« Previous : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : ... 38 : Next »

성경에서 욥기는 모세오경과 더불어 가장 오래되고 먼저 기록된 책이라 여겨진다.
그런데 이게 평범한 책이 아니다. 너무 엄청나고 극단적인 스토리와 판타스틱한 서술들, 그리고 인류의 만년 의문 떡밥인 '의인의 까닭 없는 고난'을 다룬다는 점으로 인해 욥기는 문학성 하나는 가히 최고라고 인정받고 있다. 물론 불신자들은 문학적 가치와 의미만 인정할 뿐, 저게 설마 레알 실존인물 실화일 거라고 여기지는 않는다.

하지만 성경은 세상의 통념과 달리, 다른 책에서 욥을 거듭해서 실존 인물이라고 언급하고 인용하니(약 5:11 같은..), 이게 딜레마이다. 노아, 아벨만큼이나 말이다.
가령, 그 천하의 예수님이 창세기 4장 인물인 아벨이 실존 인물이라고 인정하셨다(마 23:35). 예수님보다 더 잘나고 똑똑한 비평가라면 창세기 1~11장은 그냥 설화이고 상징 비유 묵시문학이라고 치부해도 될 것이다. 욥기 역시 마찬가지일 테고 말이다.

그 문제의 책 욥기는 이렇게 시작한다.
"우스 땅에 욥이라는 이름의 한 사람이 있었는데 그 사람은 완전하고 곧바르며 하나님을 두려워하고 악을 멀리하는 자더라. 그에게 아들 7명과 딸 3명이 태어나니라. 또한 그의 재산은 양이 7000마리요, 낙타가 3000마리요, 소가 500겨리요, 암나귀가 500마리이며 집안사람들도 심히 많았으므로 이 사람은 동쪽의 모든 사람 중에 가장 큰 자더라." (욥 1:1-3; 가독성을 위해 성경 본문에서 수량 표기를 아라비아 숫자로 바꿈)

욥은 노아· 다니엘과 더불어 구약의 3대 의인이라고 일컬어진다(겔 14:14). 특히 노아와 욥은 하나님께서 친히 내리신 perfect(창 6:9, 욥 1:1)라는 수식어까지 존재한다. 그렇다고 해서 그 사람들이 무슨 예수님과 동급의 완전무결이라는 얘기는 물론 아니다. 단지 구약 + 인간의 관점에서 그럭저럭 흠잡을 데 없고 타인의 귀감이 되기에 충분한 만점 합격점이라는 뜻이다. 마치 all(모든)처럼 말이다. 도대체 어느 문맥과 범위에서 전체 또는 완벽인지를 주의 깊게  살펴볼 필요가 있다.

욥은 아시다시피 한번 쫄딱 망했다가 그래도 다음과 같은 해피 엔딩을 맞이한다.
"... {주}께서 그의 포로 된 것을 돌이키시고 또 {주}께서 욥에게 그가 전에 소유했던 것의 두 배를 주시므로 ... 그는 양 14000마리와 낙타 6000마리와 소 1000겨리와 암나귀 1000마리를 소유하였더라. 또 그가 아들 7명과 딸 3명을 두었더라." (욥 42:10,12,13)

욥은 고난 이후에 자기 재산에 속하는 가축들은 몽땅 다 정확히 두 배로 보상받았다. 그런데 자녀는 예나 지금이나 열 명 그대로이다. 도대체 왜 그럴까..?

가장 쉽게 떠올릴 수 있는 설명은.. 자녀는 재산과 별개이며 두 배 보상의 대상이 아니라는 것이다.
오늘날의 인권이나 보험(!!) 관점에서 보자면 대인과 대물은 엄연히 다르며, 자식은 단순히 부모의 소유물 개념이 아닐 것이다. 하지만 그런 거라면 애초에 가축 수와 자녀 수를 나란히 늘어놓은 욥기의 진술 방식 자체가 좀 문제가 있으며, 독자에게 오해와 혼동의 여지를 남기는 거라고 간주해야 할 것이다.

본인이 생각하는 가장 성경적인 결론은.. 구원받은 자녀는 다른 가축이나 재물과 달리, 내세에서도 영원히 남아 있고 만나볼 수 있기 때문에.. 사고로 죽었어도 영원의 관점에서는 손실이 아니라는 것이다. "잠시 이 세상에서 이별하고 못 보는 기간 / 내세에서 n년간 보는 기간"의 비율은 n이 무한대로 갈 때 극한값이 0으로 가는 것이 자명하니..;;
그러므로 20명을 몽땅 새로 줄 필요 없이 새 자녀 10명만 추가로 주면 10+10 = 20이 된다.

이것이 인간과 짐승(가축)의 본질적인 차이이다. 이런 관점에서 보면 '낳았고 낳았고'만 잔뜩 나오는 마태복음 1장의 리스트의 진술 방식을 이해할 수 있을 것이다. 그 목록에서 일부 인물이 누락된 이유도 덤으로 말이다.
또한, "지금은 그가 죽었으니 어찌하여 내가 금식하리요? 내가 그를 다시 돌아오게 할 수 있느냐? 나는 그에게로 가려니와 그는 내게로 돌아오지 아니하리라." (삼하 12:23)라고.. 어린아이의 구원을 당당히 믿은 다윗의 말도 이해할 수 있다.

세상에는 인간의 과학과 지성만으로 이해할 수 없는 현상이 많고 해결할 수 없는 문제가 여전히 많다. 죽음도 그 문제 중 하나일 것이다.
그런데 성경이 말하는 내세관은 꽤 건전하다. 죽은 사람 갖고 사기를 치는 수많은 미신, 괴담 등에 휩쓸릴 일이 없게 하며, 그 반대편 극단인 "죽으면 다 소멸하고 끝" 염세 회의 허무주의 쪽으로 빠지지도 않게 해 주기 때문에 더욱 좋다.

이런 신앙이 있으니 손 양원 목사는 "미국 유학 보내려던 아들을 미국보다 더 좋은 천국으로 보내 주셔서 감사"라는 초인적인 기도를 할 수 있었던 것이다.
사람이 육신의 몸을 입고 영원히 살 수는 없지만.. 영원히 함께할 수 있는 생명 인격체를 만드는 일은 육신을 입고 있는 동안만 할 수 있다는 게 굉장한 아이러니인 것 같다. 구원받는 것도 그렇게 현세에서 살아 있는 동안만 가능하듯이 말이다.

한편, 이런 "현세 10+내세 10 = 20"설 말고.. 그 10명은 그냥 욥의 기존 자녀들이 죽었다가 다시 부활한 것일 거라고 추측하는 분도 있다. 뭐, 그것도 욥의 입장에서는 충분히 해피엔딩이며, 성경의 심상 면에서 일리가 있다.
성경에는 구약 성도들의 집단 부활이라든가(마 27:52-53) 모세의 부활(유 9)처럼 아주 implicit하고 간략하게 기록된 엄청난 부활 장면이 있기 때문이다. 욥 당사자도 단순 내세 이상으로 육체의 부활을 믿은 와중에(욥 19:26), 욥기에 부활의 실제 사례가 나오지 말라는 법은 없다.

또한 완전히 새로운 자녀를 만드는 건 욥 혼자서 할 수 있는 일이 아니고(...) 그것도 10명이나 다시 낳으려면 10년에 가까운 시간이 걸릴 것이다. 그 와중에 욥의 기존 아내는.. 욥을 완전히 떠나 버렸는지, 죽었는지 살았는지, 고난 후에 재배회를 했는지.. 그렇지 않고 욥이 재혼을 하기라도 했는지 성경에 언급이 전혀 없다. (본인은 개인적으로는 욥의 아내는 막 악처까지는 아니어도 그래도 신앙이 남편만치 좋지는 못했던 그냥 예쁘장한 부잣집 사모님 스타일이었을 거라고 추측한다. ㄲㄲㄲ 사탄이 욥의 아내를 괜히 살려 둔 게 아님..)

이런 시나리오에 비해, 죽었던 기존 자녀만 다시 초자연적으로 살아나는 시나리오는 기적 그 자체 말고는 주변의 미주알고주알 디테일을 생각할 필요 없이 단순 깔끔하다는 장점이 있다.
하지만 부활설은 근처에서 노골적으로 비교하며 등장하는 '2배 보상'이라는 심상과 일치하지 않는다는 게 못내 마음에 걸린다. 자녀는 무슨 물건 같은 존재는 아니겠지만 부모의 입장에서는 명백히 주님으로부터 온 유산이요 보상이다(시 127:3-5). 하나님께서 욥에게 가축을 2배로 보상해 주셨거늘, 하물며 자녀도 2배로 보충해 주지 않으셨다면 그게 더 이상한 일이지 않을까?

욥기의 도입부에서는 자녀 수부터 먼저 나온 뒤에 다음에 가축 수인데, 결말부에서는 2배로 늘어난 가축 수부터 나온 뒤에 그 다음이 자녀 수이다. 이것도 생각해 볼 점이다.

Posted by 사무엘

2019/02/19 08:36 2019/02/19 08:36
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1588

오늘날은 통신 기술이 옛날엔 상상도 할 수 없었을 정도로 눈부시게, 폭발적으로 발달했다.
전화기만 해도 처음 발명됐던 시절엔 가히 혁신 혁명이었는데 오늘날은 무전기를 넘어 휴대전화와 인터넷까지 일상이 됐으며, 무선 인터넷이 10~15년 전의 유선 인터넷보다 더 빠른 지경에 이르렀다.
그래서 손바닥만 한 작은 기기로 글과 음성은 말할 것도 없고, 고화질 사진과 동영상을 아날로그도 아닌 디지털 형태로 지구 반대편으로 즉시, 당연한 듯이 주고받을 수 있다.

