을 수 있으나, 연료 소모가 너무 극심하여 연료와 중량 대비 항속 거리가 매우 짧다. 이건 비행기보다는 로켓이나 미사일, 우주선의 동력원으로 더 적합하다. 지구 중력을 탈출하려면 닥치고 위로 솟구쳐 올라가야 하며, 달이나 우주 같은 곳은 애초에 대기가 없어서 부력이고 양력이고가 전혀 발생할 수 없기 때문이다. 게다가 대기가 없다는 말은 연료를 태울 산소도 없음을 의미하므로, 연료 자체를 산화제와 함께 섞어서 만들어야 한다.

(2)의 원리로 날도록 만들어진 비행기/비행체라도 중량 대비 엔진 출력이 캐사기급으로 좋다면 제한적으로 (3)이나 (4) 같은 기동을 할 수 있다.
그래서 F-22 같은 최신 전투기는 무슨 로켓처럼 수직 상승이 가능하다. 그리고 사람이 안 타서 가벼운 무선조종 항공기 같은 것도 실속에 빠졌을 때 엔진 출력을 최대로 올리고 차라리 프로펠러가 있는 쪽이 위로 향하도록 하면.. 프로펠러가 마치 헬리콥터 로터처럼 돼서 비행기를 호버링 상태로 최소한 추락 사고는 안 내고 보전이 가능하다. 반쯤은 틸트로터 비행기처럼 운항 가능한가 보다.

물론 덩치 큰 여객기에게는 저런 건 어림도 없는 소리다. 동체를 수직으로 세웠다가는 곧바로 추락한다..;;

이런 기계들 말고 새와 곤충 같은 생명체가 공중에 뜨는 건 일단 (1)과 (4) 부력과 추력은 제끼고 시작한다. (1)은 크기 압박, (4)는 분출과 힘 압박이 너무 심하기 때문에 생물학적으로 구현 가능하지 않다. 결국 남는 건 양력인데, 생물의 비행은 고정익과 항공익 어느 하나로 딱 떨어지지는 않아 보인다.

날개를 직접 퍼덕여서 상하 압력차와 양력을 만드니, 대놓고 고정익은 아니다. 게다가 어디서든 간편하게 떴다가 내릴 수 있으니 고정익의 한계를 갖고 있지 않다. 새가 무슨 활주로가 필요하다거나, 주변 공기를 다 빨아들여서 온갖 요동을 치고 후폭풍을 일으키며 날지는 않는다!
하지만 긴 날개를 쫙 펴서 글라이더처럼 활강하는 새도 있기 때문에 고정익 비행 원리도 사용하지 않는 건 아니다. 고정익 항공기를 발명한 선구자들이 새들의 날갯짓을 눈에 불을 켜고 관찰한 건 다 이유가 있다.

새들은 하늘을 날기 편하라고 여느 육상 동물들보다 시력이 아주 좋으며, 덩치 대비 폐활량도 훨씬 더 우수하다고 한다. 뼈도 가볍고 공기구멍이 많다던데, 그럼 골다공증이 인간에게는 병이지만 새들에게는 자연스러운 현상인가 보다.

지상에서 무려 9~10km 위인 어지간한 여객기 순항 고도에서 나는 철새들도 있다. 이들은 그 먼 길을 어떻게 찾아가는지 정말 신기하지 않을 수 없다. 또한 매 같은 새가 공중을 날다가 거의 8~90도로 급강하해서 지표면의 작은 동물이나 물고기를 채어 가는 건 어지간한 전투기의 기동 뺨치는 스킬이다. 이런 기술은 절대로 그냥 저절로 생길 수가 없으니 '지적 설계'의 근거로 인용되기도 한다.

큰 새가 아니라 벌새나 참새 같은 극단적으로 작은 새들은 활강 따위 없이 닥치고 죽어라고 날갯짓을 해야만 공중에 뜰 수 있다. 이는 헬리콥터의 특성에 더욱 가깝다. 날개를 퍼덕이는 횟수가 초당 수십 회에 달하기 때문에(분당 2~3천 회) 소리가 '퍼덕퍼덕'이 아니라 말 그대로 엔진 소리처럼 '부웅', 영어로는 droning이 된다.

이 때문에 요런 동물들은 체력 소모가 장난이 아니며, 덩치 대비 식사량도 엄청나게 많다. 내연기관으로 치면 회전수가 왕창 높은 오토바이용 2행정 숏 스트로크 엔진 같다. 디젤 엔진과는 스타일이 완전 반대다.
새들은 그렇게 힘들게 공중에 떠 있다 보면 곧 지치기 때문에 착륙해서 쉬어야 한다. 옛날에 중국에서 "저 새는 해로운 새다" 운동이 벌어졌을 때, 사람들은 무슨 무기를 쓴 게 아니라, 모조리 쭈욱 도열해서 참새가 나뭇가지에 앉아 쉬질 못하게 해서 비행 중에 지쳐 떨어지게 하는 방법으로 참새를 잡았다.

새 다음으로 곤충으로 가면.. 전세계에서 인간을 가장 많이 죽이고 있는 동물은 같은 사람이 아니며, 사자· 호랑이 같은 맹수도 아니고 뱀도 아니고.. 모기라고 한다. 곱게 피만 빨아먹고 꺼지는 게 아니라 나쁜 병원균을 같이 옮겨서... (그래도 모기 다음의 굳건한 2위는 사람이 맞댄다. ㄲㄲ)
모기는 비행체로서는 힘이 아주 부족하며 항속거리도 짧다. 지상에서 스스로 10층 이상의 고층 빌딩을 오르지는 못하며, 엘리베이터나 계단 복도 등을 타고 올라온다고 한다.

하지만 모기는 기동성은 최고이다. 공중정지부터 시작해 그야말로 상하좌우전후 6방향 자유자재로 움직일 수 있다. 그나마 민첩하지 않아서 파리보다야 훨씬 쉽게 잡을 수 있는 게 다행이다. 게다가 피를 빨아먹은 뒤엔 무거워서 민첩성· 반응성이 더욱 떨어지기 때문에 인간에게 잡힐 확률이 더욱 높아진다.
원하는 시뻘건 액체를 얻었으면 빨리 여기를 빠져나가고 사라지는 게 사람과 모기에게 모두 좋을 텐데, 그런 것까지 생각할 정도로 모기가 똑똑하지는 못하다. 게다가 모기의 '웨엥' 날갯짓 소리는 흡혈 이상으로 인간으로 하여금 극도의 불쾌감과 모기에 대한 살생 충동을 부추기는 요소이다.

* 여담: 복엽기

라이트 형제가 최초로 발명한 비행기를 포함해 1910~1920년대까지의 비행기의 형태는 복엽기가 대세였다. 복엽기란, 날개가 위아래로 두 겹이 달린 비행기를 말한다. 그게 옛날 비행기의 상징이라 해도 과언이 아니다.

사용자 삽입 이미지

저건 한눈에 봐도 공기 저항을 최소화한 '에어로다이나미컬'한 디자인은 아니어 보이는데.. 초창기에 비행기의 모양이 저랬던 이유가 무엇일까?
날개를 두 겹으로 배열하면 같은 속도에서 공기를 더 많이 부딪치고 양력도 더 많이 얻을 수 있기 때문이다. 정확히 2배까지는 아니어도 1.x배 정도는 말이다. 또한 이렇게 하면 한 날개에 걸리는 공기의 압력 오버헤드를 분담하는 효과도 얻을 수 있었다.

옛날의 비행기는 100여 년 전의 열악한 엔진+날개 기술로 일단 어떻게든 공중에 뜨는 걸 목표로 했다. 속도는 일단 안정적으로 뜬 뒤에 그 다음에 생각할 문제였던 것이다. 애초에 고정익기는 이륙할 때(양력)와 착륙할 때(제동) 모두 뒷바람이 아닌 맞바람이 필요한 물건이기 때문이다.

그러다가 금속으로 더 튼튼한 비행기 날개를 넣는 기술이 개발되고 엔진의 성능도 향상되면서 비행기의 트렌드는 단엽기로 바뀌었다.
헬리콥터로 치면 상하로 로터가 둘 달린 동축 반전 로터가 만들어졌다가, 나중에는 지금 같은 테일로터 방식이 주류가 된 것과 비슷한 변화라고 생각할 수 있겠다.

* 여담: 라이트 형제에 대해서

세상을 바꿔 놓은 발명들이 일단 개발된 뒤에도 아무 탈 없이 곱게 정착하고 실용화된 건 아니었다.
자동차의 경우 영국에서는 잘 알다시피 멀쩡하게 잘 만들어 놓고도 적기 조례라는 규제 병크(기존 마차 운수업자들 보호..) 때문에 자동차 기술이 유럽의 다른 나라보다 뒤쳐지는 결과가 초래되었다.

세계 최초로 동력 비행에 성공한 라이트 형제는 이제 유명인사가 되고 돈방석에 앉은 게 아니라... 자국 정부 기관으로부터는 외면받고, 비행 기술을 시샘하는 동종업계 종사자들로부터는 웬 표절 도용 소송을 당해서 굉장히 힘든 나날을 보내게 됐다. 그 동안 정작 프랑스와 영국, 심지어 일본 같은 경쟁국에서는 라이트 형제를 VIP로 대접했으며, 한편으로는 비행기 제조 기술을 빼내려고 혈안이 돼 있었다.

한국도 아니고 선진국에 엔지니어· 덕후의 천국인 미국이 그것도 자국 국민으로서 황금알을 낳는 거위 같은 발명을 한 라이트 형제를 당대에 그렇게 홀대했다는 건 정말 믿어지지 않는 일이다.

형인 윌버 라이트는 여기 저기 쓸데없는 소송에 말리면서 몸과 마음이 쇠약해졌으며, 1912년에 40대 중반의 나이로 세상을 떠났다. 그러나 동생인 오빌 라이트는 두 차례의 세계 대전을 거치면서 비행기 기술이 지금의 컴퓨터 기술만큼이나 가히 폭발적으로 발전하는 것을 본 뒤, 1948년에 죽었다. 1903년에 플라이어 1호를 띄우고도 40년이 넘게 더 살아 있었던 것이다.

오빌과 윌버가 한 비행기를 같이 타고 조종한 건 1910년 5월 25일의 가족 비행이 마지막이었다. 지금까지는 여든이 넘은 친부가 "둘이서 한 비행기를 타다가 추락 사고라도 나서 다 죽어 버리면 비행기 연구의 맥이 끊어지지 않느냐? 그러니 연구 중에 비행기엔 반드시 한 명씩만 타고 다른 한 명은 땅에 있어라"라고 당부했기 때문이라고 함..;;

그리고 끝으로, 라이트 형제는 목사의 아들인 독실한 기독교인이었다. 그런데 평생을 비행기에 미쳐 사느라 두 사람 모두 독신으로 살다가 갔다..;; 후세는 못 남겼지만 전세계인들이 영원히 기억하는 이름을 남겼다.
비행기를 발명해서 유명해지고 신문 기자로부터 혹시 결혼 생각은 없느냐는 질문을 받자 이들은 이렇게 대답한 것이 잘 알려져 있다.

  • 오빌: 형부터 결혼하면 그 다음에 나도 할 거예요.
  • 윌버: 비행기와 부인에게 둘 다 쓸 시간은 없습니다. (!!)

그래서 둘 다 독신이 됐대나 어쨌대나..;;

Posted by 사무엘

2016/08/04 08:38 2016/08/04 08:38
,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1257

총기의 역사 -- 下

(上으로부터 이어짐)

4. 총기의 최종 발전 형태는 탄피+후장식

과거의 활, 그리고 총 중에서도 일명 BB탄을 쏘는 장난감 에어소프트 건이라든지 공기총 같은 물건은 아무래도 총알을 밀어내는 힘의 근원이 총기로부터 나온다. 그러니 화살이나 총알 같은 건 발사체 전체가 날아가 버리고 없다. 또한 발사 과정에서 딱히 열이나 폭발 같은 게 없으며 소리도 조용한 편이다.

그러나 화약의 힘으로 총알을 발사하는 화기는 사정이 완전히 다르다. 발사체를 날리는 힘은 총이 아니라 화약에 있으며, 총은 (1) 그 화약을 격발하는 트리거를 제공하고 (2) 총알이 최대한 곧게 날아가게 방향을 잡는 역할만 할 뿐이다. 아, 자동소총이나 기관총이라면 (3) 지속적으로 급탄하는 기능도 추가로 중요하겠지만.

탄환+화약+뇌홍이 탄피에 감싸져서 총알 하나에 딱 일체화가 됨으로써 장전이 더욱 간편하고 내부 구조가 더욱 정교한 총을 만들 수가 있게 되었다. 이는 (1) 후장식 장전과 (2) 총열에 아까 설명했던 강선을 가능케 했다.
후장식이란, 총구 안쪽으로 총알과 화약을 역으로 집어넣지 않음을 의미한다. 총알의 자료구조가 스택에서 큐로 바뀐 셈이다.

이것은 가히 엄청난 장점인데, 장전을 위해서 총의 방향을 매번 뒤집었다가 다시 조준을 안 해도 된다는 뜻이다. 그러니 사수의 입장에서는 자세를 바꾸지 않고도 누운 채로, 앉은 채로 지속적인 장전과 사격이 가능하고, 총열을 더 길게 만들 수도 있다.
두두두두 콩 볶듯이 발사되는 기관총을 만들기 위해서는, 총알이 들어가는 방향과 발사되는 방향이 당연히 따로여야 한다. 그러니 전장식으로는 어림도 없고 후장식이 선택이 아닌 필수다.

하지만 후장식은 만들기가 더 어렵다. 총구 외에 급탄을 위한 구멍이 추가로 존재해야 하는데, 이게 격발 때에는 정말 완벽하게 막히고 밀폐돼 있어야 하기 때문이다. 안 그러면 총 쏘다가 새어 나온 화약 역풍을 사수가 맞아서 죽거나 다칠 수 있다.
그러면서도 쓰고 난 탄피는 즉각 잘 사출돼야 한다. 화약은 폭발해서 연기처럼 사라졌으며, 탄환은 날아가고 없으니 남는 것은 껍데기인 탄피뿐이다.