이런 기술이 없던 옛날에는.. 국가 차원에서 긴급한 상황을 빨리 알리기 위해 봉화와 파발이 쓰였다. 봉화는 전파 속도가 비교적 빠른 대신, 전할 수 있는 게 불/연기의 on/off 정도이니 정보량으로 치면 겨우 두어 비트 남짓한 정말 최소한의 상태밖에 전할 수 없었다.

그리고 봉화가 빨라 봤자.. 조선 시대 기준으로 제일 이상적인 상황과 근무 조건을 가정했을 때, 부산에 적이 침입했다는 소식이 봉화들을 거쳐서 400km가 넘게 떨어진 한양의 조정까지 전해지는 데 대략 두세 시간 정도 걸렸을 거라고 그런다.
그래도 어쩌겠는가? 휴대폰 기지국도 없고 전화선도 없던 시절엔 이런 식으로 위급한 소식을 전할 수밖에 없었다.

한편, 파발은 사람이 말 타고 현장까지 물리적으로 달려가서 문서를 전하는 것이니 정보량은 많지만 속도가 거북이 수준일 수밖에 없다. 길목에는 지친 말을 교체해서 바꿔 타는 곳이 일정 간격으로 갖춰져 있었다.

이런 봉화와 파발은 내륙에서의 통신 수단이다.
교통과 통신의 관계를 생각해 봤을 때, 파발마는 통신을 위한 교통수단이라고 생각할 수 있다.
하지만 선박 같은 업계에는 '교통수단 간의 통신'도 필요하며, 이와 관련된 표준 규격이 오래 전부터 제정되고 쓰여 왔다. 전파를 이용한 통신 기술이 발명되기 전부터 말이다.

철도는 사고를 예방하기 위해 한 폐색 구간에 둘 이상의 열차가 절대로 동시에 진입하지 않게 하기 위한 통신· 안전 장비가 도입되었다.
선박이야 조향이 가능하므로 철도 같은 그런 경로상의 제약은 없다. 하지만 걔네들은 인간이 환경을 전혀 통제할 수 없는 망망대해를 돌아다닌다! 바다에서 도대체 무슨 일을 겪을지 알 수 없고 무슨 정체불명의 괴선박 유령선과 마주칠지도 알 수 없다는 점에서 철도와는 사정이 다르다.

비행기의 경우, 위급한 상황에서 비상 착륙은 어느 나라에서든 인도적인 차원에서 무조건 허용하게 되어 있다. 굳이 기체의 이상이 아니라 기내에 응급 환자라도 발생하면 아까운 연료를 버리기까지 하면서 착륙하게 된다.
그것처럼 망망대해에서 조난 신호를 보낸 선박이 있으면 신호를 받은 근처의 다른 선박이 이유 불문하고 무조건 달려가서 구해 주도록 국제법이 그렇게 정해져 있다.

이건 의무이기 때문에, 정당한 사유 없이 고의로 그 요청을 외면한 선박은 나중에 처벌 받는다. 어떤 경우건 일단 사람 목숨은 구하고 나서 그 다음에 구조자들이 자기 일을 못 해서 손해 본 비용을 관계자나 보험사를 상대로 청구하든가 말든가 한다.
꼭 조난 말고도.. 거대한 선박들이 나눌 만한 질문· 응답 내지 주변에 전파하는 자기 상태 정보는 패턴이 뻔히 정해져 있다.

  • 본선은 후진 중이다.
  • 본선 주변에 사람이 바다에 빠져 있다, 또는 잠수부가 작업 중이다. 그러니 주의하라.
  • 본선은 지금 통제가 안 되고 있으니 접근하지 말라.
  • 당신 즉시 정지하라.
  • 도와달라, 도선사를 보내 달라 등등..

여객기에는 자신이 테러리스트에게 장악당해 있음을 외부에 알리는 불빛 표식이 존재한다고 한다. 그리고 택시도 지붕의 택시등이 평소와 달리 뻘겋게 번쩍거리는 건 기사가 택시 강도를 만났다거나 위험에 빠졌다는 것을 알리는 표식이라고 한다.

이런 식으로 자신의 상태를 비언어적인 간편한 수단을 동원하여 잘 보이고 잘 들리게 표현하고, 때로는 간단한 임의의 written language까지 전하는 체계가 선박 쪽은 일찍부터 훨씬 더 정교하게 발달했다. 뭔가 수화 같은 느낌이 드는데.. 선박의 항해사 내지 조타수라면 이 규약은 당연히 달달 외워서 골수에 박혀 있어야 할 것이다.

1. 가장 먼저, 국제적으로 통용되는 신호기(signal flag)라는 게 있다.

사용자 삽입 이미지

위의 깃발들은 무슨 국기가 아니라 A~Z까지 알파벳을 의미한다.
이럴 거면 차라리 그냥 백지에다 커다랗게 알파벳을 그려 넣고 펄럭일 법도 해 보이는데, 누가 왜 언제 무슨 계기로 이런 도안을 따로 만들었는지는 모르겠다. 잘은 모르겠지만 가독성· 시안성 면에서 장점이 있으니까 만든 게 아닐까?

알파벳 26자 말고 숫자와 특수 용도 깃발도 더 있어서 신호기 한 세트는 총 40종류의 깃발로 구성된다. 그리고 모든 신호기 도안은 빨노파+흑백 이렇게 5종류의 색만 써서 그려져 있다. 딱 삼원색+무채색.. 한국어에서 용언이 존재하는 기본색들로만 그려졌다는 뜻이다.
아래의 퇴역 군함에 주렁주렁 달려 있는 깃발들은 만국기가 아니라 다 신호기이다.

사용자 삽입 이미지

이 깃발들은 알파벳을 의미할 뿐만 아니라 단독 또는 두 종류가 결합되어서 다른 의미를 나타낸다.
예를 들어 A는 "본선 주변에서 잠수부가 작업 중이니 천천히 통과하라"이고, B는 "위험물 운반/하역 중"이다. 예/아니요는 Y/N이 아니라 C/N이다.

이런 것들이 규약이 다 정해져 있다.
또한, 알파벳을 "에이 비 씨"(영국/미국)나 "아 베 체"(독일) 같은 특정 언어대로 읽는 게 아니라 "알파, 브라보, 찰리, ..." 식으로 더 튀게 읽는다. '델타'(D)처럼 비슷한 그리스 문자의 독음에서 따 온 것도 있지만 모든 글자가 그런 건 물론 아니다. 에코(E)는 국내에서도 2와 E를 구분하기 위해서 쓰인다. 유니코드 코드값 같은 16진수를 다룬다거나 자연상수가 등장할 때 말이다.

한국어만 해도 굳이 2와 e가 아니어도 숫자 '삼'과 '사' 같은 건 헷갈리기 쉽다. 그래서 주유소 같은 데서는 '잉이삽산' 식으로 받침 발음을 왜곡해서 clearify하지 않던가?
이와 비슷한 맥락에서 알파벳의 발음도 '엠'과 '엔' 같은 건 시끄러운 곳에서 청각적으로 명확한 분간이 어렵다. 거기에다 언어 중립성 같은 문제가 있기도 해서 저런 국제 명칭이 따로 제정된 듯하다.
한자에는 숫자의 변조를 막기 위해서 갖은자라는 게 존재하는데, 글자 언어가 아닌 말소리 언어에서는 발음의 혼동을 막기 위한 바리에이션이 존재한다는 게 흥미롭다.

2. 그리고 다음으로 수기 신호(flag semaphore)가 있다.

이건 동일한 도안인 깃발이 두 개 있고 그걸 사람이 양팔로, 마치 시계의 시침과 분침처럼 각각 어느 각도로 들고 어떻게 흔드느냐에 따라 표현하는 글자가 달라지는 체계이다. 수기용 깃발은 바다에서는 빨강+노랑, 육지에서는 하양+파랑으로 정해져 있지만, 사실 깃발 자체보다는 사람의 팔이 변별 요소 역할을 한다. 깃발은 신호수의 팔이 어디를 향하고 있는지를 더 분명히 드러내 주는 역할만 한다.

사용자 삽입 이미지

수기 신호는 깃발 두 개만 있으면 되니 전용 신호기보다는 준비물이 단순하다. 하지만 표현 가능한 정보량이 부족하기 때문에 숫자의 신호와 알파벳의 신호가 동일하다. 그래서 이 신호가 문자인지 숫자인지를 나타내는 수기를 먼저 보여준 뒤 다음 글자가 이어진다.

3. 끝으로, 발광 신호와 모스 부호가 있다.

'신호기'라고 하니까 개인적으로는 무슨 철도 신호기 같은 물건이 떠오른다만.. 저기서 기는 당연히 旗(banner)이지, 機가 아니다. 그리고 신호기건 수기건 다 깜깜한 밤이나 짙은 안개처럼 시야가 제한된 곳에서는 제 역할을 할 수 없다.

그때는 커다란 헤드라이트 같은 조명을 상대방 선박에게 비추고 이걸 주기적으로 깜빡여서 신호를 보낸다. 저런 A~Z, 0~9 같은 숫자를 그 이름도 유명한 모스 부호계로 인코딩 하고, 깜빡이는 시간 간격으로 돈(점)/쓰(선)를 표현한다.

사용자 삽입 이미지

모스 부호는 잘 알다시피 전신을 보낼 때 사용되지만, 가까이 있는 선박끼리는 저렇게 눈에 보이는 빛의 형태로도 주고받는다.

사용자 삽입 이미지

모스 부호와 점자는 무슨 관계인지 문득 궁금해진다.
난 모스 부호는 뭔가 허프만 트라이(trie)처럼 여러 글자들을 쭉 늘어놓아도 모호성이 없는 binary 부호 체계인 줄 알았는데.. 실제로 살펴보니 그렇지 않더라. 글자 경계 구분을 따로 해 줘야 한다. 가령, 돈만 4개 늘어놓으면 H가 되기 때문에 E(1개), I(2개), S(3개)는 사이에 구분자를 넣어 줘야 표현 가능하다.