탄피는 고온 고압의 화약 폭발을 견뎌야 하는 관계로 아무 금속으로나 아무렇게 쉽게 만들 수 있지는 않다. 가성비를 감안했을 때 보통 황동으로 만들며, 요즘 총알들이 다 누런 황금빛인 건 이 때문이다. 다만 실제로 날아가는 탄환은 적당한 무게를 통한 파괴력을 얻기 위해 납으로 만든다. 탄피는 격발 과정에서 딱히 심각하게 변형이나 손상되지는 않기 때문에, 어지간해서는 수거 후 재활용이 가능하다.

탄피는 총알 내부의 복잡한 부품들을 일체화해 주고, 또 엉뚱한 타이밍에 오발 사고가 일어나지 않게 내용물을 잘 보호하는 중요한 역할을 한다. 그러니 없어서는 안 되는 중요한 구성요소이긴 하지만..
그래도 총 쏘는 병사의 입장에서는 탄피는 격발 후에 남는 골치아픈 쓰레기일 뿐이다. 제대로 수거하지 않으면 평시 훈련 중에도 영 좋지 않거니와, 전쟁 중에도 흘린 탄피는 적군에게 자기 위치와 동선을 노출하는 위험 요소가 될 수 있다. 각종 추리 소설에서도 사건 현장에 탄피가 발견된 것은 빼도 박도 못할 총기 격발 흔적이므로 탐정에게 중요한 단서로 작용한다.

그래서 화약 기반 총기에도 '무탄피총'을 만들 수는 없을까 하는 연구가 과거에 진행되기도 했다. 격발 후에 총알의 모든 부위가 사라지고 없다면 총의 입장에서도 딱히 탄피 사출 기능을 만들 필요가 없으며, 총알이 더 가벼워지거나 반대로 같은 무게로 파괴력이 더 강해질 수 있으니 좋을 것이다.
그러나 무탄피 탄약은 총알 전체를 위험한 화약으로 감싸는 와중에 총기 과열 상태에서도 오발하지 않게 만드는 것이 너무 어렵다. 현재로서는 여전히 가성비가 크게 떨어지며, 가까운 미래에 실용화될 수는 없을 것으로 보인다.

5. 탄창, 기관총

후장식+탄피의 도입으로 말미암아 총기는 연사· 난사가 가능한 단계로 발전할 기술적인 기반이 갖춰졌다. 단, 이제 급탄을 어떻게 할지가 여전히 문제로 남아 있었다.
격발을 하고 나서 무슨 레버를 당기고 노리쇠(볼트)를 젖혀서 이전 탄의 탄피를 빼내고 다음 탄의 장전을 자동으로 하는 것이 바로 볼트액션 내지 레버액션, 펌프액션 방식이다. 대략 1차 세계 대전 때 쓰인 개인 화기는 이런 수준이며, FPS에서 샷건도 그러하다. 가령, Doom의 샷건은 펌프 액션이고, Doom 2에서 도입된 슈퍼샷건은 브레이크 액션이다. 전자는 펌프 손잡이 같은 걸 찰칵 당겨서 장전하고, 후자는 아예 총열을 구부려 꺾어서 장전하니까 말이다.

그 뒤, 별도의 배출과 장전 동작이 없이 방아쇠만 당기면 총알이 나가고 탄피가 빠지며, 다음 탄이 자동으로 장전까지 되는 총이 나왔는데 이것이 '반자동 소총'이다. 이제는 사수는 총 쏠 일이 있으면 정말 방아쇠만 까딱까딱 당기면 되기 때문에 이것만으로도 자동화 수준이 상당하다.

완전 '자동 소총'은 까딱까딱조차도 필요 없이, 방아쇠를 당긴 채로 그대로 있으면 알아서 2발 이상의 총알이 두두두두 날아가는 총이다. 과거 그 불편하던 화승총을 쏘던 군인이 이런 총을 보면 아마 까무러치지 않을까 싶다.
이 자동 소총의 단계에 도달하기까지 가야 한 길이 참 멀고도 험난했다. 요즘 군인에게 지급되는 소총은 '반자동/자동' 모드를 바꿀 수 있다. 자동이 가능하다 하더라도 탄약 절약이나 오발 방지를 위해서는 반자동도 여전히 필요하기 때문이다.

이렇게 발전을 거듭한 끝에 드디어 분당 수십~수백 발을 발사하는 기관총까지 등장하게 되었다. 총과 총알 모두 마치 자동차처럼 상상을 초월하는 정밀 기계/재료공학의 산물이 된 덕분이다. 그래서 임진왜란 때 조총을 쐈던 일본군은 그로부터 300여 년 뒤엔 기관총을 가져와서 동학 농민군을 처참하게 학살할 수 있었다. 이제 재래식 냉병기는 총을 든 군대를 죽었다 깨어나도 절대로 이길 수 없어진 것이다. (물론 중기관총은 사람이 혼자 들고서 쏠 수 있는 물건은 아니었지만)

이제 연사 가능한 총에다가 지속적으로 총알을 공급하기 위해, 탄창이라는 물건이 추가로 발명되었다. 실전에서는 다 쓴 탄창을 빨리 떼어내고 새 탄창으로 교체하는 게 전투원의 생존 능력과도 직결된다. 탄창은 단순한 박스 모양인 것도 있고, 총알의 모양(앞쪽과 뒷쪽의 직경이 다름)대로 휘어진 모양인 것도 있다. 기관총은 영화에서 보니 딱히 탄창 없이 탄띠로만 연결된 총알들을 콩 볶듯이 쏴 제끼는 것 같다. 급탄 자체에도 동력이 필요할 텐데 다 스프링의 탄성만으로 충분한 건지 모르겠다.

사용자 삽입 이미지

(SIG 550 돌격소총용 반투명 탄창. 출처는 위키백과)

일부 볼트액션형 옛날 총은 총기 내부에 총알이 대여섯 발 정도 한꺼번에 들어가는 '내부 탄창'이 있기도 하다. 이건 권총으로 치면 6개의 총알을 한 실린더 안에 한꺼번에 넣어서 돌려 가며 쓰는 리볼버와도 비슷한 형태인 것 같다. 내부 탄창과 외부 탄창은 증기 기관차로 치면 탄수차가 따로 있는 놈과 없는 놈의 차이와도 같은데, 그쪽도 별도의 탄수차가 있는 형태가 더 유명하듯이 총기도 탄창 하면 외부 탄창이 더 자연스러운 형태이다.

하긴, 총알의 장전이 어렵던 시절에는 미국 서부의 보안관은 미리 장전되어 있는 권총을 두세 개 차고 다니기도 했다. 반대로 '개틀링'이라고 불리는 중대형 기관총은 약실이 아니라 총열을 여러 개 묶어서 돌아가면서 사용했다. 연사로 인해 한 총열에 집중되는 과열 부담을 덜기 위해서다. 짧은 시간 동안 수많은 총알을 격발하다 보면 폭발로 인한 열을 감당할 수가 없어지기 때문이다. 그러니 발열 제어는 장전과 격발 문제를 해결한 고성능 총기가 그 다음으로 추가로 해결해야 할 문제로 등극했다. 총기를 식히는 방법은 자동차 엔진을 식히듯이 수랭식 아니면 공랭식으로 별다른 선택의 여지가 없다.

여기까지가 개인용 총기 내지 소화기(小火器)의 발달사이다. 그러고 보니 군인용 돌격소총은 Doom 2에 나오는 피스톨, 샷건, 체인건 중에 어느 부류에도 정확하게 떨어지지 않는 것 같다. 피스톨보다는 위력이 훨씬 더 세고, 그렇다고 산탄이 발사되는 건 아니고, 자동 연사도 되긴 하지만 게임에서처럼 여러 총열이 돌아가는 것도 아니니...

6. 기타 여담

(1) 화약 안 쓰는 장난감 총만 다뤄 봤거나 총질이란 걸 FPS 게임에서만 해 본 사람이라면, 나중에 군대 같은 데서 탄피 튀어나오는 진짜 총을 처음으로 쐈을 때 무지막지한 소음은 물론이거니와 반동 때문에 놀라게 된다.
반동은 '작용과 반작용'이라는 물리 법칙 때문에 어쩔 수 없이 발생하는 현상이긴 하나, 격발 직후에 사람과 총기를 움찔하게 만들기 때문에 조준 자세를 흐트리고 총알의 명중률을 크게 떨어뜨리는 요인이다. 총알이 총 밖으로 완전히 나오기 전에 그 찰나의 짧은 시간 동안에 총열이 흔들려서 총알의 진행 방향이 어긋나게 되기 때문이다.

이 반동을 사수의 어깨의 힘으로 받아내라고 보다시피 총기에 개머리판은 화승총 시절부터 진작에 만들어져 있었다. 반동을 받더라도 총알 진행 방향의 정확히 뒤로만 가고, 총구가 흔들리지 않게 말이다. 설령 어깨에다 받치지 않는 자그마한 권총이라도 일단 한 손만으로 쏘는 건 굉장한 무리다. 정확한 사격과 사수의 안전을 위해서는 반드시 FM이 권장하는 바른 자세로 총기를 양손 파지(손에 움켜쥠)해야 한다.

둠 코믹스를 보면 주인공 아저씨가 허구헌날 '존나 큰 총' 타령만 해 댄다. 그러나 너무 크고 화력이 강한 총은 현실에서는 격발 때 반동도 감당할 수 없어서 혼자서 다룰 수 없을 것이다.

(2) 옛날에 둠 게임(1, 2 모두)은 주인공은 샷건이고 로켓이고 그 어떤 화기를 발사해도 반동이 전혀 없는 반면, 몬스터가 죽을 때는 뒤로 밀려나는 게 꽤 찰지고 과장되게 구현되어 있었다. 이럴 때는 바닥이 아주 반들반들한 얼음판(마찰이..)이기라도 한 것 같다. 심지어 회전 모멘트까지 반영했는지, 나보다 위에 있는 몬스터를 하체를 피격해서 죽이면 몬스터가 뒤가 아닌 앞으로 살짝 밀려오며 죽기도 한다.

둠의 소스 코드를 보면 몬스터들에 무게(mass)라는 속성이 있다. 어차피 기술적으로 아직 반쪽짜리 3D 수준이던 둠에서 무게 정보를 막 진지하게 활용한 건 아니고, 뒤로 밀려나는 정도를 판단할 때나 사용했다. 그래서 아주 가벼운 소형 몬스터인 좀비맨을 BFG로 그것도 놈 쪽으로 돌진하면서 쏴 죽이면.. 그 좀비맨은 그야말로 광속으로 뒤로 밀리면서 핏덩어리로 변했다.

현실에서는, 몬스터에게 총알을 박아서 그렇게 뒤로 밀리게 할 정도면 나도 총을 쏠 때 그 정도로 뒤로 밀리는 반동을 받는 게 마땅하다. 발사체 자체가 엔진이 달려서 자력으로 날아가는 게 아니라면 말이다. 내가 그런 반동이 없었다면 몬스터도 그 자리에서 고꾸라져 죽을 뿐이지, 한낱 총알이 그 무거운 몬스터를 그렇게까지 크게 밀어내지는 못할 것이다.
그나저나 스타크래프트의 마린이 사용하는 가우스 소총은 설정상 개머리판이 없다. CMC전투복만큼이나 그렇게 현실적인 설정은 아닌 듯.

(3) 사람이 말소리를 내는 걸 실탄 사격에다가 비유하면, 성대를 울리지 않는 속삭임(whisper)은 공포탄 발사에다 비유할 수 있다.
성대를 떨어서 음성을 내지 않고 속삭이기만 해도 주변이 조용하다면 가까이에 있는 사람은 말을 충분히 알아들을 수 있다.
그와 마찬가지로 공포탄도 비록 탄환이 들어있지는 않지만, 화약 폭발로 인해 발생한 고온 고압의 배기가스만으로도 총구로부터 몇 m쯤 가까이에 있는 사람에게 충분히 중상을 입힐 수 있다.

완벽한 살상이 아니라 경고· 위협이나 경상만을 목표로 하는 탄환으로 공포탄만 있는 건 아니다. 탄환으로 암염 덩어리가 들어있는 소금탄, 그리고 고무 덩어리가 들어있는 고무탄도 비살상 탄환의 범주에 든다. 물론 이것들도 납 재질의 실탄보다만 덜 위험할 뿐이지, 급소에 가까이서 잘못 맞으면 치명상이 될 수 있으니 절대적으로 조심해야 한다.
전자는 <킬 빌 2>, 후자는 <폰 부스>라는 영화에서 각각 주인공이 맞은 바 있다.

(4) 리볼버에 하필이면 약실이 원형으로 6개가 들어있는 이유는 수학적으로 볼 때 2차원에서의 kissing number와 관계가 있어 보인다.
육상 경기에서 준비 땅 신호탄을 발사하는 권총도 꼭 리볼버 모양이었던 것 같다.

(5) 앞서 잠시 언급했듯이 천혜의 요새에다 세워진 성 하나를 함락시키는 건 어지간한 화력의 보조 없이는 방어자의 몇 배를 상회하는 병력을 동원하고도 정말 어려운 일이었다. 오죽했으면 고대· 중세엔 성벽의 정확한 높이가 상당히 중요한 군사기밀이기도 했다. 사다리를 만들 때 매우 요긴히 활용되는 정보이니까. 다만, 사다리를 성벽을 타고 오르는 건 너무 위험하고 공격자의 피해가 막심하기 때문에 시간이 부족하고 다른 방법(땅굴, 성문 파괴 등)을 도저히 활용할 수 없는 상황일 때만 불가피하게 쓰였다.

하지만 요즘은? 성 하나쯤이야 미사일을 쏴도 되고, 결정적으로 공성전의 종결자는 공군이라 해도 과언이 아니다. 아래로 폭격만 하면 끝...이다. 물론 공군 등 저런 현대적인 무기가 본격적으로 등장하기 전에, 화포의 성능이 크게 발전한 것 하나만으로도 전통적인 공성전이라는 건 의미를 상실했다. 세상이 그만치 변했다.