옛날에 울펜슈타인 3D 게임에서도 어떤 레벨의 BGM에는 '띠디디.. 띠 띠디..' 이렇게 히틀러를 제거하라는 지령의 모스 부호가 비프음 형태로 들어가 있었다.
그리고 월남전 때 베트콩에게 포로로 붙잡혔던 어느 미군이 말은 위에서 억지로 시킨 대로 하지만, 눈을 깜빡이는 걸로 torture(놈들이 포로들에게 고문을..)이라는 단어의 모스 부호를 표현했다는 일화가 전해진다. 이 정도면 교묘하게 숨겨진 모스 부호는 추리 소설에서 다잉 메시지를 전하기도 하고 문제의 해결 단서까지 될 수 있을 것 같다.

재래식 우체통 편지도 간신히 오늘 내일 명맥을 유지하고 있는 마당에 전보 서비스가 아직도 있긴 한가 보다. 본인은 지난 2000년, 정보 올림피아드에서 대상을 받았을 때 교회 어르신에게서 축전을 받았던 게 거의 처음이자 마지막으로 전보라는 걸 접한 경험이었다.
서양에서는 이렇게 유한한 개수의 문자를 어디서나 편리하게 주고받을 수 있게 부호화하는 방법을 연구해 왔는데 동양의 한자라는 문자는 이런 실용성과는 너무 안 어울려 보이는 게 사실이다.

끝으로, 본인이 갑자기 이런 재래식 선박 신호 체계를 찾아 본 이유를 얘기하고 글을 맺고자 한다. 6· 25 개전 초기의 대한해협 해전 이야기를 읽다가 문득 호기심이 생겼기 때문이다.

  • "J.F (너의 국기를 게양하라.)"
  • "N.H.I.J.P.O (너의 국적을 제시하라.)"
  • "I.J.G (언제 어디를 출항하였는가?)"
  • "L.D.O (목적항구가 어디인가?)"
  • "K (정지하라)"
  • "O.L (정지하지 않으면 발포하겠다)" 이런 것들.

관련 이야기들을 찾아보면 그 당시 우리나라 해군이 북괴 선박에게 실시했던 구체적인 검문 절차를 알 수 있다. 그땐 날이 저물어 있었기 때문에 수기 다음으로는 발광 신호로 저 글자들을 전했다고 한다.
그런데 저 알파벳 이니셜들이 의미하는 게 뭔지 궁금해졌다. 저 이니셜들은 대한해협 해전 이야기 말고 다른 어떤 문헌에서도 확인할 수 없었다.

현재 사용되는 신호용 알파벳과 의미들은 1969년에 대대적으로 개정되면서 제정된 거라고 한다. 그러니 6· 25 전쟁 당시와는 체계가 다르다.
그럼 옛날 신호 체계는 어떠했는지 검색을 해 보면.. International Code of Signals 1931년판이라는 게 나온다. 하지만 너무 옛날 책이어서 그런지 인터넷 상으로 내용을 열람할 수는 없어 보인다. 천하의 구글도 이 책을 스캔 뜨지는 않았다. 그래서 저 이니셜들이 정말로 그때 국제적으로 통용되었던 신호가 맞는지는 본인은 아직까지 모르겠다.;;

사용자 삽입 이미지


Posted by 사무엘

2019/02/10 08:33 2019/02/10 08:33
, , ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1585

원자력 발전 이야기

과거에 이따금씩 발전 시설이나 원자력에 대한 글을 몇 번 썼지만, 원자력 발전에 대해서만 전문적으로 글을 쓴 적은 없었던 것 같다.

수력이야 그 정의상 지형을 많이 타고 아무 곳에나 못 만들겠지만, 화력은 연료와 엔진만 있으면 어디서나 발전기를 돌릴 수 있으니 장소와 지형 제약이 상대적으로 덜하다.
물론 화력이라도 엄청 거대한 놈은 연료와 냉각수 조달이 원활한 곳, 보안 걱정 없는 곳, 빵빵하게 돌려도 주민들 항의 민원이 안 들어올 외곽에 건설되어야 할 것이다. 하지만 화력은 규모를 줄여서 도시와 상대적으로 가까운 곳에 열병합 난방 시설과 연계한 형태로도 만들 수 있다. 메탄 가스를 활용할 목적으로 쓰레기장 주변에 이런 발전소가 돌아가기도 한다.

또한 울릉도· 백령도 같은 오지 도서 지역에도 그런 소형 화력 발전소가 있다. 전깃줄을 본토에서 바다 건너 거기까지 연결하는 건 어려우니 말이다.
이런 영세한 발전소들은 메이저급 대형 발전소에 비해 배기가스· 매연을 정화하는 시설이 부실해서 환경을 오염시키고 있다고 어디 언론에서 고발한 적이 있다.

원자력 발전도 물을 끓여서 증기 터빈을 돌리고 그걸로 교류 발전기를 돌린다. 이 원리는 화력과 본질적으로 완전히 동일하다. 다만, 원자력은 열을 생성하는 방식이 화력과는 넘사벽급으로 더 고차원적이고 에너지가 풍부한 대신, 훨씬 더 위험하다는 차이가 있다.

그러니 원자력은 화력처럼 여느 공장 짓듯이 아무렇게나 여기 저기 많이 만들 수 없다. 한번 만들고 나면 수십 년 뒤에 원자로를 해체하는 마지막 순간까지 평생 철통같이 잘 관리하겠다는 심정으로, 정말 엄격한 입지 조건을 따져서 만들어야 한다.
지금의 핵분열 방식보다 더 고차원적인 핵융합 방식의 발전은.. 마치 바퀴식 고속철 vs 자기부상 고속철만큼이나 아직까지 떡밥이다. 기술적 어려움 때문에 실용화되지 못했다.

('핵분열'이라는 용어가 이렇게 물리학에서 쓰이는데, 완전 딴판인 생물학에서도 한자까지 동일하게 쓰인다는 게 흥미롭다. 마치 '궤도'처럼 말이다(천체 orbit, 철도 track). 하지만 핵분열의 경우 영어로는 물리학은 fission, 생물학은 division으로, 용어가 서로 다르다.)

사용자 삽입 이미지

발전소가 원래 다 민간 지도에서 표시하지 않는 보안 시설이지만, 원전은 위로 비행기의 비행조차 금지할 정도로 보안이 더 삼엄하다. 원자로의 겉벽은 어지간한 댐 급으로 콘크리트를 왕창 쏟아부어서.. 비행기가 쳐박고 어지간한 폭탄이 떨어져도 끄떡없게 만들어진다고 들었다.

원전은 미래의 해체 비용까지 생각하면 마냥 싼 게 아니겠지만.. 어쨌든 당장 핵분열이 시작되어 제대로 돌아갈 때는 화력보다 훨씬 더 많은 열량이 저렴하게 뿜어져 나온다. 한번 시작된 반응을 마음대로 멈췄다가 재개할 수도 있지 않으니 전기는 밤낮 구분 없이 24시간 쭈욱 생산된다.

철도만 해도 비싼 돈 들여 고속철이 개통하고 나면 노선이 전부 KTX 위주로 개편되고, 나머지 느린 열차들은 KTX 연계 지선 위주로 운영된다.
그것처럼 국가에서 전력을 관리할 때도 평소에 저렴한 원전을 상시 가동하고, 이것만으로 감당이 안 될 정도로 전력 소모가 늘면 용량과 생산 원가가 모두 열세인 화력을 추가로 가동하게 된다. 즉, 전력 부하가 커질수록 더 비싼 전기를 생산하게 된다는 것이다.

에휴.. 나도 공돌이 공부 더 열심히 해서 우주로 나간다거나, 아니면 이런 신비로운 업종의 종사자가 됐으면 하는 아쉬움도 든다만..
대한민국에는 원자력 발전소의 군집 내지 본부가 총 네 군데 있다. 아래의 그림은 한 2년 반쯤 전 기준의 자료이다.

사용자 삽입 이미지

1. 고리(1978)

우리나라 최초의 원자력 발전소이다. 그 시기가 1978년 봄이니 박통 집권의 말기이며, 호남선 대전-이리간 복선 개통과도 시기적으로 비슷하다. 착공은 1971년부터 했으니 만드는 데 7년이나 걸렸다.

얘가 있는 곳은 부산 기장군의 최북단과 울산 울주군의 최남단 사이에 있는.. 행정구역상 기장군 '고리'(古) 전체이다. 최초의 원자력 발전소답게 북괴와 최대한 멀리 떨어진 후방인 동시에 나름 부산이라는 대도시와 가장 가까운 곳에 지어진 셈이다. 여기가 원전 부지로 지정되면서, 이 동네에 원래 살던 주민들은 모두 당연히 딴 데로 이주하게 됐다.
이렇듯, 이 발전소의 명칭의 근거는 그냥 지명이다. ring 같은 다른 이상한 근거가 절대 아니다.

원자력 발전소는 안전상의 이유와 원자로를 식힐 냉각수를 조달하는 문제로 인해, 바닷가에 만들어지는 것이 관례이다. 한반도에서는 바람이 서에서 동으로 분다는 특성상, 서해안 대신 동해안의 바닷가가 선택되었다. 근처의 임랑 해수욕장에서 고리 원전을 멀리서나마 구경할 수 있다.

원전이 대도시와 너무 가까운 것은 좀 찝찝하고 문제의 여지가 있지만, 그 덕분에 여기는 직원들의 근무 선호도가 가장 높다. 그리고 근처에 '신고리'라는 이름으로 원전이 더 지어져서 발전 용량이 압도적으로 증가했으며, 한수원의 직원 연수 시설과 심지어 원자력 대학원대학교까지 다 여기 일대에 건립되었다. 여기는 그야말로 우리나라 원전 허브처럼 돼 가는 느낌이다.