(6) 1860년대의 남북 전쟁은 아직 후장식 탄피 기반 소총이 등장하기 전의 전쟁이었지만 그때부터 벌써 사격의 달인인 저격수가 운용되었던 모양이다. 총기 기술이 발전한 덕분에 전열보병 전술이 100년도 채 지나지 않아 몸을 숨기는 저격수 사격으로 확 바뀐 것이다.
때는 1864년 5월 9일이었다. 북군의 제6군단장이었던 존 세지윅 장군은 몰래 숨어 있는 남군 저격수들을 무서워하여 부하들이 행군을 못 하고 벌벌 떨자 사기 진작을 위해 몸을 훤히 드러내고 팔을 흔들면서 이렇게 갈궜으나..

"야 이놈들아, 겨우 총알 한두 발 날아오는 것 때문에 겁 먹고 숨었냐? 그러면 전장에서 적군들이 진짜로 눈앞에서 총을 갈겨댈 때는 어쩔 참이냐? 뭐, 저격수라고? 그래 봤자 이 정도 장거리에서는 사람은커녕 집채만 한 코끼리가 있어도 못 맞.. (탕) .. 으윽!"


그런데 그것이 실제로 일어났습니다. ㄲㄲㄲㄲㄲㄲ
그는 장거리 저격을 당해서 총알을 왼쪽 눈 아래에 맞고 그대로 즉사하고 말았다. 그의 용감한 솔선수범 행동은 안타깝게도 병사들의 사기 진작에 그다지 도움이 되지 못했다.
남군 소속의 저 무명 저격수는 졸지에 적군의 쓰리스타를 사살하는 초대박 전과를 올렸는데, 얼마나 큰 포상을 받았을까 싶다.

Posted by 사무엘

2016/07/13 19:26 2016/07/13 19:26
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1249

총기의 역사 -- 上

1. 개인 화기로서 등장한 최초의 총은 화승총

전쟁이라는 건 그걸 겪는 당대의 사람들에게는 정말 상상을 초월하는 고통이고 비극이다. 하지만 옛날에 이미 일어났다가 끝나 버린 전쟁에 대해서 우리가 뭘 어찌할 수는 없는 노릇이다. 그리고 이제는 후손들도 깨달은 게 있는지, 최소한 인류를 멸망시킬 능력이 있는 주류 국가들이 대놓고 남의 나라를 침략하고 식민지를 만들지는 않는다. 시대가 바뀌었고, 핵무기까지 등장할 정도로 무기의 화력이 역설적으로 너무 강해진 탓이다. 앞으로 미래가 또 어찌 될지는 알 수 없지만, 3차 세계 대전은 2차가 끝난 지 70년이 넘은 2016년 현재까지는 여전히 떡밥 수준에 머무르고 있다.

인간이 활, 칼, 창 같은 냉병기로 싸우던 시절부터 돌격소총, 전투기, 핵무기, ICBM이 존재하는 오늘날에 이르기까지, 성경은 전쟁과 싸움의 근원은 한결같이 '인간 내면의 정욕'(lust)이라고 말한다(약 4:1). 이거 하나 때문에 사람 죽이는 기술이 어떤 식으로 기상천외하게 발달해 왔는지를 과학 기술 역사와 연계해서 살펴보는 것은 밀덕이나 역덕에게 나름 의미가 있어 보인다. 냉병기에 대해서는 이 블로그에서도 몇 년 전에 다룬 적이 있다.

흔히 혼동하기 쉬운데, 활은 새총과는 달리 줄의 탄성이 아니라 활대의 탄성을 이용해서 화살을 날린다.
이건 마치 케이블카와 스키장 리프트의 차이와도 비슷해 보인다. 전자는 차량 위에 달린 바퀴가 케이블 위를 굴러가는 형태이기 때문에 개념적으로 모노레일과 비슷하다. 하지만 후자는 차체는 가만히 고정돼 있고 케이블 자체가 움직임으로써 차체 내지 좌석을 이동시키니까 말이다.
총보다 화력이 약하고 다루기도 까다로운 활로 아들 머리 위에 놓인 사과를 맞힌 빌헬름 텔은 정말 대단한 인물이긴 하다. 실존하지 않은 가상의 캐릭터이더라도 말이다.

그러다가 총이 발명되면서 인간은 지구상의 그 어떤 맹수도 죽일 수 있는 먹이사슬의 최정점에 올랐으며, 같은 인간끼리 싸우는 전쟁의 양상도 크게 바뀌었다.
기존 갑옷이나 방패 같은 방식의 방어구는 화살이나 냉병기가 아니라 훨씬 더 큰 운동량을 가진 총알을 막는 건 어림도 없었다. 아니면 인간이 거동조차 할 수 없을 정도로 지금보다 더 두껍고 무거워져야 했다. 그러니 그런 건 퇴출되었고, 차라리 방탄조끼나 헬멧으로 형태가 바뀌었다.

다만, 총이 하루아침에 모든 냉병기를 싹 밀어낸 건 아니다. 총도 똑같이 길다란 총구가 있고 방아쇠가 달렸다고 해서 다 같은 총이 아니다.
총은 총알을 강한 화력으로 편하고 지속적으로, 또 단위 시간당 많이 발사하기 위해서 수백 년 동안 끊임없이 내부 구조가 바뀌고 발전해 왔다. 쉽게 말해 서울-부산 열차의 운행 시간이 단축되고 컴퓨터의 연산 속도가 빨라진 것만큼이나 총의 격발 성능도 향상되어 왔다. 시대에 따라 그 양상이 명백한 편이므로 총이 등장하는 옛날 역사물을 만든다면(만화, 영화, 게임 등) 정확한 고증을 반영해야 오늘날의 똑똑한 역덕· 밀덕 시청자나 사용자들에게 털리지 않는다.

옛날에는 화약을 제조하는 기술부터가 최고급 최첨단 기술이었다. 재료의 가격은 말할 것도 없고. 그리고 그걸로 차라리 대포도 아니고 더 작은 개인 화기를 만드는 건 더욱 어려운 일이었다.
초창기의 총은 지금처럼 방아쇠만 당기면 바로 펑~ 발사되는 형태가 아니었다. 탄환과 화약을 잘 뭉쳐서 총구 안으로 쑤셔 넣고, 그 화약도 심지에다 따로 불을 붙여서 격발하는 등, 그 불편함이 이루 말할 수 없었다. 이름하여 match lock, 화승총 또는 조총이다. 숙달된 사수라 해도 1분에 겨우 한 발을 쏠까 말까 수준에 불과했다. 방아쇠는 화승을 화약 접시와 연결하는 역할을 했지, 그런다고 바로 격발되지 않았다.

사용자 삽입 이미지

그럼에도 불구하고 당장 우리 선조부터가 지금으로부터 400여 년 전, 임진왜란 때 이런 불편한 조총으로도 왜군에게 쳐발려서 나라가 멸망할 뻔했다. 하긴, 스페인의 신대륙 개척자(혹은 침략자)인 코르테스와 피사로도 임진왜란보다 불과 몇십 년 더 전에 그런 비슷한 수준의 총(거기에다 중화기인 대포까지 덤)으로 중남미의 비문명인들을 잘만 제압하고 멸망시켰었다.

그 시절에 총은 불(火)과 천둥, 짙은 연기를 내뿜으면서 '탕' 하니까 사람이 죽는 캐사기 무기가 아닐 수 없었다. 적군을 죽이는 게 아니라 겁을 주는 용도로도 이만한 물건이 없었으며, '겁 주는 용도'로는 오늘날까지 공포탄이 그 역할을 톡톡히 분담하고 있다.

2. 전열보병

옛날 화승총에 쓰인 흑색 화약은 한번 발사되고 나면 주변이 온통 연기로 자욱해져서 연기가 걷힐 때까지는 목표물을 제대로 볼 수조차 없었다.
그래서 무기가 아닌 전술 차원에서의 얘기를 좀 덧붙이자면, 그 시절에 총과 총끼리 교전이 붙었을 때는 오늘날로서는 상상할 수 없는 단순무식한 전술인 '전열보병'이라는 게 가능했다. 양 진영이 아무 엄폐물도 없는 개활지에서 한 100미터 간격으로 횡대로 쭈욱 늘어서서는 "영국 신사들이여, 그대들이 먼저 쏘시오" / "말씀은 고맙습니다만 사양하겠소. 귀측에서 선빵을 날리는 게 어떻겠소?" 이러는 거다.

사용자 삽입 이미지

(영화 <패트리어트>의 한 장면.)

무슨 전쟁놀이도 아니고, 철없는 고삐리들이 건물 옥상에서 현피 뜨는 것도 아니고.. 병사들 목숨을 갖고 이게 무슨 미친 소리인가 싶은데.. 저건 단순히 낭만적인 기사도 차원에서 나온 관행이 아니다. 그 시절엔 그 전술의 천재 나폴레옹 보나파르트조차 전열보병의 불가피함과 효율을 인정하고 있었다.

먼저 쏜 쪽에서 일제히 격발을 하고 나면, 비록 맞은 쪽의 1열은 상당수 사망과 부상을 면치 못하지만, 먼저 쏜 쪽은 연기가 걷히고 긴 재장전 작업이 끝날 때까지 완전히 무력화 상태가 됐다. 그럼 맞은 쪽은 그 사이에 상대방을 향해 더 가까이 더 접근해서 반격을 하면 됐다. 실제로, 역사적으로는 먼저 쏜 쪽이 전투에서 지고, 반대로 1빵을 맞은 진영이 이긴 사례도 있다.
이런 식으로 총격을 교환하면서 전진하다가 병사가 너무 많이 죽고 전열이 먼저 흐트러지는 쪽이 졌다. 그 잔여 병력들은 항복하지 않는 한 그냥 적군 기병이나 냉병기 육탄전 병사들이 알아서 정리하면 됐다.

물론, 죽을 게 뻔한 상황에서 전열보병의 제1열로 서는 건 보통 멘탈로 가능한 게 아니었다. 과거 사다리를 타고 성을 오르는 공성전에서, 맨 먼저 사다리를 타는 1타는 그야말로 총알받이요, 그냥 죽으러 가는 거나 마찬가지였듯이 말이다. (당장 우리 임진왜란 공성전에서도 볼 수 있듯, 돌팔매질, 뜨거운 물 등등..) 그런데 이런 선구자 아방가르드가 없으면 전투가 제대로 진행될 수가 없었다.

그러니 그런 1열 1타는 당근과 채찍을 동원해서 강제로 만들어 낼 수밖에 없었다. 1타를 뛰었다가 기적적으로 살아 돌아오는 병사는 종전 후에 나라에서 엄청난 벼슬과 보상을 약속하고, 전사하더라도 최고의 예우에다 유족들이 연금 타서 평생 먹고 살 걱정 안 하게 해 줬다.
반대로 1열로 서 있다가 무서워서 혼자 도망가는 놈은 사기 유지 차원에서 가혹한 태형과 채찍질로 거의 반 죽여 놓는 식으로 다스렸다. 적군에게 죽을 확률은 95%쯤 되지만 그래도 호국영령으로서 아주 영예롭게 산화하는 것인 반면, 아군 지휘관에게 죽는 건 100%이고 겁쟁이 졸장부로 아주 치욕스럽게 뒈지는 구도를 만든 것이다. =_=;;

그 시절에는 군복, 아니 전투복이 오늘날로 치면 사관학교 생도 예복과 별 차이가 없을 정도로 아주 형형색색 화려했다. 뿌연 연기 속에서 피아식별을 하는 게 더 중요했으며, "군대에 가면 저렇게 멋있고 간지나는 옷도 입는구나" 하는 긍정적인 홍보 효과도 덤으로 낼 수 있기 때문이었다. 갑옷이 사라진 뒤에 초창기의 총기가 가져온 레어한 관행이다.

총기가 격발만 된다면야 활보다 화력이 강하지만 초창기에는 보다시피 그 격발이 너무 더디고 재장전도 힘들었다. 그렇기 때문에 "뭉치면 살고 흩어지면 죽는다"의 필요성이 지금보다 훨씬 더 절실했으며, 지금 같은 개인 단위 위장과 각개전투라는 개념이 존재하지 않았다.

3. 성냥에서 부싯돌로, 부싯돌에서 뇌홍으로

옛날 총은 격발 방식뿐만 아니라 총열의 내부 구조도 오늘날과 차이가 있었다. 총열 내부에 강선이 파이지 않아서 기껏 발사된 총알도 뱅글뱅글 돌지 않고 궤도가 안정적이지 못했다. 허나, 강선은 정교하게 파인 홈 형태인데 이건 옛날 기술로 제대로 만들기가 매우 어려웠다. 또한 그 강선의 이점을 살려 제대로 날아가 주는 총알을 만들 기술도 부족했다.

격발 방식 말고, 총열에 강선이 없다는 관점에서 옛날 총을 흔히 '머스킷'이라고 부르며, 오늘날의 강선이 파인 개인 화기를 '라이플'(소총)이라고 부른다.
강선도 없는데 총알이 최대한 곧게 나아가게 하려면 닥치고 총신을 곧고 최대한 길게 만들어야 했다. 옛날 화승총이 구조는 아주 단순해 보이는데 어지간한 작대기 지팡이처럼 엄청 길쭉한 건 이런 이유 때문이다.

라이플은 기술이 한참 발달한 뒤인 19세기에야 등장했기 때문에 그 전까지 쓰인 총기는 다 머스킷 형태였다. 월트 디즈니 <포카혼타스>를 봐도 머스킷이라는 단어가 나오고, 프랑스의 소설 <삼총사>도 제목의 원래 의미는 그냥 총이 아니라 '머스킷 사수 트리오'(three musketeers) 정도다.
포카혼타스의 경우 위기· 절정부 장면을 보면, 토머스가 인디언 코쿰을 죽이면서 "both eyes open.."(조준할 때는 두 눈을 뜨고)라는 충고를 뇌까릴 때, 총의 심지가 타오르는 게 보인다. 1600년대의 match lock 방식 총이니까 그렇다.