대전에 있는 원자력 연구원이 핵물리학을 전반적으로 연구한다면, 저기는 원자력 발전에 더 특화돼 있다.
신고리 원전이 너무 거대해진 관계로, 앞으로 더 만들어지는 신고리 원자로 3호기부터는 '고리'가 아닌 '새울'이라는 새로운 원자력 본부의 명의로 관리할 예정이라고 한다.

다만, 우리나라 최초의 상용 가동 원자로인 고리 1호기는 잘 알다시피 설계 수명을 넘겨서 가동을 중단했으며, 앞으로 수십 년에 걸쳐 해체될 예정이다. 뭔가 몇십 년을 뛰었던 전동차나 여객기가 퇴역하는 것 같은 느낌이다. 화력 발전에는 이런 거창한 프로세스가 존재하지 않을 것이다.
용광로만 해도 한번 쇳물이 흐르기 시작했으면 그야말로 무조건 365일 가동해야 한다던데(쇳물이 중간에 굳어 버리면 용광로 전체가 망가지고 못 쓰게 됨)... 원자로는 더 위험하고 까다로운 물건임이 틀림없을 것이다.

2. 월성(1983)

고리 다음으로 5공 시절에 가동을 시작한 제2의 원자력 발전소는 '월성'이다. 물론 얘도 건설은 이전 정권 때부터 몇 년째 하다가 저때에야 결실을 거뒀다.
있는 곳은 고리보다 더 북쪽으로.. 경주의 남동쪽 끝의 나아리와 봉길리 사이이다. 지명을 딴 해수욕장도 있으며, 우리나라 역사상 보기 드문 해중왕릉인 신라 문무대왕릉도 여기 근처에 있다.

발전소의 이름이 월성인 이유는 여기의 옛 지명이 월성이었기 때문이다. 옛날에는 신라의 도읍에 속하는 좁디좁은 시내만이 경주시이고, 나머지 외곽의 넓은 시골 마을들은 다 경주군(1995 이전)이었다. 그게 더 옛날에는 이름도 경주군이 아니라 월성군(1989 이전)이었던 것이다.

그러니 '경주/월성'은.. 이름은 그대로 남아 있는데 행정구역 영역이 바뀐 '김포/서울'과는 관계가 좀 다르다. 김포 공항조차도 굳이 이름을 바꾸지 않고 있는데(뭐 국제적인 인지도와 관성 문제 때문이지만), 원전의 이름을 뭔 남사스럽게 최신 지명에 맞춰 업데이트 할 필요는 없을 것이다.

다만, 지금도 경주는 시내와 바다 근처는 거리가 상당히 멀고 산으로 가로막혀 있기도 한지라, 생활권이 서로 굉장히 다르다. 경주도 포항처럼 바다와 접하고 있고 해수욕장과 항구도 있는 시라고 하면 누가 선뜻 실감하겠는가? 행정구역이 다르다고 해도 할 말이 없다. 그리고 그것만치 월성 원자력 발전소도 서류상의 행정구역으로만 경주 소재일 뿐, 흔히 생각하는 그런 경주 생활권에 있는 건 아니다.

여기도 2010년대에 와서 신형 원자로를 추가로 만들었으며, 1983년부터 가동했던 원조 1호기는 이미 퇴역했다.
그리고 원자력 발전소라고 다 같은 발전소는 아닌지라, 월성의 원자로는 국내에서 유일하게 가압중수로 방식이라고 한다. (나머지는 가압경수로) 잘은 모르겠지만, 얘는 핵무기 개발과 연계하기 더 쉬운 구조여서 국제적으로 더 민감하다고 그런다. 우주 탐사 로켓이 장거리 미사일로 형태가 고스란히 바뀔 수 있는 것처럼 말이다.

3. 영광-한빛(1986)

얘는 우리나라의 원자력 발전소들 중 이례적으로, 유일하게 서해안에 있는 물건이다.
황해라고도 불리는 서해는 물이 얕고 탁해서 해수욕장으로서의 입지가 동해 및 남해보다 못하다. 그런데 그 단점은 다량의 냉각수를 필요로 하는 원전의 입지 조건에서도 불리하게 작용하는 듯하다.

하지만 전남 영광군의 북부에는 바닷가가 내륙의 산으로 가로막히기도 하고 서해안의 지리· 지형적인 단점이 그나마 적게 작용하는 곳도 있는가 보다. 그래서 거기에 원전이 하나 더 지어졌다.
영광은 광주와 가까우며, 이 발전소가 있는 곳은 위도가 부산 고리와 비슷하다. 얘 혼자 다른 원전들과 달리 낙동강 오리알처럼 따로 떨어져 있다.

본인은 타지 사람으로서 '영광'이라 하면 정말.. (1) 영광 굴비랑, (2) 옛날에 야망이 너무 충만했던 그 조직폭력배 집단, 그리고 (3) 원자력 발전소밖에 떠오르는 게 없다.
그런데 이 지역에서는 자신이 원자력 발전소와 엮이는 것이 싫었는지.. 2013년부로 발전소의 이름을 '한빛'으로 바꿔 버렸다. 지명과 무관한 원전 명칭이 처음으로 등장하게 됐다. 하지만 '광/빛'을 생각하면 개연성이 전혀 없는 명칭은 아니어 보인다.

4. 울진-한울(1988)

우리나라에서 가동 중인 원전 군집 중에서는 제일 나중에 생겼으며, 위도가 제일 높은 북쪽에 있기도 하다. 강원도에 근접한 경북 동북부 끝.. 말만 들어도 전라남도 섬 만만찮은 오지 같지 않은가?
여기는 직원들로서는 기피 1순위인 근무지이다. 오죽했으면 "울진에서 10년간 근무"를 조건으로 거는 특채도 있다고 들었다. 무슨 사관 생도의 군 의무 복무도 아니고 말이다.

여기도 영광과 같은 시기(2013)에 '한울'이라고 이름을 바꿨다. 울진은 이 발전소 덕분에 오지치고는 세수입 많고 재정이 넉넉하고 학교나 공공기관들의 시설이 좋다고 들었는데 왜 굳이 발전소 이름에서 자기 지명을 빼려 하는지 모르겠다.

이상이다.

이런 식이면 강원도에도 원전이 있을 법한데 그렇지 않다. 지형적인 입지는 나쁘지 않지만 북쪽으로 갈수록 북괴와 가까워져서 안보 측면에서 위험하기 때문이다.
그래도 우리나라가 동쪽으로 갈수록 고위도 영토를 많이 수복했기 때문에 강원도 남부의 삼척 정도에는 장기적으로 원전의 건설이 계획돼 있다고 한다. 현재로서는 강원도가 아니라 울진보다 남쪽의 오지인 영덕에 새 원전이 이미 건설 중이긴 하다. 동해도 서해도 아닌 남해안 쪽은 만들 만한 곳이 없나 모르겠다.

우리나라는 1950년대 이 승만 할배 때부터 원자력에 큰 관심을 갖고 있었다. 비록 할배는 문과 출신이고 군 경력도 없는 사람이지만, 절대 망하지 않을 것 같던 일본을 닥버 시키고 우리나라를 해방시켜 준 무서운 폭탄이 원자력 기반이라는 것에 큰 감명을 받지 않았을까 싶다.

그래서 6·25 전쟁 이후, 1956년에 미국과 원자력 협정을 맺고 서울대와 한양대 등의 공대에 원자력 공학과를 신설했으며, 58년에는 원자력 연구소를 설립했다. 이렇게 차근차근 씨를 뿌린 것이 결실을 맺은 덕분에 20여 년 뒤에 한반도엔 원자력 발전소가 돌아가게 됐다. 원자력 발전소가 없이 화력만으로는 지금 같은 전철, 서버, 에어컨, 휴대폰 충전 같은 폭발적인 전기 소모 수요를 지금 같은 생산 원가로 결코 감당할 수 없을 것이다.

본인은 이런 이유로 인해 예나 지금이나 원자력 발전의 적극 찬성론자이며, 되도 않은 탈원전 구도가 어떻고 하는 소리에 전혀 동의하지 않는다. 당장 현실에서 이것만 한 대안이 전무하기 때문이다.
물론 사고가 났을 때의 여파가 너무 크고 평소에도 방사성 폐기물이 계속해서 생겨나는 등 문제는 있지만.. 그것까지 일일이 다 따지려면 자동차나 비행기도 무서워서 타지 말아야 할 것이고, 그냥 현대 문명의 이기를 다 포기해야 할 지경이다. 어디 한번 인간의 손이 닿지 않은 자연에서 냉장고· 에어컨조차 없이 잘만 살아 봤으면 싶다.

원자력을 없애고 그 대신 더 더티한(미세먼지!!) 화력을 늘리는 것은 바보 병신짓이 따로 없고, 또 이 좁은 땅에서 무슨 태양광? 풍력? 이건 한 대 쥐어박아 주고 싶다.
환경 운동한다는 놈들이 정말 환경을 걱정하는 게 아니라 99%가 그냥 진영 논리 정치꾼일 뿐이라는 것은 이미 다 밝혀진 사실이다. 이런 인간들이 원자력 발전을 꼭 '핵 발전'이라고 부르면서 원전을 반대하는 것에 본인은 더욱 공감해 줄 수 없다.

또한, 핵무기 개발을 그렇게도 오랫동안 열심히 해 온 북괴가 정작 원자력을 평화적으로 이용하는 원자력 발전소를 만들었다는 얘기는 지금까지 아무도 못 들어 봤을 것이다.
쟤들도 60년대부터 소련의 지원을 받으며 원자력 연구를 하긴 했다. 다만, 그 유명한 '영변 원자력 연구소'는 바닷가가 아닌 평안북도 소재이고, 그 자체는 원자력 발전이라기보다는 말 그대로 남한의 원자력 연구원과 비슷한 시설이다. 함경북도에 있는 핵실험장 역시 원자력 발전과는 아무 관계 없는 시설이다.

저 짓을 하고 있으니 북한은 평양 말고는 밤에 불빛 하나 안 비치는 암흑천지이고 주민들은 도탄에 빠져 있다. 어디 누가 누구 탓을 하나 모르겠다(미국 탓? 경제 제재? 트럼프가 한반도에 긴장과 전쟁 조장?? -_-;; X랄..).
그러면서 그 부족한 전기는 김씨 일가 우상화 시설에다 최우선으로 공급하고, 대외적으로 전기가 부족하다며 남한 삥이나 뜯는 것이 21세기까지 이어지는 북괴의 추악한 민낯이다. 이래도 도대체 언제까지 민족뽕 평화뽕 통일뽕이라는 저주받을 마약에 취해 있을 텐가?

참고로 국내의 경우, 개인이 '원자력 안전 위원회'의 허가와 승인 없이 싸제 원자로를 구축하고 방사성 원소를 건드리는 것은 법으로 금지되어 있다. 도대체 그런 짓을 누가 하는지는 모르겠지만, 그래도 mad scientist 성향이 있어서 위험한 짓을 하는 사람이 있으니 금지다.
저건 개인이 싸제 총기나 폭발물을 만든다거나 무단으로 북한과 내통을 시도하는 것 이상으로, 훨씬 더 위험한 짓이기 때문이다. 우리나라뿐만 아니라 선진국들은 이런 짓을 다 관련법을 통해 규제하고 있다.

Posted by 사무엘

2019/01/22 08:34 2019/01/22 08:34
, , , ,
Response
No Trackback , 2 Comments
RSS :
http://moogi.new21.org/tc/rss/response/1578

1. 트럭의 축/캡 사양

트럭 중에서 작은 축에 드는 포터/봉고 급의 1톤 트럭에는 나름 바리에이션이 있다.

  • 초장축: 엔진의 성능과 적재중량 한계는 동일하게 유지하면서 짐받이의 길이를 약간 더 길게 한다. 고급 승용차에 단순 세단 말고 리무진이 있듯이 말이다. 초장축은 짐받이에 화물 고정용 끈을 묶는 갈고리가 하나 더 달려 있다. (더 길기 때문)
  • 슈퍼캡: 운전석이 있는 좌석 뒤에 2~30cm남짓한 여유 공간을 추가한다. 그래서 좌석을 뒤로 젖히거나 좌석 뒤로 사람 한 명 정도 누울 수 있게 한다. 슈퍼캡 사양을 선택하면 이 공간만치 짐받이의 길이가 약간 짧아진다. 초장축+슈퍼캡과 장축+일반캡의 짐받이 길이가 서로 비슷할 정도이다.

사용자 삽입 이미지사용자 삽입 이미지

그러니 장축/초장축, 그리고 일반캡/슈퍼캡/더블캡(아예 뒷좌석까지 있는) 이렇게 2*3 = 6가지 조합이 가능하다. 좌석 뒤에 있는 보조 공간이 선택사양 옵션이라는 것을 처음 알게 됐다.

트럭은 좌석의 바로 아래에 엔진이 있는 것, 운전석과 조수석의 사이 중앙에도 좌석이 있는 것이 신기하다. 안 그래도 생계형 소형 트럭인데 운전석 뒤에 그 정도 보조 공간도 없으면 너무 비좁고 불편할 것 같다. 거기에다 짐 실을 공간이 조금이라도 더 필요하기 때문에 현실에서는 슈퍼캡+초장축 옵션이 모두 선호도가 높다고 한다.
경차인 라보에는 슈퍼캡이나 초장축 같은 사양은 물론 존재하지 않는다.

2. 엔진 오일

엔진 오일은 자동차에다 주입하거나 장착하는 여러 물건· 물질 중에.. 연료처럼 직접 소모되어 줄어들고 없어지지는 않음에도 불구하고, 가장 자주 교환해 줘야 하는 소모품이다.
튀김용 기름을 생각하면 된다. 닭을 수십 번 튀겨도 기름이 양 자체가 눈에 띄게 줄어들지는 않는다. 단지 시꺼멓게 탁해지고 변질될 뿐이지.

엔진 오일이라는 게 왜 필요한지를 이해하려면 자동차가 앞으로 나아가는 원리가 무엇인지, 엔진 실린더 내부에서 무슨 일이 벌어지는지를 생각해 볼 필요가 있다.
거기는 1초에도 수십 번씩 뜨거운 폭발과 피스톤 왕복 운동이 일어난다. 힘이 새어 나가지 않으려면 피스톤과 실린더 벽 사이가 밀폐가 잘 돼 있으면서도, 한편으로 마찰 없이 매끄럽게 운동이 돼야 한다.

이런 곳에서 엔진 오일은 단순히 자전거 체인에다 치는 구리스와는 차원이 다른 더 중요하고 결정적인 역할을 한다. 엔진 오일이 없으면 엔진은 얼마 못 가 탈 나고 망가진다. 변질된 오일은 오일이 아예 없는 것보다는 낫겠지만 윤활, 밀폐, 정화 같은 자기 역할을 제대로 못 하고 엔진의 출력과 연비를 깎아 먹는다.

모든 내연 기관 왕복 엔진에는 엔진 오일이 필요하다. 적절한 교환 주기에 대해서는 자동차 제조사나 정비사, 실제 운전자들 간에 논란의 여지가 있지만.. 그래도 주행 조건이 어떤지에 따라 5000~15000km, 또는 1년을 전후한 주기로는 교환하는 게 좋을 듯하다. 오랜만에 교환하고 나면 엔진의 상태가 달라진 게 곧장 티가 날 정도이다.
전기차에는 엔진 오일 같은 건 없어도 된다.

3. 변속기 오일

엔진 오일에 비해 변속기 오일은 사람들에게 존재감이 훨씬 덜하다. 그리고 잘 알다시피 수동과 자동은 변속기 오일의 용도가 서로 매우 다르다.
내 차만 해도 취급설명서를 보면, 변속기 오일은 그냥 씨크하게 무점검 무교환이라고 쓰여 있다. 하지만 현업 정비사들의 얘기는 다른 듯하다. 출발 직후의 가속 중에 변속 충격이 예전에 비해 커진 게 느껴지는데, 변속기 오일을 교체하면 변속 충격이 완화되려나 궁금하다.

사용자 삽입 이미지

변속기 오일은 다른 부류의 오일과 외관상으로 구분되라고 제조사에서 빨간 염료를 섞는 편이라고 한다.

사용자 삽입 이미지

지난 2015년 여름에 현대차에서는 내수용과 수출용의 품질 차이 논란을 불식시켜 주겠다며 민간의 자동차 전문가가 임의로 고른 자기네 내수차와 수출차를 대상으로 시속 56km 정면 충돌 테스트를 공개적으로 해 보였다. (☞ 관련 링크) 차종은 LF쏘나타이고.. 양 차가 제각각 56km/h로 달렸기 때문에 실제 충돌 속도는 그 두 배인 112km/h나 마찬가지였다.

사용자 삽입 이미지

그때 충돌 잔해에서는 시뻘건 액체가 줄줄 새어 나와서 무슨 핏자국처럼 보였는데..
그게 바로 변속기 오일이다. 바닥 주변이 다 붉게 물들 정도이니 주입량도 결코 적지 않다는 걸 알 수 있다.

그런데 차가 저것 이상으로 박살 난 다른 교통사고 현장 모습들을 인터넷에서 검색해 보면, 내부의 액체가 유출되었다고 해서 저렇게 시뻘건 액체가 줄줄 흘러나온 것은 보기가 쉽지 않다. 그 이유는 다른 것도 있겠지만, 그 붉은 염료가 변속기 오일의 품질 자체와는 별개로 오래 지속되지 않고 변색되기 때문으로 보인다. 저 자동차 설명서에서도 언급되어 있듯이 말이다.

현대차의 충돌 테스트의 경우, 공장에서 갓 생산된 따끈한 새 차를 동원했기 때문에 붉은색을 선명하게 확인할 수 있다. 그렇게 생각하면 논리가 아귀가 맞는다.

4. 타이어 펑크

자전거만 해도 타이어가 터지면 타이어가 완전히 다른 물질로 바뀌기라도 한 듯이 질질 끌리며, 페달을 밟아도 도무지 나아가질 않는다. 자동차는 주행 성능을 넘어 핸들이 한쪽으로 쏠리는 등 조향· 제동과 관련된 더 위험한 문제가 이어진다. 그러니 타이어가 터진 상태로는 제대로 주행할 수 없다. 타이어 펑크는 배터리 방전, 문 잠김과 더불어 긴급출동 최다 호출 사유에 들지 싶다.

그런데 요즘 운전자들 중에 짹 같은 전통적인 공구를 꺼내서 차를 들어올리고 휠 너트를 풀고 조여서 타이어를 직접 교환할 줄 아는 사람이 얼마나 될까? 정비소에서 타이어를 교환하고도 정비 불량 때문에 주행 중에 타이어가 빠지는 사고가 나는 판에 말이다. 다들 그냥 긴급출동을 부르고 만다. 핸드폰이 없던 시절에 자동차 운전을 참 어떻게 했을까 싶다.

20세기 초중반의 엄청 옛날 자동차들은 옆면이나 뒷면에 스페어 타이어를 노출하고 다니는 게 유행이었던 것 같으나 요즘 차들은 그렇지 않다. 승용차들은 트렁크에, 버스나 트럭은 하부에 스페어 타이어를 장착하는 게 일반적이다.