화승 방식은 당장 비만 와도 심지가 꺼져 버리고 총을 쏠 수가 없으니, 불편해도 너무 불편하다. 그래서 일단 격발 방식이 총 내부에 부싯돌을 내장하는 방식으로 바뀌었다. 담배에다 비유하자면, 불 붙이는 도구가 성냥에서 라이터로 바뀐 것과 같다. 총도 그런 변화를 겪었다. wheel lock, 그리고 뒤이어 flint lock이라는 방식이 등장했는데, match lock보다 사용이 더 편리해지긴 했지만 총의 구조는 예전보다 훨씬 더 복잡해지고 제조 단가가 더 올라갔다. 그래서 가성비 면에서 옛날 방식을 완전히 대체하기까지는 1세기 이상 시간이 더 걸렸다. 휠락은 말 그대로 방아쇠 주변에 동그란 바퀴 같은 장치를 볼 수 있으며, 플린트락은 총신 위쪽에 부싯돌처럼 생긴 돌출 부품이 있다.

그러다가 19세기에는 새로운 기폭제를 기반으로 '퍼커션 캡'이라는 방식이 도입되면서, 총기는 격발 방식이 부싯돌 점화가 아닌 뇌관 기반으로 바뀌었다. 툭 건드리기만 하면 부싯돌보다 불꽃이 훨씬 더 잘 일어나는, '뇌홍'이 든 캡슐을 탄환+화약과는 별개로 따로 장전한다. 총기의 방아쇠는 그 캡슐을 자극하는 역할만 한다. 그럼 그 뇌홍의 불꽃으로 인해 화약이 폭발하고, 그 힘으로 총알이 날아가게 된다.

퍼커션 캡은 거의 400년간 총기에 존재하던 화약 접시를 퇴출시켰으며 장전 속도를 크게 향상시켰다. 미국의 남북 전쟁을 포함해 19세기의 주요 전쟁들에는 부싯돌 방식 총기를 퍼커션 캡 기반으로 개조한 머스킷이 맹활약을 했다. 전열보병 전술도 사라졌으며, 병사들이 입는 군복도 미국 독립 전쟁 시절보다 훨씬 더 칙칙하고 단순해졌다. 그리고 이 탄환, 화약, 기폭제를 하나로 통합하여 간소화시킨 것이 바로 오늘날의 '탄피'가 되었다.

여담이지만, 비슷한 시기에 벌어진 "세포이의 항쟁"이 왜 일어났는지도 그 시절에 총의 격발 방식을 알고 있어야 제대로 이해할 수 있다. 쉽게 설명하자면 "뭐, 탄환과 화약을 감싸는 주머니에 쇠기름· 돼지기름이 발라져 있었다고? 그럼 난 그걸 입으로 물어뜯고 총을 쏠 때마다 힌두 교/이슬람 교 율법을 어긴 꼴이잖아?" 이런 종교 규범 광역 어그로 때문에 용병들이 들고일어난 것이다. 오늘날의 편리한 자동 소총이라면 그런 걱정은 전혀 할 필요가 없었을 텐데.

(下에서 계속됨)

Posted by 사무엘

2016/07/11 08:34 2016/07/11 08:34
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1248

2010년대가 벌써 중후반기로 들어섰다.
세상은 3, 40년 전의 SF물들이 전망했던 것처럼 인간이 무슨 달과 화성에 식민지를 개척하는 식으로 발전하지는 못했다. 초음속기와 우주 왕복선은 퇴역했고, 컴퓨터에서 싱글코어 무어의 법칙은 유효기간이 끝났다.
그러나 그런 게 아닌 다른 쪽으로는 과학 기술이 여전히 꾸준히 발달해 왔다. 제품의 외형은 크게 변화가 없을지 몰라도 그 내부는 이곳 저곳이 발전했다.

대외적으로는 1년 남짓 전부터는 기름값이 웬일로 다시 2000년대 초 수준으로 내렸고, 대학가에서 2000년대에 잠시 주춤했던 컴퓨터/전산학 지망자가 다시 늘고 있다. 컴퓨터 얘기를 좀 더 늘어놓자면 2000년대에 한창 닷넷에 밀려 C++이 죽었네 마네 하고 있었지만, 지금은 오히려 닷넷이 시들시들하고 C++ 언어가 하루가 다르게 변모하고 있다.

1999년, 2012년 등 각종 시한부 종말 예언은 예나 지금이나 전혀 적중하지 않고 불발탄으로 끝났다. 북한은 새끼 돼지 휘하에서 예나 지금이나 체제가 잘-_- 유지되고 있다. 중동에는 소말리아 해적밖에 없는 줄 알았는데 웬 이상한 또라이 이슬람 막장 국가가 태동하여 2차 세계 대전 이래로 국제 세계를 하나로 단결시키고 있다. 이 과학 기술 내지 국제 정세라는 건, 한국어의 종결어미와도 같아서 정말 그때가 돼 보지 않고서는 스토리를 정녕 알 수 없는가 보다.

컴퓨터 CPU의 집적도와 코어 수가 올라가고, 저장 매체의 용량이 급격하게 증가한 것만큼이나 이 시대는 디스플레이 내지 조명 장치가 눈부시게 발달한 것의 혜택을 크게 입고 있다. 아무리 기가 막힌 저전력 고성능 초소형 CPU가 발명됐어도, 전자식이 아니라 기계식인 하드디스크는 근본적으로 진동과 충격에 약하기 때문에 걸어 다니는 사람의 주머니 속에서 동작하기는 영 무리일 수밖에 없을 것이다.
또한 디스플레이 장비가 브라운관밖에 없거나, 액정이라고 해 봤자 계산기의 흑백 액정 같은 것밖에 없었어도 지금과 같은 스마트폰이 만들어질 수 없었을 것이다.

토머스 에디슨이 살아 생전에 발명을 그렇게도 많이 했다지만, 그의 대표적인 발명은 축음기와 백열등 전구라는 양대 산맥으로 요약된다 해도 과언이 아니다.
그 중 백열등은 가히 세상을 바꿔 놨다. 성경이 말하는 "빛과 소금" 중에서 '빛'에 해당하는 발명이다. 전등은 깜깜한 밤에 빛을 얻기 위해 굳이 연료를 태워서 불을 피울 필요를 없게 만들어 줬다.

그에 반해 등잔, 양초, 등유 램프 같은 건 연기가 남고 화재의 위험이 있으며, 결정적으로 빛이 그렇게 밝지도 않다. 어느 못사는 집에서 전기료가 밀려 단전되는 바람에, 촛불을 켜고 자다가 촛불이 넘어지고 집에 불이 나서 일가족이 죽었다는 뉴스.. 21세기에도 가끔은 흘러나온다.
이 얼마나 불편했는가? 그에 비해 전등의 빛은 그 당시로서는 얼마나 우아하게 보였을까? 오죽했으면 에디슨이 죽었을 때 미국 전역에서 1분간 전등을 소등했을 정도였다.

다만, 오늘날의 관점에서 백열등은 전기로 빛을 내는 가~~장 단순한 방법이지만, 한편으로 증기 기관차만큼이나 가장 무식하고 비효율적인 방법이기도 하다.
어느 분야이든 전기를 에너지를 가장 단순한 방식으로 끌어 쓰는 방법은 V=IR 법칙에 의거하여 물리적인 저항을 만드는 것이다. 졸졸 흐르는 강물 내부에다 물레방아라는 저항을 설치해서 동력을 얻듯이. 전동차는 저항 제어 방식이 가장 먼저 등장했으며, 백열등 역시 근본 원리는 가느다란 필라멘트를 저향열로 달궈서 빛이 덤으로 나게 하는 것이다.

연료와는 달리 대놓고 아주 태워 버리는 게 아니라는 점이 다를 뿐이다. 그리고 에디슨은 필라멘트로 쓰기에 가장 좋은 재료를 찾기 위해서 수백~수천 번의 실패를 거듭하면서 근성을 발휘했다는 일화가 전해져 온다. 가장 무식하고 비효율적인 방식의 전등조차도 그냥 쉽게 만들어진 건 아니라는 뜻이다. 그 시절엔 동그란 곡면인 전구 모양의 유리조차도 사람이 입으로 불어서 힘들게 만들어야 했다.

단순 저항으로 전기를 활용하는 모든 방식의 문제는 열이다. 전기 에너지 중 일부만이 빛이나 동력 같은 인간에게 유익한 형태로 쓰이고, 나머지는 열로 다 빠져나간다. 대놓고 전열기를 만드는 게 아니라면 저건 좀 개선돼야 할 점이 아닐 수 없다.
오래 켜 놓은 전구는 사람이 만지면 화상을 입을 정도로 뜨거워진다. 그리고 과거의 저항 제어 전동차 역시 회생 제동조차 없던 시절엔 열로 손실되는 에너지 때문에 객실 내부까지 찜통으로 변하고 비효율과 고충이 장난이 아니었다.

나중에 발명된 형광등은 내부적으로 형광 물질을 사용하고 내부 구조도 백열등보다 더 복잡하다. 필라멘트가 있긴 하지만 그거 자체가 시뻘겋게 달궈져서 빛을 내는 형태는 아니기 때문에 열이 덜 난다. 등의 모양이 왠지 백열등보다 더 길쭉하고, 같은 전기를 쓸 때 광량도 더 많고 수명도 더 길다. 쉽게 말해 더 효율적이고 모든 면에서 백열등보다 더 나았다.

그런데 과거의 형광등들은 잘 알다시피 점등 딜레이가 있었기 때문에 "형광등 같다" 그러면 머리의 반응이 좀 더딘 사람을 상대로 좀 부정적인 비유에 쓰이곤 했다. 정작 만화 같은 매체에서는 아주 비효율적인 백열 전구가 뿅 켜지는 것이 번뜩이는 아이디어가 떠오르는 걸 나타내는 긍정적인 심상이었는데 참 대조적이다.

오늘날은 이런 전구에까지 반도체를 동반한 LED 방식이 대세가 돼 있다. 전력 소모와 광량에 관한 한, 형광등보다도 더 성능이 좋은 끝판왕이라고 한다. 단점은 반도체의 특성상 초기 제조 비용이 비싸고 열에 약한 것 정도가 고작이다.
생긴 건 꼬마전구마냥 자그마한데(형광등은 이 정도로 작게는 못 만들지 아마?) 거기서 백열등 전구로는 상상할 수 없는 아주 희고 강렬한 빛이 뿜어져 나오며, 발열도 별로 없다. 이게 그냥 이뤄진 게 아니다. 스마트폰에 내장된 손전등 기능도 응당 LED 기반이며, 24시간 가동되는 길거리의 신호등들도 다 LED 방식으로 교체되고 있다. 설치만 하면 얼마 못 가 설치 비용을 회수하고 이득이 나기 때문이다.

반도체라고 하면 으레 컴퓨터를 떠올리기 쉬우나, 반도체가 꼭 그런 데에만 쓰이는 물건은 아니다. 시계가 기계식 태엽을 쓰다가 건전지를 집어넣는 쿼츠 방식으로 바뀐 것도 반도체 기술이 가미된 것이다. 전자식 시계는 가격과 성능, 정확도 등 모든 면에서 기계식 시계를 처참하게 관광 태웠다.

또한 전동차가 VVVF 제어 방식으로 바뀐 것도 반도체 기술 기반이다. 동력 성능, 유지보수 난이도 등 모든 것이 종전의 저항 및 쵸퍼 방식보다 우위이다. 초기에는 시끄러운(?) 가속 구동음만이 유일한 단점으로 제기되었지만 철덕에게는 그건 아름다운 음악-_- 소리이지 단점이 전혀 아닐 뿐더러, 요즘은 소음 문제마저도 다 개선됐다. (소음이 인간의 가청 주파수 대역 이외로 금방 넘어가거나..)

형광등이나 LED등이 백열등과는 너무 압도적인 성능 차이가 나기 때문에 나라에서는 아예 백열등을 퇴출까지 시키려 할 지경이 됐다. 마치 컴퓨터계에서 IE6이나 제로보드 4를 퇴출시키려 하는 것처럼 지금 이상의 생산이나 수입, 판매를 금지한다. 백열등은 딱히 유연휘발유나 프레온 가스처럼 그 자체가 위험하거나 환경 문제를 일으키지는 않지만, 에너지 소비량 대비 효율이 너무 안 좋기 때문이다.

참고로 현재 지구상에서 현역으로 가장 오래 뛰고 있는 백열등은 미국에 소재한 '센테니얼 전구'라고 한다. 무려 since 1901이고 한 세기가 넘게 켜져 있었다고 한다. 소등 시간은 몇십 년에 한 번 꼴로 몇 시간이 고작임. 세계 최고령 전구라고 재조명과 주목을 받기 시작한 건 1970년대부터였다.

허나, 지금으로부터 먼 미래에는 형광등조차도 LED보다 효율이 낮으며 수은이라는 위험물질 문제도 있는지라 퇴출 수순을 밟을 가능성이 있다. 그리고 이런 식으로 전기· 전자 공학 기술이 계속 발전하다 보면 기술 트렌드가 어찌 보면 복고풍을 탈지도 모른다. 한때는 실용성이 다른 기술에 밀려서 사장됐다가 나중에 그 한계가 극복되면서 다시 조명받는 것 말이다.

대표적인 예는 전기 자동차이다. 한때는 기름 자동차보다 가볍고 구조가 간단하고 성능도 좋다는 장점(시속 100km도 먼저 돌파) 때문에 널리 보급되었지만, 배터리 충전 시간과 항속거리에 치명적인 발목이 잡혀서 굳이 석유 회사의 로비가 없이도 슬금슬금 밀려 사라졌다.

하지만 지금은 기름값과 환경 문제 때문에 전기 철도뿐만 아니라 전기 자동차도 다시 주목을 받고 있다. 새로운 유전이 자꾸 발굴되고 채굴 기술도 눈부시게 향상되었다지만 석유가 지구에 무한히 존재하지는 않을 것이다. 게다가 석유는 단순히 태우는 연료뿐만 아니라 플리스틱 같은 다른 화합물을 만드는 데에도 쓰인다. 자동차의 동력원이 앞으로 어떻게 바뀔지 알 수 없는 노릇이다.

그 뿐만이 아니다. 교류 전기에 밀려 사라진 고전압 직류 송전도 그 당시에 문제되었던 한계(송전 손실, 변압)를 반도체 기술로 극복하고 다시 부각되고 있는 것 같다. 솔직히 교류는 전기 공학을 우리 같은 사람이 감당하기엔 너무 복잡하고 어렵게 만드는 주범이긴 한데..;; 단점만 없으면 직류 위주로 가는 게 더 간단하고 좋긴 할 것이다. 그리고 이 직류 송전 기술의 배후에도 반도체 기술이 있다.