사용자 삽입 이미지

다만, 요즘은 원가 절감과 경량화를 이유로 승용차에는 스페어 타이어가 달리지 않는 게 추세이다. 어차피 다 긴급출동을 부르니까.. 그리고 타이어를 통째로 교환하기보다는 어지간해서는 그냥 지렁이 땜빵만 하고 말기 때문이다.

땅과 접촉하는 정면 부위에 압정이나 못이 좁게 박힌 것 정도는 땜빵으로 대처가 가능하지만, 누가 악질적으로 타이어 측면을 칼로 확 긋고 찢는 테러라도 벌인 것은 그런 식으로 대처할 수 없다. 이건 차 표면을 동전으로 긁어서 흠집을 내는 것만큼이나 적은 노력으로 차를 굉장히 크게 망가뜨리는 짓이다.

5. 속도계

타코미터가 엔진 회전수를 측정한다면 속도계는 바퀴 구동축의 회전수를 토대로 자동차의 주행 속도의 근사값을 표시해 준다. 정확한 값이 아니라 근사값인 이유는, 구동축이 동일한 속도로 회전했다 하더라도 차가 실제로 굴러간 거리는 타이어의 지름(= 공기압 상태)이 얼마냐에 따라 미세하게 달라질 수 있기 때문이다.

그러니 지금 자동차가 지구상에서 어느 위치에 있는지를 절대적으로 따지는 GPS 내비 정도는 돼야 정확한 속도를 구할 수 있다. 하지만 속도계 바늘보다는 반응이 더딘 게 흠이다.
사실은 GPS까지 갈 것도 없이 스피드건이 어떤 원리로 동작하며, 속도를 어떻게 생각보다 정확하게 측정할 수 있는지도 개인적으로 무척 신기하다. 길거리에서 "지금 당신의 주행 속도는 xx km/h입니다" 이런 거 표시해 주는 전광판을 본 적도 있을 것이다.

속도계는 안전을 위해 최대한 보수적으로.. 오차가 난다면 차의 실제 속도보다 약간 더 높은 값이 나오도록 만드는 게 관행이다. 이 속도계만 믿고 주행했다가 낚여서 과속 딱지라도 먹는다면 일이 꽤 골치 아파질 테니 말이다.
또한, 차에 따라서는 30km 지점에 빨간 눈금이 그어져 있는 속도계도 있는데, 그 이유와 의미는 이미 아는 분들은 다 아실 것이다.

6. 액티브 에코 기능

요즘 자동차에는 '에코 드라이브'라고 지금 운전 스타일이 경제 운전 친환경 운전 스타일인지, 아니면 차에 무리를 주고 돈을 길바닥에 흘리는 힘든 상태인지 표시해 주는 기능이 있다.

  • 백색: (1) 시동을 갓 켜서 냉각수나 엔진 오일이 제대로 초기화되지 않은 상태일 때(그러니 아직 너무 무리하지 마셈..), (2) 변속기 상태가 D가 아니거나 극도의 저속 주행 중일 때 (3) 급가속(킥다운, 높은 토크) 내지 고속 주행을 위해 좀 세게, 깊게 밟고 있을 때
  • 녹색: 백색에 해당되지 않는 나머지 대부분의 상황. 슬금슬금 적절히 밟고 있거나 타력 주행 중일 때
  • 적색: 백색보다도 더 과격한 기동 중일 때

내 차의 경우, 시속 110~120km쯤 이상부터는 가속을 하려니 녹색을 보기가 힘들어지는 것 같았다. 그 이상 속도는 불가능하지는 않지만 지금 엔진의 출력으로는 좀 무리라는 뜻이다. 더 큰 배기량의 엔진에 비해 연비가 더 크게 떨어지고 힘이 안 나고..
그리고 에코 드라이브 표시등이 백색을 넘어 아예 적색으로 바뀌는 것은 작년 여름에 딱 한 번 겪었다. 에어컨+오르막 상태로 옆 차 추월하려고 세게 밟았더니.. 저게 녹색과 백색 말고 적색이 될 때도 있다는 것을 처음 봤다.

에코 드라이브에 이어서 '액티브 에코' 기능까지 탑재된 차도 있는데, 이건 엔진 성능을 일부 너프시키고 속도 리미트까지 걸어 가면서 더 적극적으로 '녹색' 상황으로만 동작하게 하는 옵션이다. 사용자가 켜거나 끌 수 있다. 본인 차에는 이런 옵션까지는 없더라.

먼 옛날 카뷰레터 시절, 퓨얼 컷 기능도 없고 공기 공급조차 엔진이 자동으로 조절을 못 해서 초크 밸브 당기고 시동 직후 몇 분간 예열을 해야 하던 때에 비해... 요즘 자동차들은 전자 제어 방식이 도입된 이후 정말 많이 똑똑해졌다. 최적의 동력비(자동 변속기)뿐만 아니라 최적의 연비까지 저렇게 계산해서 운전자에게 안내해 주니 말이다.
그러니 강제 공회전 예열은 마치 옛날에 니켈-카드뮴 배터리의 메모리 효과를 예방하기 위해서 무조건 완충-완방을 해야 하던 시절 같은 흘러간 얘기가 됐다.

7. 선루프

선루프는 자동차의 엔진이나 주행과는 직접적인 관계가 없는 그냥 액세서리이다. 선루프가 달린 스포츠카는 간지 하나는 정말 제대로 나는 게 사실이다.
하지만 길거리의 승용차들을 보면 선루프가 있는 차보다 없는 차가 훨씬 더 많으며, 선루프를 장착한 것을 후회하는 운전자도 많다. 선루프는 흔히 '빛 좋은 개살구, 계륵, 가성비 최악의 액세서리'에 비유되곤 한다. 왜 그럴까..?

단순히 간지에 비해 치르는 대가와 단점도 만만찮은 물건이기 때문에 그렇다.
우선, 평범한 일반인이 선루프가 제대로 성능을 발휘하는 맑은 대낮에 운전을 할 일은.. 의외로 몹시 드물다! 더구나 맑은 대낮이라 해도 한겨울에 선루프를 개방할 일이 얼마나 있겠는가?
그에 반해 선루프는 차값을 더 올리며, 수리비, 보험료 같은 유지비 제반도 덩달아 끌어올린다.
안전성 면에서도.. 전복처럼 지붕이 대미지를 입는 교통사고에 더 취약해지는 것 정도는 누구나 예상 가능할 것이다.

또한, 선루프를 단다는 것은 결국 차의 지붕에 어떤 형태로든 무겁고 복잡한 설비가 추가됨을 의미한다.
지붕이 재질은 약해지는 주제에 10~30kg에 달하는 중량이 차에 상시 추가된다. 연비에 마이너스.. 그것도 하부가 아닌 상부가 더 무거워지니, 차량의 주행 안정성에 악재면 악재이지 호재는 절대 아니다.
차의 외관에 영향을 주지 않으면서 선루프 부품이 위에 들어가려면.. 객실 내부의 천장이 수 cm 남짓 더 낮아지는 것을 피할 수 없다.

이런 구조적인 핸디캡은 차량의 기술과 성능 발달만으로 극복 가능한 게 아니다.
더구나 운전 편의(자동 변속기)나 탑승자의 안전(ABS, 에어백)에 직접적이고 결정적인 영향을 주는 물건도 아니니..
선루프는 고급 차량이라고 해서 반드시 같이 달려 나오지 않는다. 오늘날까지도 고객이 별도로 주문했을 때에만 달아 주는 option 선택사양으로만 머무르고 있다.

Posted by 사무엘

2019/01/01 08:35 2019/01/01 08:35
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1571

1. 송파대로 일대의 시설

송파대로의 잠실 이남 구간이 한때 얼마나 황량했는지는 이 부근에 무엇이 있거나 있었는지를 생각하면 짐작 가능하다.
1980년대에는 논밭과 비닐하우스 부지를 인수하여 가락시장이 들어섰다. 이 부근에는 나름 보안 시설인 전파 관리소도 자리잡고 있었다.
그리고 문정· 장지 일대는 지금 강서구의 마곡 지구와 더불어 서울 최후의 미개발 농경지로 여겨지고 있었다. 198, 90년대까지는 거기에 자동차 학원도 있었다고 한다.

그랬는데 전파 관리소 부지는 지하철역 출구에서 엎어지면 코 닿는 금싸라기 땅이 되어 버렸고 2010년대부터는 그 역이 아예 환승역까지 됐다. (가락시장) 극소수의 전문 인력만이 근무하는 보안 시설답지 않게 시가지와 너무 가까워지고 접근성도 너무 좋아져 버린 것이다. 전파 관리소는 넓은 역세권 부지를 다 활용하지 못하고 상당수를 잔디밭과 테니스장으로 놀려 두고 있다.

철도 쪽을 살펴보면 서울 지하철 4호선의 북쪽 연장과 함께 창동 차량 기지가 이전할 예정이고, 구로 차량 기지도 어디 멀리 못 옮겨서 안달이다. 과거에 용산 역의 넓은 면적을 차지하고 있던 철도 공작창 부지는 앞으로 어떻게 개발되려나 모르겠다.
또한 군부대도 정보사, 특전사 등 서울에 있던 많은 부대들이 이전했으며 이제는 용산 미군 기지조차도 평택으로 이전이 임박해 있다.
이런 시설들의 이전 시기와 맞물려서 전파 관리소도 어디 성남의 산기슭이나 멀리 지방으로 이전하게 될 것 같다.

한편, 가락시장과 그리 멀지 않은 오금 역 인근에 있던 성동 구치소는 문정 법조 단지가 조성된 뒤엔 서울 동부 지방 법원 옆의 동부 구치소로 확장 이전했다. 요즘은 구치소나 교도소를 주변 건물들과도 전혀 이질감이 느껴지지 않게 여느 고층 아파트나 상업 건물과 다를 바 없는 스타일로 만드는 게 유행인 듯하다.