그나저나 무선 송전 기술은 정말 실용화가 가능한지 모르겠다. 이게 제대로 된 물건이 나오면 전기 문명에도 일대 혁신이 일어날 것이다. 철도에는 전차선까지는 몰라도 팬터그래프가 필요 없어지고 전기 철도 시설의 근간이 송두리째 흔들릴 것이다.

끝으로, 전기 쪽 잡다한 자료들을 찾다가 본인은 흥미로운 동명이인 과학자 pair가 있다는 걸 발견했다. 이를 소개하며 글을 맺겠다.

  • 독일 브라운: 로켓(새턴 V), 전기공학(브라운관)
  • 영국 플레밍: 미생물학(스코틀랜드 출신, 페니실린), 전기공학(잉글랜드 출신, 양손 법칙)

듣자하니 그 당시에 무선 통신의 선구자이던 이탈리아의 굴리엘모 마르코니는 브라운· 플레밍과도 같이 만나서 연구를 했다고 한다. 어느 브라운과 어느 플레밍인지는 더 설명이 필요하지 않을 테고.

Posted by 사무엘

2016/04/11 19:36 2016/04/11 19:36
, , ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1213

1. 초음속 자동차

예전에 한번 하이브리드 교통수단에 대해 논하면서 초음속 자동차 얘기를 꺼낸 적이 있었다. 저 바닥도 이제 시속 1000km를 훌쩍 넘어 서양권의 상징인 시속 1000마일을 추구하는 경지에 가 있다. (☞ 전투기 엔진에 티타늄 바퀴.. 초음속車, 시속 1609km 돌파하라)

시속 200~400 정도까지를 내는 통상적인 스포츠카 슈퍼카도 아니고 초음속 자동차 정도까지 되면 실용적인 관점에서야 당연히 돈지랄의 극치일 뿐일 것이다.
세계에서 가장 큰 소수(프라임)를 발견한다거나 원주율을 몇백억 자리까지 더 구한다거나, 액체 질소까지 동원한 극한의 오버클럭질로 컴터 속도를 8GHz가 넘게 끌어올린다거나, 멀쩡한 코드를 마개조해서 난잡한 코드 경연대회(IOCCC) 출품 작품을 만드는 것처럼.. 그냥 그 분야의 지적 호기심과 기술의 극한을 추구하는 연구라는 것에 의의를 둬야 한다.

차는 적당하게 빠르게 달려서 맞바람을 맞으면 일반적으로는 아주 좋다.
사람만 시원한 게 아니라 엔진도 라디에이터를 통해 그렇게 바람을 쐬어 줘야만 냉각이 될 수 있다. 기본적으로는 냉각수를 사용하는 수랭식이지만, 그 냉각수를 식히는 데는 이런 공랭식 메커니즘이 기여하는 게 여전히 크기 때문이다.
아무리 추운 겨울이라 해도 자동차가 엔진 공회전을 너무 오래 하고 있으면 위험한 이유는.. 그런 맞바람에 의한 라디에이터 냉각 효과가 없는 상태에서 엔진이 계속 돌아가며 열을 받기 때문이다. 단순히 연료 절약이나 배기가스 환경 차원의 문제가 아닌 것이다.

그런데 땅에서 차량이 상상을 초월하게 얼마나 빠르게 움직여야 도대체 '공기와의 마찰열'을 걱정해야 할 지경이 되고, 심지어 타이어가 구름 마찰력조차 감당을 못 해서 타 버리는 처지가 되는지 나로서는 실감이 안 간다.
콩코드 정도로 날면 성층권에서도 공기와의 접촉 부분이 섭씨 몇백 도대로 올라간다고 그러고, 무슨 재돌입하는 우주왕복선쯤 되면 공기와의 마찰열이 심각한 수준이 된다고는 하는데, 어쨌든 어느 것이든 감이 안 잡히긴 마찬가지이다.

저런 초음속 차량은 엄청난 가감속 거리 때문에 자동차 회사 연구소 안의 도로에서도 테스트를 할 수 없으며, 미국이나 호주 같은 넓은 대륙 안에 있는 사막에서 최하 30km에 가까운 직선 코스를 만들어야 한다. 하긴, 소닉 붐 소음 문제도 있으니 비행기는 바다 위에서만 초음속 비행이 가능할 것이고 자동차의 초음속 주행 가능 장소는 먼 사막 아니면 답이 없겠다.
아니면 아예 지하로 내려가든가. 육상 교통수단이 일말의 실용성을 유지하면서 저렇게 초음속으로 달리려면 진공 튜브 속을 달리는 궤도 기반 대중 교통수단으로 가야 하지 싶다.

오로지 찰나의 순간이나마 최고 속도만을 최대화하기 위해 만들어진 초음속 자동차는 피스톤 회전 엔진이 아니라 제트/로켓 엔진 기반이며, 정지 상태에서 대략 55초 정도면 최고 시속 1609km에 도달한다고 한다. 같이 참고할 만한 비교 대상은 다음과 같다.

  • 나로 호는 발사 54초 만에 음속을 넘어섰다. 물론 얘는 수평 주행이 아니라 중력을 정면으로 거스른 수직 상승부터 시작한다는 게 감안할 점이다.
  • 한편, 프랑스의 슈퍼카 '부가티 베이론'은 1000마력짜리 엔진으로 정지 상태에서 최고 시속 400km까지 55초가 걸린다고 한다.

부가티 베이론은 시속 400이 55초니까 4로 나눠서 제로백은 13초냐 하면.. 그건 당연히 전혀 아니다.
얘는 제로백은 무슨 오토바이가 튀어나가듯이 단 2.9초 만에 달성된다. 200km/h가 7.3초, 300km/h가 16.7초여서 속도가 증가할수록 추가적인 가속은 기하급수적으로 느려지고 힘들어진다. 공기 저항과 엔진의 역학적 한계 때문에 경제 속도와는 갈수록 멀어지는 셈이다.

준중형급의 일반 양산형 승용차는 연비 따윈 안드로메다로 보내고 젖먹던 힘까지 다해서 액셀러레이터를 끝까지 밟아야 제로백이 10초대에 나올까 말까다. 그런데 작용/반작용 비행기 엔진도 아니고 피스톤 왕복 엔진만으로 그 커다란 차체가 3초 이내에 시속 100에 도달하는 건 가히 사기적인 성능이 아닐 수 없다. 아예 비행기 엔진을 표방하는 초음속 자동차라면 운전자는 처음엔 거의 누운 자세로 있어야 하며, 출발인지 발사인지 직후엔 무슨 전투기 급가동 때처럼 몇 G의 가속도에 피가 한쪽으로 쏠리는 걸 견디야 한다.

부가티 베이론의 경우, 시속 400km 상태로 30분을 달리면 믿거나 말거나 타이어가 홀랑 타 버린다고 한다. 고속 주행에 최적화돼서 비행기 랜딩기어급으로 무진장 비싼 전용 타이어를 써도 그런다. 하지만 시속 400km 상태로 15분을 달리면 연료가 먼저 바닥나 버리기 때문에 타이어가 타는 걸 실제로 볼 일은 없다고 한다.;;;

초음속 자동차야 고무 타이어로는 아예 택도 없고, 티타늄이라고 100% 금속 재질인 타이어를 쓴다고 한다.
시속 500~600km를 넘어서는 시점부터는 고무 타이어가 마찰열을 버티지를 못하는데, 사실은 쇠바퀴로 쇠 레일 위를 달리는 철도 차량도 비슷한 속도 영역에서 비슷한 원천적인 한계가 존재한다. 자동차와는 달리 마찰 때문에 바퀴가 타 버리는 걱정은 할 필요가 없지만, 그 반대가 문제다. 마찰이 너무 작은지라 바퀴가 레일 위를 미끄러지고 혼자 헛돌아 버리기 때문에, 더 가속을 할 수 없다.

그러니 궤도 교통수단이 그 이상 속도를 내는 건 아예 지상에서 살짝 뜨는 자기 부상 열차 쪽을 생각하게 된다. 하지만 그건 철저히 통제를 받으면서 지상에서 정~말 조금만 미묘하게 뜨는 걸 말한다.
도로를 달리는 초음속 자동차는 공기 저항을 최소화하는 한편으로, 고속 주행 중에 차체가 떠 버리지 않게 하는 게 매우 중요하다. 비행기처럼 아예 이륙을 해서는 안 된다는 뜻이다. 뜨면 조향이 안 되고 차를 통제할 수가 없어지기 때문이다.

끝으로, 초음속 자동차는 제동도 여느 자동차처럼 디스크/드럼 방식 브레이크로 하는 게 아니다. 초음속을 달성한 후엔 최대한 어서 감속하고 안전하게 정지해야만 테스트 도로에서 오버런으로 인한 대형 사고를 예방할 수 있다. 그래서 후방으로 낙하산까지 펴면서 별 짓을 다 해야 한다. 여러 모로 통상적인 자동차의 개발 방법론이 통하지 않으며, 공중에 뜨지만 않을 뿐 비행기나 다름없다는 걸 알 수 있다.

왕복 엔진에 고무 타이어를 쓰는 자동차가 그냥 몇백 m 깊이까지만 들어갔다가 나오는 일반적인 잠수함이라면, 초음속 자동차는 경제성을 희생하고라도 1만 미터 아래의 해구 밑바닥까지 내려갈 수 있게.. 작고 둥글고 단단하게 아주 극단적으로 특수하게 설계된 잠수정에 해당한다고 볼 수 있겠다.
그런 잠수정은 내려갈 때는 추를 달고 내려갔다가 뜰 때는 그걸 버리고 와야 한다. 그리고 너무 강한 압력을 버텨야 하는 관계로 유리창도 못 만든다. 초음속 자동차가 최고 속도를 찍었다가 금세 낙하산 펴고 허겁지겁 감속을 해야 하듯, 저것도 정말로 내려갔다가 허겁지겁 올라오는 것 자체에만 의미가 있다.

2. 비행기의 실속

그럼 다음으로는 진짜 비행기 얘기이다.
지난 2013년에는 아프가니스탄에서 공군 기지를 출발한 보잉 747 기반의 미국 화물기가 추락 사고가 난 적이 있었다.
비행기는 이륙하여 잘 상승하나 싶었는데 얼마 못 가 실속에 빠져 공중에 멍하니 있더니만 그대로 땅으로 곤두박질쳐 버렸다. 추락 지점엔 대폭발이 발생했고, 승무원 7인은 안타깝지만 전원 끔살을 면치 못했다. 이 추락 과정은 주변을 주행하던 자동차의 블랙박스에 고스란히 녹화되어 기록으로 남았다.

이 비행기에 도대체 무슨 문제가 발생할 것일까?
녹화 영상을 본 전문가들은 비행기가 아마 테러 공격을 의식해서(아프가니스탄임) 고각으로 무리하게 급상승을 시도한 것 같다고 분석했다. 이것 자체는 블랙박스 영상만 보고 판단 가능한 사항이다.

그런데 이 비행기에는 장갑차가 몇 대 적재돼 있었서 굉장히 무거운 상태이기도 했다고 한다.
인제 와서는 확인을 할 방법이 없고 동의하지 않는 사람도 있지만, 급상승 중에 장갑차를 고정하던 장치가 풀려서 화물들이 와르르 구르고 무게중심이 엉망이 된 게 아닐까 하는 추측도 있다. 이 정도로 비정상적인 상황이 아니고서야 비행기가 저렇게 어처구니없게 땅으로 떨어질 수는 없다는 것이다.

이거 무슨 세월호 침몰과 비슷한 과정인 것 같았다.
급상승은 배로 치면 급선회, 급변침이다. 세월호는 그걸 시도하다가 짐들이 와장창 굴러서 한데 쏠렸으며, 이 때문에 배 전체가 기울고 급기야 벌러덩 나자빠져 침몰해 버렸다.

저 화물기도 급상승으로 인해 화물 쏠림 → 기우뚱 → 실속 → 추락이라면 정말 세월호와 비슷한 방식으로 최후를 맞이한 것이다. 기계 자체의 결함이나 외부 피격이 아니라 스스로 잘못된 조작으로 인해 파멸을 맞이했다는 점에서는 말이다.

비행기와 배는 땅 위를 굴러가는 게 아니라 유체 위 또는 속을 주행하는 물건이니 무게 배분과 중심 잡기에 특별히 신경을 써야 한다는 걸 알 수 있었다. 특히 고정익 비행기는 한번 자세가 잘못돼서 양력을 잃었으면 무슨 자동차마냥 액셀을 밟아서 엔진 출력만 낸다고 해서 바로 다시 뜰 수 있는 게 아니다. 충분히 하강하면서 공기를 타고 속도를 얻어야 다시 뜰 수 있다. 그럴 만한 충분한 고도가 없으면 그냥 추락.;;
그러니 비행이 참 어려운 것 같다. 뭐, 헬리콥터는 고정익은 아니지만 고정익보다 더 불안하고 위험하면 위험했지 사정이 나은 건 절대 아닐 테고.

3. 우주로 가는 방법

물체를 단순히 양력을 이용해서 잠깐 공중에 띄우는 게 아니라, 아예 지구 대기권 밖의 우주로 보내려면 로켓 말고는 사실 답이 없다. 자동차와는 비교가 안 되는 엄청난 양의 연료를 싣고 그걸 순식간에 다 태워 버려야만 그런 힘이 나올 수 있다.
다만, 비행기 이전에 비행선이라는 게 있었듯이 옛날에는 로켓이 아닌 다른 방법으로 우주에 가는 것도 특히 쥘 베른의 SF 소설 같은 데서 종종 소개되곤 했다. 하긴 그때는 화성의 외계인이 지구로 쳐들어 온다는 <우주 전쟁>이라는 소설도 있었고, 금성 정도면 극지방에 충분히 사람이 건너가서 살 만하겠다고 상상하기도 했으니 말이다.

(1) 대포: 초고성능 초대형 대포를 쏴서 물체를 처음부터 지구 탈출 속도를 능가하는 가속도를 줘서 날려 보낸다. 이 대포야말로 둠 코믹에 나오는 BFG(X나게 큰 총포)여야 할 것이다. 제랄드 불 박사가 이 방식의 끝판왕인 space gun이라는 걸 발명해서 부분적으로 성공도 했다.