2. 자동차 전용 도로의 고저 위상

서울에 있는 대부분의 한강 공원들은 접근하기가 왠지 어렵고 부담스럽다는 생각이 든다. 굴다리를 통과해야 하고 뭔가 기존 도로들과 입체 교차를 해야 한다.
하지만 여의도 한강 공원만은 자그마한 도로의 옆으로 쏙 내려가기만 하면 부담 없이 갈 수 있다. 심리적인 진입 장벽이 아주 낮게 느껴진다. 왜 그럴까?

다른 한강 공원들은 강변북로나 올림픽대로 같은 거대한 시내 고속화도로의 바로 옆에 있기 때문이다. 그 도로를 횡단해야만 공원으로 갈 수 있다.
그 반면, 여의도는 사정이 다르다. 공원은 여의도에서 한강과 맞닿은 북쪽에 있지만, 올림픽대로는 여의도의 남쪽으로 지난다. 곁에 자동차 전용 도로가 아닌 평범한 시내 도로만 있으니 여의도 한강 공원은 자전거 라이더나 보행자가 접근하기가 상대적으로 더 가깝고 편하게 느껴진다.

그리고 자동차 전용 도로들 중에서 내부순환로는 그 구조상 거의 다 고가이다. 그렇기 때문에 진입 램프는 위로 올라가는 형태로 만들어져 있다.
그에 반해 동부 간선 도로는 중랑천의 둔치에 만들어져 있으니, 장마철 때 종종 침수까지 될 정도로 고도가 낮다. 진입 램프는 당연히 아래로 내려가는 형태이며, 빠져나갈 때는 위로 올라가게 된다.

강변북로는 한강 공원보다는 전반적으로 고도가 훨씬 더 높지만 그래도 한강의 다리들과 교차할 때는 대체로 아래로 지난다. 다만, 잠실대교에서는 동쪽 구리 방면 도로가 다리의 위쪽을 지나기 때문에 예외적으로 더 높다. 무슨 사정이 있어서 다리 아래로 공간을 내지 못했던 모양이다.

그리고 강변북로의 전신은 그냥 본토의 평지이기 때문에, 본토와 접해 있는 서쪽 일산 방면은 의외로 진입 램프 없이 평면으로 곧장 진입하는 곳도 많다. 이것이 동부 간선이나 내부순환로와의 차이이다. 물론 한강과 더 가까운 동쪽 방면으로 진입하려면 아래로 굴다리를 지난 뒤, 한강 공원 쪽의 도로를 거쳐서 진입하는 수고를 감수해야 한다.

3. 주류 기술과 대체 기술

우리나라 고속도로에는 그 이름도 유명한 하이패스라는 무정차 자동 요금 정산 시스템이 있다.
그런데 가끔은 하이패스가 안 달린 차가 실수로 하이패스 출입구로 들어가 버릴 때가 있고, 하이패스 장착 차량이라도 인식이 제대로 안 될 수가 있다.

본인도 자세한 내막은 잘 모르지만, 이럴 때를 대비해서 무인 톨게이트에서는 하이패스 이외의 다른 방법으로 통과 차량의 번호판을 판독하기도 하는 것 같다. 그런 상황에 대한 대비가 돼 있으니까 도로 공사에서는 미납 통행료 청구서를 추후에 차주에게 보낼 수 있는 것이다. 그리고 하이패스가 인식되지 않았더라도 세상이 끝장난 게 아니니 당황하지 말고 제발 급제동 급조향 하지 말고, 안전을 위해 일단은 지나가라고 운전자를 안심시킬 수도 있다.

사실, 하이패스 없이 차량을 무인으로 자동 인식하는 기술 자체야 전국의 수많은 번호판 인식 주차장들과 과속· 신호 단속 무인 카메라를 생각해 보면 아무런 문제가 없다. 고속도로 시설에서 그런 인프라를 갖추면 될 일이지, 운전자들에게 비싼 돈 들여 하이패스 단말기를 번거롭게 장착하라고 홍보할 필요가 없다.

하지만 그것만으로는 미덥지가 못한지, 아니면 이미 계약을 맺은 단말기 제조사들과 담합을 한 게 있기라도 한지, 우리나라 고속도로는 여전히 하이패스가 주류이고 그런 간편한 대체 수단은 전체 트래픽의 1% 이내의 보조 비상용으로만 활용하는 듯하다.

한편으로, 대통령 선거에서도 저렇게 비슷하게 '주류 기술'과 '대체 기술'의 관계에 있는 시스템이 보인다.
옛날에는 대선 당일에 자기 주민등록지에서 투표를 할 수 없는 사람들을 위해서 부재자 투표라는 게 따로 있었다. 이건 미리 부재자 등록을 해야 했다.

그런데 요즘은 기술이 좋아졌는지.. '사전 투표'라고 해서 당일 투표를 할 수 없으면 사전 등록 없이 아무나, 그것도 전국 아무 투표장에나 가서 미리 투표를 해도 된다.
이게 가능해졌을 정도면 아예 선거 당일과 사전 투표일의 구분을 없애도 될 것 같은데.. 그렇지는 않을 것이다.

전국민이 사전 투표일에 아무 데서나 투표를 해 버리면, 투표 용지도 on-demand로 뽑아야 하고 행정적으로 발생하는 무질서도를 감당하기가 아마 어려울 것이다. 모든 차량들이 하이패스 단말기 없이 하이패스 톨게이트를 통과해 버릴 때처럼 말이다.

우리나라도 궁극적으로는 전국의 고속도로들에 톨게이트가 없어지고 하이패스 단말기도 없어지고, 고속도로 통행료는 월말에 고지서 형태로, 아니면 차주의 카드 요금이 매월 결제될 때 일괄 청구되는 게 순리에 맞지 싶다. 일일이 하이패스 카드에 충전을 하거나 아니면 선수금을 쳐묵쳐묵 하는 자동 충전 카드는.. 많이 삽질스럽다.
그리고 전자 투표인지 뭔지가 도입될지 모르겠지만, 투표도 시간· 공간 제약이 갈수록 더 없어지는 쪽으로 가기는 할 것이다.

4. 아직도 4차로인 경부 고속도로 구간

난 경부 고속도로에 2010년대까지 남아 있던 최후의 오리지널 4차로 구간은 울산-경주-영천뿐인 줄로 알았다. 거기도 수 년 전부터 6차로 확장 공사가 시작되었기 때문에 그게 끝나면 경부 고속도로는 전구간이 최하 6차로 이상으로 탈바꿈하는 셈이다.

하지만 사실은 그렇지 않더라. 아직도 4차로이고 심지어 확장 공사조차 시작하지 않은 구간은 영동-옥천 사이에 더 있다. 거기가 경부 고속도로 최후의 4차로 구간이다. 마치 철도에서 경부고속선 때문에 경부선 기존선의 전구간 전철화가 오히려 늦어졌듯, 경부 말고도 다른 대체 고속도로들이 많이 생겼기 때문에 경부 자체의 전구간 확장이 작업의 우선순위가 낮아진 것이다.

사용자 삽입 이미지

다만, 영동-옥천 일대는 2000년대 초에 대대적으로 선형 개량을 한 적이 있으며, 이때 커브를 워낙 많이 편 덕분에 무슨 지방도도 아닌 고속도로가 길이가 약간 짧아지기도 했을 정도였다. 그리고 이 새 길은 비록 지금은 4차로를 유지하지만 미래의 확장 공사를 염두에 두고 노반도 미리 확보해 놓은 상태라고 한다.

그러니 저기는 1970년 개통 당시의 오리지널 선형이 "아닌" 4차로이다.
그에 반해, 영천-경주-울산은 확장 공사가 시작되기 전에는 진짜로 1970년 개통 당시의 선형을 그대로 간직한.. 정말 시간이 정지한 4차로였다.

경부 고속도로는 대구나 대전 같은 대도시 주변은 얄짤없이 8차로이고, 수도권에서는 아예 10차로에 육박하는 거대한 도로이다. 주변의 중부내륙이나 타 횡축 고속도로 같은 4차로 도로를 달리다가 경부로 진입하면 경부의 그 어마어마한 도로 폭에 압도당하게 된다.
그런데 그 경부조차도 6차로도 아닌 4차로 구간이 있다니, 거기는 경부 고속도로라는 게 실감이 안 날 것 같다.

사용자 삽입 이미지

Posted by 사무엘

2018/12/27 08:38 2018/12/27 08:38
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1569

찬송가 trivia

1. 21년 전, 기성 교회에서의 크리스마스 성극 추억

지금으로부터 21년 전인 1997년 말, 본인은 중학교에서의 마지막 겨울방학을 맞이하고 있었다.
그때 본인이 다니던 교회 중고등부에서는 지도교사 선생님의 주도로 크리스마스 이브 행사 때 무려.. 뮤지컬을 공연했다. 연극을 하다가 노래가 나올 때면 MR 틀어놓고 그에 맞춰 부르는 거다.

그 뮤지컬의 맨 처음 도입부에서 불렀던 노래가.. 기억에 남아 있는 가사를 검색해 보니 '마리아의 아기 예수'라는 곡이고 가사가 다음과 같다.
국내곡인 것 같지는 않은데.. 원곡의 제목과 가사는 무엇인지 정체를 알 길이 없다.

"오래 전 베들레헴에 성경 말씀 그대로
마리아의 아기 예수 오늘 탄생하셨네
천사 찬송하기를, '왕이 나셨다'
그를 믿는 모든 자는 영생을 얻으리.."