우주 대포는 복잡한 로켓 엔진이 필요하지 않으며 방대한 양의 연료 걱정을 할 필요가 없다는 게 큰 매력이다. 실제로 우주로 나가는 로켓들은 부피와 무게에서 십중팔구가 연료가 차지하고 있기 때문이다. 하지만 발사 직후에 안에 있는 모든 것을 짜부러뜨리는 살인적인 G는 뭐 어찌할 수가 없다. 그러니 인간 같은 생명체는 원천적으로 탑승 불가이며, 무생물이라 해도 실을 수 있는 물체의 크기와 무게는 어마어마한 제한을 받게 된다.

(2) 엘리베이터: 아예 저 높은 하늘 끝 우주까지 바벨 탑처럼 근성으로 우주 사다리 + 엘리베이터를 만들자는 발상이다. 하지만 잘 알다시피 그런 구조물을 만들기가 대단히 어려우며, 건설 중 또는 운용 중에 사고가 났을 때의 위험성이 너무 치명적이다. 아울러 저 위험성에 비해서는 작은 단점이겠지만, 우주로 나가는 속도가 너무 느리다는 것도 문제가 된다.

인간이 하늘을 날아서 우주로 나간다는 건 지금으로부터 150년쯤 전에는 여전히 실현 불가능한 꿈의 영역이라고 여겨졌다. 당대의 쟁쟁한 물리학자 석학이 "공기보다 밀도가 높은 기계 기반의 비행체란 존재 불가능하다"라고 대놓고 그랬을 정도이다.
그러니 어차피 불가능한 일인데 이와 관련해서 그 무슨 현실성 없고 황당한 상상인들 못 했겠는가?

그 시절에는 현실성으로 따지자면 로켓이나 우주 대포나 우주 엘리베이터나 다 그 나물에 그 밥으로, 동등한 SF의 영역에 있었다. 20세기 초까지만 해도, 오늘날 가히 우주 기술의 근간으로 정착한 액체 로켓 기술(by 로버트 고다드)마저도 진가를 인정받지 못하고 병맛 취급받았다는 걸 기억할 필요가 있다. 그만치 답이 없던 상황이었다.
하지만 기술이 발달하면서 최종 승자는 로켓으로 굳어졌다. 엘리베이터 같은 시설물이 없어도 되고 그것보다 상승 속도가 빠르고, 그렇다고 우주 대포만치 강한 G를 야기하지도 않으려면 결국 지속적으로 상승하는 힘을 발사체가 직접 갖추고 있어야 하기 때문이다.

Posted by 사무엘

2016/04/03 08:39 2016/04/03 08:39
, , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1210

옛날 글을 검색해 보니 5년도 더 전, 굉장히 옛날에 한번 텔레비전 방송 사고에 대해서 글을 쓴 적이 있었다. 그때는 말 그대로 출연자가 저지른 실수 위주로 유명한 국내 사건들을 나열했었다.
이번에는 그것보다 더 거시적인 관점에서 분류를 해 보고자 한다. 이유와 원인이야 어쨌든 최종 시청자들이 방송사에서 의도하지 않은 화면을 보게 된 일체의 사건들을 일컫는다.

다음 카테고리들은 위에서 아래로 갈수록 현실성이 떨어지며, 사건의 심각성도 그에 비례해서 더 커진다. 실수가 아니라 범죄에 더 가까워진다.

1. 출연자의 실수

생방송 중에 갑자기 돌발상황이 발생하여 출연자들이 웃음을 참지 못하고 빵터져 버리는 귀여운 유형이 많다. "나라의 경제를 얘기하고 있는데 파리가 앉았습니다"(2001)가 이 카테고리의 대표적인 예다. 한번 웃음병이 도져 버리면 마치 비행기가 실속에 빠져 버린 것처럼 출연자들이 헤어나오기가 어려운 듯.

사용자 삽입 이미지사용자 삽입 이미지

분위기를 수습하려고 MC가 나름 재치와 센스를 발휘해서 애드립을 구사한 것이었을 텐데, 오히려 그게 게스트 출연자의 웃음 고문을 더욱 가속해 버렸다. =_=;

다만, 외국에서는 생방송 중에 뉴스 기자가 현장에서 사고를 당하거나 심지어 살해당하는 방송사고도 있었다. 이건 재미있는 사고라고 볼 수는 없다.
출연자의 실수로 인한 방송 사고는 관계자가 자기 방송사 내부에서 징계를 당하는 결과는 야기할 수 있는 반면, 그래도 대외적으로 누가 경찰서 정모를 한다거나 공권력의 철퇴를 받지는 않는다. 사안이 제일 가볍다.

2. 출연자의 고의 난동

국내에서는 카우치 성기 노출(2005)이 이 카테고리에서는 아마 제일 충격적인 사례에 속할 것이다.
이것 때문에 인디 음악 하는 사람들이 몇 년 동안 방송에 나오지도 못하고 고생 많이 해야 했다. 그리고 쇼 프로는 무조건 생방송이 아니라 최소한의 사전 검열은 가능하게 5분 지연 전송을 하게 제도가 바뀌었다.
이건 스샷을 올리기가 좀 민망하니 그냥 링크로 대체하겠다. 오죽했으면 이 장면을 북한 방송 화면에다 합성하여 "천하의 개쌍놈들" 짤방이 만들어졌다.

그나저나 또 외국에서는 생방송 중에 리포터가 갑자기 권총 자살을 하는 경우가 있었다. 이건 실수의 영역은 아닐 것이다.

3. 외부인의 난입

여기서부터는 일단 해당 TV 프로의 제작과 출연에 관여하는 사람에게는 잘못이 없다. 방송 중 외부인의 난입은 비행기 사고로 치면 버드 스트라이크(조류 충돌)와 비슷한 격이다.
이 분야에서 지존으로 꼽히는 국내 방송 사고는 두 건이 있다. 먼저 "귓속에 도청장치" 사건(1988). 이건 세계 어디에 내놓아도 손색이 없을 엽기적인 사고인지라 외국에서도 소개되었다. 어떻게 겁대가리를 상실하고서 생방송 중인 뉴스 스튜디오로 침입을..? 하지만 그래도 심하게 악의적이지는 않은 정신병자의 난동일 뿐이었다는 게 다행이다.

사용자 삽입 이미지

동영상을 보면 화들짝 놀란 스탭이 괴청년을 제압하여 바닥에 철퍼덕! 패대기치는 장면이 인상적이다..;;
또한, 괴청년은 끌려 나가서 화면 밖으로 사라진 뒤에도.. 다시 한 번 "도청장~~!@#!@"이라고 단말마의 비명을 처절하게 외친다.

이 사건과는 달리, 만민 중앙 교회 MBC 침입 난동(1999)은 사안이 더 심각하다. 일개 종교 집단의 시위로 인해 공중파 방송국이 털리고 정규 방송이 중단되는 초유의 해프닝이 발생했으니 말이다.
하지만 외부인의 물리적인 난입보다 더 ㅎㄷㄷ한 단계가 있으니 바로 그것은..

4. 전파 납치

컴퓨터에 해킹이나 패킷 스니핑이 있듯이, 이건.. 방송국이 멀쩡하게 송신해 준 신호를 가로채서 다른 것으로 대체해 버리는 무지막지한 테크닉이다. 이것은 방송계의 위조지폐 내지 비행기 하이잭이나 마찬가지이며, 통상적인 방송 사고를 아득히 초월하는 범죄 행위이다. 특히 북한과 대처 중인 우리나라에서는 전파를 갖고 장난 치는 짓을 더욱 무겁고 심각하게 다룰 수밖에 없다.

단순히 기존 신호를 교란시키고 수신을 방해만 하는 게 아니라, 아예 다른 신호로 대체하는 것은 값비싼 장비가 필요하고 기술적으로도 대단히 어렵기 때문에 아무나 할 수는 없다. 음성은 그렇다 쳐도 영상은 바꿔치는 게 훨씬 더 어렵다.
그래서 그런지 전파 납치는 국내에서는 보고된 적이 없다. 세계적으로 가장 유명한 사례는 미국에서 벌어진 '맥스 헤드룸' 전파 납치 사건(1987)이다. 영화가 방영되던 텔레비전에서 몇 분 동안 갑자기 기괴한 배경에 가면을 쓴 웬 정신병자의 기괴한 엽기 퍼포먼스가 흘러나왔으니 시청자들의 충격이 얼마나 컸을까?

사용자 삽입 이미지

이건 괴전파가 대략 어느 지역에서 발신되었는지 정도만이 어렴풋이 파악됐을 뿐, 누가 왜 저질렀는지 범인은 끝내 잡히지 못하고 미제 사건으로 남았다.
저 정체 모를 아저씨는 방송국에 가지 않고, 방송국 기자를 만나지 않고도 "텔레비전에 내가 나왔으면 정말 좋겠네"를 그럭저럭 실현했다. 하지만 어렵게 기껏 집어넣은 화면엔 동요 가사처럼 "춤추고 노래하는 예쁜 내 얼굴" 따위는 없었다. 가면을 쓴 얼굴에 알아듣기 힘든 기괴한 음성, 그리고 끝에는 웬 SM스러운 스팽킹+신음 장면만이 고스란히 전파를 탔을 뿐이다.

이 글을 쓰면서 느낀 건데..
방송· 통신 내지 전파 공학이라고 해야 하나.. 저런 것도 특히 처음 개발되고 등장하던 당시엔 슈퍼 울트라 하이테크이긴 했겠다. 난 저런 건 진짜 새까맣게 모른다. 하나도 모르는 문외한이다. 근원을 파헤치려면 물리학의 전자기파부터 다시 시작해야겠지만.. 이건 뉴턴 고전 역학도 아니고 손에 잡히지 않는 물질 세계의 특성에 대해 난 도저히 이해를 할 수 없어서 GG를 쳐 버렸다.

라디오에 FM과 AM이 왜 존재하고 어떤 특성이 있는지, 중파· 단파 방송은 무엇이고 케이블 TV, 위성 TV, DMB는 무엇인지, 옛날에 무전기는 어떤 원리로 동작했고 지금의 휴대전화와는 기술적으로 무엇이 다른지, 그리고 지금의 와이파이 무선 인터넷과는 차이가 무엇인지, UHF/VHF는 무엇인지...
터널 안에서도 음성· 영상 신호가 끊어지지 않으려면 뭘 해야 하는지(자동차 내비는 터널 주행 중일 때 보정을 어떻게 하나?) 그러고 보니 옛날에 무전기는 송· 수신을 동시에 할 수 없어서(시뮬레이션 게임으로 치면 실시간이 아니라 철저하게 턴 방식!) 말을 하는 쪽이 내 말이 끝났음을 알리기 위해 '오버'라고 해 줘야 했다. 그거랑 지금 무선 전화의 기술적인 차이는 무엇인지 등등등..;;

그래도 이런 분야에도 괴수 천재는 분명 있을 것이다. 옛날엔 정말 전파를 갖고 노는 사람은 자동차 기술자만큼이나 가히 마술사라고 불리기도 했을 것 같다.
신호 상태가 안 좋거나 수신되는 신호가 아예 없을 때는 옛날에는 수상기를 통해 그저 랜덤한 아날로그 white noise와 치지지직 소리만을 접할 수 있었던 반면, 요즘은 JPG artifact를 본다. 과연 디지털 시대를  실감한다.

* 이미 다들 아시겠지만, 본인은 11년쯤 전에 공중파 텔레비전에 출연한 적 있음. ^^;;

Posted by 사무엘

2016/01/18 08:25 2016/01/18 08:25
, , ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1183

에어컨 이야기

1. 에어컨의 핵심은 압축기

본인은 몸에 열이 많고 더위에 약하다. 날씨도 더운 것보다는 추운 걸 더 좋아한다. 추위는 뭔가를 더 껴입기만 하면 얼마든지 극복 가능한 반면, 더위를 극복하려면 장비를 가동해야 하고 에너지 소비가 필요하기 때문이다. (뭐 겨울에도 컴퓨터 키보드를 두드리기가 어려울 정도로 손이 시려울 때, 정전기가 생길 때, 얼굴 표면이 부르틀 때는 좀 불편하긴 하다만..)

집도 너무 덥기 때문에 여름방학 땐 개인적인 코딩이나 연구는 가능한 한 학교로 ‘피서’를 가서 진행하곤 했다. 산기슭이어서 그런지 아무래도 학교가 집보다는 훨씬 덜 더운 것 같다. 공공장소인 도서관이나 기껏해야 동아리 방 정도만 활용할 수 있는 학부생과는 달리, 대학원생은 자체 연구실이 있는 것도 좋다.

이런 특성상, 본인에게 여러 문명의 이기들 중에 열역학과 동력 기관의 산물인 에어컨은 정말 축복 중의 축복이 아닐 수 없다. 냉장고와 에어컨이 없던 시절에 사람들은 식품 보존과 더위 극복에 애로사항이 잔뜩 꽃폈을 것이다. 냉동 공학 분야에 종사하는 엔지니어들이 존경스럽게 느껴지는 순간이었다. 자동차 공학, 철도 차량 공학, 심지어 한글 공학만큼이나 냉동 공학도 있으며, 이건 엄연한 기계 공학의 한 분야이다. 그러니 오늘은 에어컨 이야기를 좀 집중적으로 늘어놓아 보겠다.

에어컨은 외부에 아무 영향도 안 끼치면서 혼자 곱게 주변의 온도를 낮춰 주는 요술상자가 아니다. 그 원리는 본질적으로 물이나 알코올이 증발하면서 주변을 시원하게 하는 것과 같다. 단지, 에어컨은 물보다 더 쉽게 액화나 기화가 되는 물질을 냉매로 쓰고 열전달이 순환이 가능한 구조를 갖춰 놓았다.
더운물과 찬물을 한데 섞으면 미지근한 물이 되지만, 미지근한 물이 저절로 더운물과 찬물로 바뀌는 일은 결코 발생하지 않는다. 에어컨은 저절로 발생하지 않는 그 일을 인위로 발생시키는 기계이다.

C++ 가상 함수만 해도 일반 함수에 비해 많은 성능 비용이 뒤따르듯, 세상에 공짜는 없다. 에어컨은 에너지 소모가 대단히 많은 걸로 악명이 높다. 송풍기나 방열기의 팬은 에어컨이 소모하는 전체 전력에서 차지하는 비중이 미미하며, 90% 이상은 냉매의 상태를 강제로 바꾸는 압축기가 차지한다. 그렇기 때문에 송풍기의 강약만 조절하는 건 에어컨의 전력 소모에 거의 영향을 끼치지 않는다. 온도의 높낮이와 실질적인 가동 시간이 더 중요하다.

압축이라는 게 간단하게 그냥 되는 작업이 아니기 때문에 에어컨에는 실외기라는 크고 무거운 물건이 필요하다. 에어컨의 진짜 ‘엔진’은 실외기인 것이다. 한쪽이 열을 잃었으면 다른 쪽이 열을 얻었다는 뜻이므로 그 열을 방출하려면 또 다른 의미에서 어차피 외부 통로가 필요하기도 하고 말이다.
구체적인 메커니즘은 난 잘 모르지만, 공기든 냉매든 압축은 조용히 진행 가능한 작업은 아닌지라 소음과 진동이 뒤따른다. 에어컨 실외기가 마냥 조용하게 동작하지 못하는 게 이 때문이다.

에어컨은 처음 등장했을 때는 기계값과 전기료 어디로 보나 두 말할 나위도 없이 초호화 사치품이었다. 그에 비해 오늘날 가정, 차량, 공공기관, 교통수단 등에 널리고 널린 에어컨을 보면 참 경이롭기 그지없다.
지하철을 생각해 보자면, 옛날에 197, 80년대엔 객실에 에어컨이 없었을 뿐만 아니라(천장에 선풍기만 달랑), 전동차의 동력 제어도 원시적인 저항 방식이었다. 제동을 걸 때 열이 바닥에서 솟아올랐으니 여름에 지하철은 완전 찜통 지옥철이 따로 없었을 것이다. 생각만 해도 아찔하다. 기술이 인류의 삶을 지금까지 정말 편하게 만들어 줬다.

2. 차량용 에어컨

차량용 에어컨은 송풍기는 배터리로 가동하더라도 압축기는 대놓고 엔진 힘을 끌어들여 가동한다. 내 차만 해도 에어컨을 켜거나 껐을 때 엔진룸으로부터 느껴지는 엔진음과 진동이 살짝 달라진다. 또한, 시동을 켰더라도 오랫동안 정차하고 있으면 냉기가 좀 약해지다가, 액셀을 밟아서 엔진 rpm이 증가하면 바람도 다시 차가워지는 경향이 있었다.
어디선가 언뜻 본 자료에 따르면 승용차용 에어컨만 해도 엔진 출력을 3~4마력 정도는 깎아 먹는다고 한다. 그렇다면 시동을 안 켠 on 상태일 때는 에어컨을 켜더라도 그냥 송풍기 바람만 나온다는 뜻인데 실제로 그런지 개인적으로는 확인을 못 해 봤다.

옛날에는 마치 자동 변속기만큼이나 아무 차에나 에어컨이 달린 게 아니었다. 그리고 저배기량 경차는 가격은 둘째치고라도 엔진 출력이 견디질 못해서 에어컨을 제대로 틀지 못하는 면이 있었다. 사람이 가득 탄 채로 에어컨 틀고 오르막을 오르면..?;; 또한 굳이 경차뿐만 아니라 대형 버스도 과거엔 엔진 출력이 충분치 못해서 에어컨을 달고 틀기가 부담스럽던 시절이 있었다고 들었다. 공간이 넓으니 에어컨도 용량이 꽤 커야 했을 테니까.

하지만 요즘 자동차는 종류를 불문하고 그렇게까지 약골이 아니다. 그렇기 때문에 굳이 더운데 차의 엔진과 연비를 걱정해서 그렇게까지 극단적으로 에어컨을 안 틀고 참을 필요까지는 없다.
20년쯤 전에 486/펜티엄급 골동품 컴퓨터에서는 128kbps짜리 평범한 MP3을 하나 재생하는 것만으로도 CPU 사용률이 10~20%대까지 치솟았으며 컴퓨터가 다른 데서 버벅댔다. MP3 디코딩은 계산량이 엄청난 연산이긴 하지만, 요즘 컴퓨터로는 그건 뭐 ‘껌’이지 않은가. 에어컨이 자동차에 끼치는 오버헤드도 그런 식으로 변하고 있는 셈이다. 다만, 내연 기관이 없이 아예 전기로만 달리는 자동차에는 에어컨의 가동이 꽤 난관으로 작용할 것 같다.

그래도 에어컨은 사무실에서는 선풍기와 달리 서류를 흩날리지 않으며, 음료수 비용이나 땀으로 인한 의복 세탁 비용, 매번 몸을 씻는 데 드는 비용을 아껴서 보이지 않는 곳에서 사람들의 작업 생산성을 은근히 향상시켜 준다. 또한 자동차에서는 창문을 열 필요를 없게 해 주니 공기 저항 면에서는 오히려 연료를 아껴 주기도 한다. 에어컨은 마냥 에너지를 처먹기만 하는 하마가 아닌 것이다.
올해 초에 별세하긴 했다만, 싱가포르의 독재(?) 대통령 리콴유는 사는 곳이 사는 곳이다 보니, 에어컨이 인류 역사상 최고의 발명품이라고 극찬을 하기도 했다. 에어컨이 한여름에 생산성과 능률의 향상으로 인해 가져오는 축복을 직감했던 것이다.

자동차가 전진뿐만 아니라 후진이 가능하듯, 에어컨에서 열 전달 방향을 반대로 바꿔 주면 냉방이 아니라 난방도 할 수 있다. 즉, 실내의 에어컨 송풍기에서는 더운 바람이 나오고 실외 송풍기에서는 찬 바람이 배출되는 것이다. 단지 그건 아무 쓰잘데기가 없는 짓이기 때문에 그렇게 하지 않을 뿐이다.

겨울에 난방을 하고 싶으면 그냥 난로를 때고 히터/보일러를 틀면 된다. 그러고 보니 히터도 전기로만 하는 게 아니라 석유를 때서 가동하는 경우가 많으나, 요즘은 기름값이 너무 비싸서 그마저도 올전기로 때우는 추세로 가고 있다.
자동차는 이 점에서 좀 여유가 있다. 엔진열이 자동으로 공급되니, 히터는 에어컨과 달리 엔진에 아무런 추가 오버헤드가 없이 공짜로 가동 가능하기 때문이다. 물론 이 역시 에어컨과 마찬가지로 시동이 켜져 있는 동안에 한정일 것이며, 전기 자동차는 아예 해당사항이 없다.

3. 습기 관리

자, 그럼 마지막으로 습기· 물기와 관련된 이야기를 하고 글을 맺겠다.
에어컨은 시원하기만 할 뿐만 아니라, 굳이 저온이 아니어도 습기가 싹 빠져 보송보송한 공기를 불어 준다. 그렇기 때문에 그냥 땡볕만 내리쬘 때보다, 비 오기 직전의 눅눅하고 후덥지근하고 불쾌지수가 최악인 상황에서 에어컨은 더욱 놀라운 성능을 발휘한다.

그러나 에어컨은 남은 건조하게 만들어 주지만 반대로 자기는 물기에 찌들려 산다.
냉매를 액화시키기 위해 냉각기 내부의 온도는 영하 몇십~수십 도까지 떨어진다. (우리가 원하는 실내 온도까지만 내려가는 게 아님) 그럼 주변의 공기는 견디지 못하고 습기가 다 이슬로 바뀐다. 겨우 5도가 될까말까인 냉수만 물병에다 가득 담아 놔도 장마철엔 병의 표면이 얼마 못 가 물기로 온통 축축해진다. 하물며 에어컨 내부는 어떻겠는지를 충분히 상상하고 공감할 수 있다.

오죽했으면 국정원 추리 퀴즈 시리즈에서는 이 원리를 소재로 사용한 적도 있었다. 물이 없는 상황에서 은 요일 요원은 에어컨을 가동한 뒤 냉각판에서 흘러나오는 물을 마시면서 1주일을 버텼다.

maintenance-free하고 청소가 필요 없이 선풍기처럼 오래 오래 쓰는 에어컨이 존재한다면 참 좋겠지만.. 현실의 에어컨은 그렇지 않다. 일단 외부 공기를 걸러 주는 필터를 주기적으로 청소해야 하고, 또 아까 거론한 냉각기의 냉각판도 별도로 청소가 필요하다. 업계에서는 일명 '에바'(EVAporator)라고 불리는 듯. 시간이 흐르면서 먼지가 쌓이기도 하거니와, 축축한 채로 바깥 공기를 받아들이는 일만 하다 보면 냉각판이 온갖 세균과 곰팡이의 온상이 되기 때문이다. 이것은 나중에 차내에 굳이 에어컨이 아닌 송풍기만 틀 때에도 지린내와 악취의 원흉 역할을 한다.

차라리 차가 실외 땡볕 아래에 주차돼 있다면 모를까, 그 상태로 눅눅한 지하 주차장에 장시간 주차되면.. 문제는 더욱 심각해진다.
이런 공기가 사람 건강에도 좋을 리가 없다. 사실 냉방병이라고 불리는 것도 안팎의 급격한 온도 변화로 인한 피로도 증가와 면역력 감소라기보다는 호흡기 질병에 더 가깝다는 자료도 어디선가 봤었다. 코로 코렁탕...은 아니고 먼지와 세균을 꾸역꾸역 들이켰는데 몸에 탈이 안 날 리가. 어차피 급격한 실내외 온도 차이 자체는 한겨울에도 만만찮게 경험하는데 굳이 여름에만 몸이 특이하게 탈이 날 이유가 없기 때문이다.

이 찌든 악취는 필터만 교체하거나 송풍구에 소독만 한다고 없어지지 않더라.
내 경험상 자동차 공업소에서는 잘 해 주지 않고, 전문적인 자동차 에어컨 출장 청소 업체를 불러서 해야 했다. 필터는 엔진오일의 주기와 비슷하게 교환하는 반면, 냉각판은 거기 있는 상태 그대로 조수석 쪽에서 통로를 낸 뒤, 세제를 발라서 세척을 했다. 거기를 세척해 줬더니 진짜로 냄새가 싹 없어졌다. 거기에 설마 무슨 동물 배설물이나 사체 급의 끔찍한 오염원-_-이 있기라도 한 건 아니었고 그냥 정말 오랫동안 청소를 안 해 줘서 평범한 오염원들이 누적된 거랬다.

본인이 궁금했던 것은 왜 에어컨 가동 없이 송풍기만 가동했을 때 악취가 나며, 에어컨을 가동하고 나고 잠시 지나면 냄새가 없어지느냐는 것이었다. 청소 기사에게서 설명을 듣긴 했는데 이 역시 이해가 잘 되지 않았다. 잘은 모르지만 (1) 악취를 내는 요소들은 온도가 낮을 때는 일시적으로 냄새를 일으키지 않으며, (2) 에어컨을 가동하지 않더라도 냉각판이 송풍기에 영향을 주기는 하는 것 같다. 왜 어째서 그런지는 본인에게 묻지 마시고... ^^

그래서 인터넷이나 자동차 정비소 직원의 공통된 조언으로는.. 목적지에 도착하기 n분쯤 전부터 에어컨을 끄고 송풍만 가동해서 냉각판의 습기를 좀 말리라는 것이었다. 그 n의 값은 2~3이나 5, 심지어 10 이상으로 사람마다 차이가 있었다.
실제로 고급 외제차는 시동이 꺼진 뒤에 자동으로 송풍기를 말리는 기능이 있는 경우도 있다고 하니 그게 실제로 효과가 있긴 한가 보다.

Posted by 사무엘

2015/11/19 08:37 2015/11/19 08:37
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1161

1. 최초의 인공위성

세계에서 최초로 발사된 인공위성은 잘 알다시피 1957년 10월에 구소련이 발사한 스푸트니크 1호이다. 얘는 배터리를 이용해서 기계가 약 3주 동안 동작했으며, 약 3개월 동안 지구 궤도를 돌다가 슬슬 힘이 다하면서 지구 궤도로 떨어지고 불타 없어졌다.

그 뒤 이에 자극 받은 미국은 몇 차례 실패를 한 끝에 1958년 3월에 뱅가드 1호라는 인공위성을 간신히 띄웠다. 얘는 시기적으로 2등 콩라인에 머물렀고 당시 소련의 스푸트니크 2호처럼 생명체를 태우는 실험도 못 했지만, 그래도 기술적으로 굉장한 진보를 이룬 게 있었다.

먼저, 당시로서는 굉장한 첨단 기술이던 태양 전지를 도입해서 현지에서도 전력을 공급함으로써 기계의 수명을 비약적으로 향상시켰다. 무려 3개월간을 지상과 교신하는 데 성공했다.
지금이야 인공위성이라 하면 커다란 직사각형 집광판이 달린 모습이 당연시되고 있지만 그게 처음부터 관행이었던 건 아니었던 것이다.

그리고 더 무서운 점은.. 얘는 궤도 진입과 관리를 어떻게 고퀄로 했는지, 발사로부터 60년에 가까운 시간이 흐른 지금까지도 지구를 돌고 있다고 한다.
물론 교신이 끊어지고 아무 동작도 못 하는 고철덩어리 우주쓰레기 신세이지만, 참 가늘고 길게 가고 있다. 앞으로 최하 200년 이상은 더 그렇게 돌 수 있다고 한다.

보이저 1호/2호가 아직도 지구와 교신이 되는 것만큼이나 참 신기한 일이다. 물론 외행성 탐사선이야 태양 전지가 전혀 쓸모가 없으니 원자력 전지를 사용한다.
미국이 처음에 인공위성을 띄우느라 삽질한 것을 보면 우리나라의 나로 호 생각도 난다. 단지 차이는 미국은 한국보다 그걸 50년쯤 전에 먼저 했다는 것뿐이다. 마이카 시대도 한국보다 50년 이상 전부터 시작됐고.

2. 화약의 위력

1605년 영국의 화약 음모 사건 때 지하실에 몰래 비축된 흑색화약의 양은 문헌에 따라 약간 차이가 있지만 드럼통 30여 개 분량이었다고 한다. 화약 전체의 무게는 아무리 많이 잡아도 1.x ~ 2톤을 넘지는 않았을 것이다.
또한 이들 흑색화약의 TNT 대비 위력계수는 0.55 정도로 알려져 있으므로 가이 포크스가 준비한 화약의 위력은 오늘날로 치면 TNT 1톤이 약간 안 되는 정도였으리라 추정된다.

물론 그건 음모가 성공했을 경우 의회 건물을 몽땅 박살 내고 잉글랜드 수뇌부들을 모두 날려버리고도 남는 충분한 위력이었다. 영국에서는 가이 포크스가 잡힌 날을 지금까지도 유대인들의 부림절처럼 기념하고 있고, 그때 화약의 위력이 어땠을지를 시뮬레이션하고 분석해서 역사 교양 다큐멘터리로 방영하곤 했다. 자기네 나라 역사에서 중요한 사건이었으니 말이다.

그 뒤.. 1995년 4월의 미국 오클라호마 폭탄 테러 때 가해자들이 트럭으로 운반해 터뜨린 폭발물은 TNT 약 2.3톤급의 위력이었다. 고층 건물이 1/3이 완전히 날아가 버렸으며 유리창은 모조리 박살 나서 수류탄 파편으로 변했고, 주변의 자동차들이 터지면서 2차 폭발을 일으켰다.

그리고 오늘날 미국이 운용하고 있는 가장 큰 재래식 폭탄 MOAB은 자기 무게는 약 11톤이고 실제 위력은 TNT 약 13톤급이다. TNT보다 더 위력이 강한 폭약을 사용하기 때문이다. 아, 참고로 1톤 정도의 무게는 교통사고 현장에서 전복된 승용차를 낑낑대며 들어올려 보면 느낄 수 있을 것이다.

그런데 재래식 폭탄이 아니라 핵무기로 가면 폭발력 수치의 뒤에 0이 몇 개 더 추가된다.
1945년 8월, 히로시마에 떨어졌던 '리틀 보이' 원자폭탄이 TNT 16,000톤급의 위력으로 분류된다. 참고로 나중에 나가사키에 떨어진 '팻 맨'은 위력이 더 업그레이드 되어 22,000톤 정도. 쉽게 말해 수십 킬로톤이다.
'리틀 보이'의 실제 무게는 약 4670kg 남짓으로, 5톤도 채 되지 않았다. 그런데 저런 폭발력이 나온다는 건 핵무기가 얼마나 무시무시하고 캐사기적인 비대칭 무기인지를 짐작케 한다.

1961년에 구소련이 개발하여 터뜨린 '차르 봄바'라는 초대형 수소 폭탄은 인류가 지금까지 개발한 가장 강력한 무기이다. 폭탄 자체의 무게는 27톤이고 위력은 킬로급을 넘어서 50~58 메가톤 정도로 집계되었다. '메가'는 10의 6승이다. 핵무기로 가면 화약 음모 사건이니 MOAB 폭탄 같은 건 그냥 잊어버려야 된다.

옛날에 메가쑈킹 작가가 남긴 주옥같은 명대사 중에 "꽃피는 봄이 오니 메가톤급 외로움이 텍사스 소떼처럼 밀려오는구나."가 있었는데.. 외로움이 메가톤급이나 되면 사람은 멘탈붕괴를 감당치 못해 머리를 쥐어뜯고 뒹굴다 자살하고 난리가 날 것이다..;; 그리고 그런 엄청난 외로움은 겨우 텍사스 소떼의 stampede 수준의 bandwidth와 throughput으로는 전송을 감당할 수 없을 것이다. 과장을 해도 실제 수치가 뭔지는 알고 과장해야 하리라 여겨진다.

3. 마력과 토크

자동차의 엔진 성능을 나타내는 대표적인 두 잣대는 일명 마력이라고 불리는 출력과, 그리고 토크이다.
물리학적으로 따져 보면 출력은 일률(단위 시간당 일을 하는 양) 단위인지라 차의 속도와 관계가 있으며, 토크는 rpm별로 이때 엔진이 내는 회전력을 나타내는 힘의 단위이다. 이것도 엄밀히 말하면 회전축의 길이가 명시돼 있으니 일의 단위이긴 하지만 그래도 거리는 고정돼 있고 kgf의 값만 측정하니 힘의 단위인 것이나 마찬가지이다.

엔진의 토크는 최대 토크가 나오는 rpm을 지난 뒤부터는 감소한다. 그렇기 때문에 최대 출력이 나오는 rpm은 최대 토크가 나오는 rpm보다 더 큰 데서 나온 뒤, 그 이후부터 감소한다. 최대 출력 함수는 최대 토크 함수를 rpm 변수에 대해 적분한 것과 같기 때문이다.
이건 하루 중 태양의 고도가 가장 높은 때(정오 무렵)와 하루 중 가장 더울 때(오후 2~3시쯤)가 살짝 차이가 나는 이유와도 비슷한 맥락인 것 같다. 태양의 고도는 토크이고 그래서 열이 축적돼서 더운 것은 출력에 대응하니까.

그리고 자동차 엔진의 출력은 사람의 심폐 기능에다가도 비유할 수 있다. 이건 체력, 특히 지구력과 결정적인 관계가 있다.
마라톤 선수처럼 심장과 폐가 워낙 발달한 사람은 평상시에 분당 맥박이 겨우 4~50회만으로도 감당이 된다고 한다. 저회전에서 토크가 굉장히 높은 디젤 엔진과 구조적으로 다를 바 없다.

4. 디스크와 드럼

자동차와 컴퓨터. 서로 전혀 관계가 없어 보이는 두 기계에서 그래도 '디스크'와 '드럼'이라는 용어를 공통으로 접할 수 있다는 게 무척 신기하다. 잘 알다시피 이게 자동차에서는 브레이크를 구현하는 방식이고, 컴퓨터에서는 메모리를 구현하는 방식이다. 둘 모두 '드럼'은 거의 퇴출되고 '디스크'가 주류가 돼 있는 것도 비슷하다.

자기 드럼은 뭔가 하드디스크처럼 생기긴 했지만 크기가 더 크고 속도와 신뢰성이 우수했다(특히 자기 '테이프'보다야..). 반쯤은 RAM처럼 사용할 수도 있었다. 하지만 크기에 비해 기억 용량이 너무 적고 비싸서 196, 70년대 이후로는 증기 기관차가 퇴출되듯이 퇴출됐다. 오늘날의 하드디스크는 플로피 디스크와 마찬가지로 드럼이 아니라 '자기 디스크'의 일종이다.

자동차에서도 옛날에는 앞바퀴는 디스크 브레이크, 뒷바퀴는 드럼 브레이크 이랬던 것 같은데 요즘은 냉각이 더 유리한 디스크 브레이크가 모든 바퀴에서 대세이다. 드럼 브레이크는 버스· 트럭 같은 대형차(외부 오염에 더 강해서) 아니면 완전 반대로 경차에서나(생산 원가가 더 저렴해서) 볼 수 있다.
타이어의 휠 안쪽에 뭔가 반들반들하게 광택이 나는 커다란 금속 원판이 달려 있는 건 디스크 브레이크이고, 반대로 좀 꽹과리처럼 생긴 원형 금속 캡슐이 달려 있는 게 드럼 브레이크이다.

5. 화장실의 남녀 구분

화장실의 남녀 구분 여부는 마치 도로에서 중앙선의 존재 여부와 비슷해 보인다.
통행량이 많은 큰길엔 반드시 중앙선이 존재하지만 그냥 좁은 골목 샛길에는 통행 구분이 딱히 존재하지 않으며 심지어 일방통행도 있다. 그것처럼 가정집 안의 화장실이나 비행기처럼 비좁은 교통수단의 화장실은 남녀 구분이 없다. 그러나 대규모 공공장소 안의 화장실은 남녀 구분이 있다.

남녀 구분이 있는 화장실의 경우, 사람들은 한 성별의 화장실을 발견하면 다른 성별의 화장실도 분명 근처에 있을 것으로 기대한다. 그런데 어떤 건물은 남녀 화장실이 건물의 한쪽 끝과 다른 한쪽 끝으로 멀리 떨어진 경우가 있는데, 이건 본인이 보기에 심리적으로 좋은 디자인이 아닌 것 같다. 화장실을 찾긴 했는데 이성의 화장실이고 내가 갈 수 있는 화장실이 발견될 기미가 안 보이면... 아예 화장실이 전혀 안 보이는 것보다 실망과 박탈감이 더 크기 때문이다. 지하철역으로 치면 반대편 승강장 횡단을 할 수 없는 역과 비슷하며, 운전에다 비유하면 길을 발견하긴 했는데 내가 원하는 방향으로는 갈 수 없는 상황과 비슷하다. (일방통행 내지 좌회전 불가 같은)

여느 시끄러운 음악이나 기계음과는 달리, 전화 통화 소리가 주변 사람에게 더욱 불쾌감을 유발하는 소음이라고 알려져 있다. 왜냐하면 전화 통화는 사람이 알아들을 수 있는 언어인데 대화가 전부 들리는 게 아니라 반쪽짜리만 들려서 문맥을 제대로 파악할 수 없기 때문이라고 한다. '내가 원하지 않는 반쪽짜리'를 사람들이 더욱 싫어하는 예는 이런 식으로 여러 곳에서 찾을 수 있는 것 같다. 똑같이 목이 말라도 사막에서 목이 마른 것과 망망대해 바다 한가운데서 목이 마른 것의 차이랄까..?

그리고 화장실 얘기가 나왔으니 다른 얘기를 또 하나 덧붙이자면...
공공장소의 화장실에서 휴지는 그냥 (1) 변기에다 버릴지 아니면 반드시 따로 (2) 휴지통에다 버릴지에 대한 지침이 예상 외로 케바케이고 뒤죽박죽이다. 왜 이렇게 차이가 나는 건지는 모르겠다. 마치 높임법에서 압존법이 (1) 써라(과장이 사장보다 더 높냐?) 또는 (2) 쓰지 마라(과장이 니 친구냐?) 사이에서 오락가락 하는 걸 보는 듯하다.

6. 기타 메모

"나비: 나방"은 음악으로 치면 마치 음악에서 "장조: 단조"의 차이처럼 느껴진다.

인텔 80186 CPU와 코레일 8100호대 전기 기관차: 뭔가 (1) 숫자 형태가 비슷하고, (2) 후속 버전에 밀려 존재감 없이 싹 묻힌 물건이라는 공통점이 있다.

엄지손톱 모양의 그 색 프리즘(CIE-1931 색 공간)하고, 모음 삼각도를 나타낸 포먼트 그래프가 뭔가 비슷한 점이 있어 보인다. 흰색에 속하는 (1/3, 1/3) 지점은 모음 삼각도로 치면 제일 만만한 중간 모음인 schwa 정도에 대응하려나?

컴퓨터에 화면이 너무 작아서 여러 브라우저/문서 창을 alt+tab 눌러 가며 전환해야 하는 건 작업 생산성 면에서 좋지 않다.
이것은 컴퓨터 내부로 치면 메모리가 너무 부족해서 자꾸 디스크 페이징이 일어나는 것과 같은 맥락이다. 이게 늘어나면 컴퓨터의 성능은 급격히 곤두박질친다.
자동차는 최대한 부드럽게 가감속을 하고 최대한 관성에 의지하고 엔진 배기량에 맞는 경제 속도로 달릴수록 연비와 가성비가 킹왕짱이 되는 반면, 길이 막혀서 가고 서기를 반복할수록 연비는 거의 저것만치 급격히 떨어지게 된다. 공회전은 말할 것도 없고, 정지 상태에 있던 차가 처음 움직일 때가 연비가 제일 쥐약이기 때문이다.

우리나라 육군에는 '육군 과학화 전투 훈련단'(KCTC)라는 이색적인 부대가 있다. 여기 군인들은 전투력 고취를 위해 원정 훈련을 오는 다른 육군 부대들을 상대로 위장까지 하고서 가상의 북한군 역할을 한다. 특수부대 급으로 훈련을 굉장히 혹독하게 받고 홈그라운드인 훈련장 지리에도 능통하기 때문에 얘네들을 격퇴하는 부대가 별로 없을 정도라고 한다. 물론 싸움은 실탄이 아니라 정교하게 피격 판정을 해 주는 레이저 총 + 공포탄으로 한다. 예비군 페인트탄 같은 유치한 분위기는 아님.
이름하여 '전문대항군'인데, 이걸 읽으니까 쟤들은 버추어 파이터로 치면 듀랄 같은 역할을 한다는 생각이 들었다.

음식이나 연료는 인체나 기계 내부에서 동일 질량 다른 물질로 화학적으로 변하는 것일 뿐이고 그 변하는 과정에서 힘이 발생한다. 물질 자체가 소멸하고 질량이 그대로 에너지로 바뀌는 것 아님. 쉽게 말해 넣은 연료의 무게와 동일한 무게의 배기가스가 나온다는 뜻이다.
또한, 소리는 진동이지 이동이 아니다. 이동이면 그건 바람이지 소리가 아니다. 물론 이동 과정에서도 진동이 있을 수 있으니 바람 소리도 들리는 것이다.

일사병(땡볕이 중심)과 열사병(고온 다습이 중심), 삭제(유출을 막음)와 암호화(유출되더라도 뭔 말인지 모르게), 불법체류(합법 입국 후 배째라)와 밀입국(애초에 입국 자체를..) 등 비슷하지만 사실은 완전히 다른 개념이 참 많은 것 같다.
힘(찰나)과 일(힘의 축적), 열과 온도(공기 80도와 물 80도의 차이는?), 질량(??)과 무게(질량으로 인해 생긴 힘) 등.
과학을 제대로 공부하면 직관만으로는 제대로 구분하기 힘든 개념을 명확하게 구분하여 원리를 알 수 있어서 좋다.

Posted by 사무엘

2015/10/12 08:24 2015/10/12 08:24
, ,
Response
No Trackback , 4 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1148

« Previous : 1 : ... 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : Next »

블로그 이미지

그런즉 이제 애호박, 단호박, 늙은호박 이 셋은 항상 있으나, 그 중에 제일은 늙은호박이니라.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2024/12   »
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Site Stats

Total hits:
3041557
Today:
1184
Yesterday:
1700