지금 내가 다니는 교회에서라면 이런 컨텐츠는 심의상 공연 불가일 것이다.
이 진영에서는 '아기 예수' 이런 말 별로 안 좋아한다. 산타 클로스, 크리스마스 트리, 12월 25일 예수 생일 이런 거 다 생깐다. 그런데 그걸로도 모자라서 '마리아의 아기 예수'라니! 이런 OO교스러운 심상이 담긴 용어는 절대 용납될 수 없다.

성도들 중에 심지어 "메리 크리스마스"라는 인사말조차 싫어하는 프로불편러도 있기 때문에, 저런 게 버젓이 공연되었다가는 곧장 클레임 들어온다.

뭐 난 그 정도까지는 아니다. 성탄절이 잘못된 거지, 예수 그리스도의 성육신 탄생 자체가 잘못된 교리는 아니지 않는가? 그리고 12월 25일이라도 쉬는 나라가 안 쉬는 나라보다는 나으며, "메리 크리스마스"가 "해피 할리데이" 이딴 말보다는 훨씬 낫다고 생각한다. 고로 본인은 트럼프 대통령의 노선을 지지한다.. =_=;;;

그 뮤지컬은.. "크리스마스 추억"이라는 주제로 그 안에서 또 세 갠가 네 개의 에피소드로 구성돼 있었다. 어떤 에피소드에서는 주인공이 평소에 짜장면을 미치도록 너무 좋아해서 크리스마스 성극을 공연하던 중에도 "손님, 짜장면은 뭘로 드시겠습니까?"라고 NG를 낸 이야기가 있었다.

성탄절의 유래고 뭐고 교리 지식 다 제끼고 동심, 감성, 추억만 생각하면 저런 게 참 훈훈한 기억이다. 그 뮤지컬 각본을 다시 볼 수 있다면 좋겠다. 허나, 그런 긍정적인 심상이 어째 이교도의 전통과 혼합되어 변질되었는지를 같이 생각하면 안타까운 노릇이 아닐 수 없다. 빨간 싼타 모자 쓰고 열심히 율동 가르치는 주일학교 교사들 동영상도 검색하면 많이 나오는데.. 착잡함과 안타까움이 교차한다. ㅠ.ㅠ

주일학교라는 게, 그 당시에는 꼬마들이 그냥 아무것도 모르고 선생님하고 같이 노래 부르고 떠들고 놀지만, 그게 커서까지 추억으로 각인되는 효과를 노린다. 그러니 유아 교육이 유치하고 시시하고 당장 지쩍으로 드러나는 효과가 없는 것 같아도 실제로는 중요한 역할을 하는 셈이다.

물론 나의 동심, 감성, 추억 분야의 결정판은.. 더 말하자면 입만 아프겠지만 2003~04년에 접한 새마을호 Looking for you이다. 요한계시록을 끝으로 신구약 성경이 완결되었듯이 Looking for you가 그냥 영원한 종지부를 찍었다.
국영 독점 교통수단에서 이런 음악이 흘러나왔다는 것은 충격 중의 충격으로 나를 철덕의 블랙홀로 빨아들이게 했다. 이걸 능가하는 충격은 내 인생에 다시는 등장하지 않을 것이다.

2. 나의 사랑하는 책 비록 해어졌으나

얘는 성경을 소재로 하는 얼마 안 되는 찬송가 중 하나이다.
완전 동요풍인 "신구약 성경책 (The B-I-B-L-E oh that's the book for me)" 다음으로 조금 나이가 들면 주일학교에서도 접하게 된다.

"나의 사랑하는 책"은 영어로 가사 첫 줄은 There's a dear and precious book..이고 원제는 My mother's bible이다.
"비록 해어졌으나"를 "비록 헤어졌으나"라고 ㅐ를 ㅔ로 잘못 기재한 책이나 사이트가 의외로 굉장히 많다. 구글 같은 검색엔진들에서 자동 완성이 '헤어졌으나'라고 제시될 정도다.
영어 가사가 Tho' it's WORN and faded now이니, 우리말로도 worn out을 뜻하는 '해지다'가 맞다. 어머님의 성경책이 다 낡은 채로 남아 있기라도 하냐, 아니면 영영 잃어버렸거나 심지어 빼앗겼냐의 차이이다. 후자라면 작사자는 젊었을 때 신앙을 잃었다가 탕자의 아들처럼 되돌아온 것일 수도 있게 된다..;;

한편, 이 찬양은 3절 가사가 "어머님이 읽으며 눈물 많이 흘린 것 지금까지 내가 기억합니다"
즉, 우리말로는 어머님이 우셨다고 번역되어 있다.
하지만 원래 가사는.. "Then she dried my flowing tear with her kisses as ..."
"내가 울었고" 어머니께서 내 눈물을 닦아 주셨다는 뜻이다..;;
물론 단위 음절당 들어갈 수 있는 정보량이 한국어와 영어가 서로 쨉이 안 되니, 이런 보정은 오역이나 변개는 아니다. 단지 다르다는 것이다.

2절 가사도.. 우리말은 다니엘, 다윗, 엘리야가 언급돼 있지만 원래 가사는 엘리야가 아니라.. '요셉'이 언급돼 있다. 뭐, 요셉보다는 엘리야가 더 포스가 있는 인물인 건 인정한다만..
엘리야가 "병거를 타고" 무슨 은하철도 999처럼 하늘에 올라갔다는 가사는 약간 고증 오류이다.

왕하 2:11을 보면, 불길에 활활 타는 모양의 병거가 나타났다고만 했지, 엘리야가 그 행렬에 직접 합류하거나 병거를 타고 승천했다는 말은 없다. 그냥 혼자 몸뚱이가 회오리바람에 휩쓸려 승천했다.
영어 가사는 애초에 엘리야를 언급하지 않으니 이런 오류도 존재하지 않는다.

3. 나는 인생의 산과 들 방황하며

위의 제목으로 오랫동안 방황하며 인생을 허비하다가 뒤늦게 예수 믿고 구원받게 된 기쁨을 노래한 찬송가가 있다.
얘는 작사· 작곡자가 따로 전해지는 외국곡인데, 원곡은 애초에 찬송가가 아니었다. 그냥 "그대를 향한 사랑 영원할 것이오"라는 내용의 일반 노래이다. 우리말 가사는 영어 가사와는 무관하며 완전히 새로운 창작이다.

그러니 이 곡은 찬송가로서는 Believe me if all those endearing young charms 같은 원제를 기재해 줄 필요가 없다.
"마귀들과 싸울지라 죄악 벗은 형제여" 곡에다가 "존 브라운의 시체" 영어 가사를 병기할 필요가 없듯이 말이다. 그건 그렇고..

"나는 인생의 산과 들 방황하며"의 마지막 2절 가사 끝부분은 "시냇물 흘러 바다에 돌아가듯 나는 주 안에 잠겨지네"이다.
이 찬송을 부르면서 본인은 늘 궁금했다. 가사를 쓴 사람이 졸업식 노래를 참고하기라도 했는지 말이다.

졸업식 노래의 3절 끝부분은 "냇물이 바다에서 서로 만나듯 우리들도 이 다음에 다시 만나세"인데..
찬송가 가사에 저런 냇물-바다 비유가 들어갈 일이 얼마나 될까..??
그리고 "주 안에 잠겨지네.."는 침례도 아니고 도대체 어떤 심상을 의도한 것일까? 누가 무슨 동기를 받아서 이런 가사를 썼는지가 무척 궁금해진다.

4. 지금까지 지내 온 것

"지금까지 지내 온 것 주의 크신 은혜라..."라는 찬송가가 있다. 가사의 특성상 간증 집회나 연말 송구영신 때, 혹은 교회 창립 기념 예배 때 두루 부르기 좋다. 극동 방송 발 카더라 통신에 따르면 한국의 크리스천들이 가장 좋아하는 찬송가 조사에서 당당히 2등을 차지했다고 한다.

얘는 "복의 근원 강림하사"와 동일한 외국곡 멜로디가 붙어 있는데, 그것 말고 박 재훈 작곡의 민요풍 멜로디 버전도 있다. 이 작곡자에 대해서는 "어서 돌아오오"의 작곡자라고 얘기해 주면 한국인이라면 다들 고개를 끄덕일 것이다.
둘 다 3박자 계열인 건 동일하며, 우리나라 찬송가에는 두 곡이 모두 실려 있다.
한국곡 멜로디는 "부름 받아 나선 이 몸"과 분위기가 꽤 비슷하게 느껴진다만.. 그래도 "부름 받아..."의 작곡자는 다른 인물이다.

"지금까지 지내 온 것"의 멜로디 말고 가사의 출처를 살펴보면 굉장히 흥미로운 점이 발견된다.
본인도 굉장히 최근에 알게 된 건데.. 얘는 한국인 작사는 당연히 아니고 그렇다고 찬송가들의 대부분을 차지하는 미국· 유럽 계열도 아니다.

이 곡의 작사자는 보통 T. Sasao라고 소개돼 있는 편인데, 일본인이다. '사사오 데쓰사부로'(笹尾鐵三郞 1868-1914)라고 메이지 시대를 주로 살았던 성결교 목사이다. 데쓰(tetsu)는 '철'의 일본어 음일 뿐이며 death하고는 당연히 무관하다.
영어 가사가 멀쩡히 기재돼 있어서 일본인 작사가 아닌 것 같지만 이것 역시 일본어로부터 나중에 번역된 것이다.

이 곡의 진짜 원어 가사는 이렇다. きょうまで守られ
일본어를 모르는 본인이 보기에도.. 1절 지금(今日)까지 지내 온 것, 2절 몸과 맘도 연약하나(か弱き者を), 3절 주님 다시 뵈올 날이(主の日) 등 우리말과 일본어가 앞부분이 얼추 일치하는 것 같다.

사사오 데쓰사부로가 작사한 다른 대표적인 찬송가로는 "우리들의 싸울 것은 혈기 아니요"가 전해진다. March we onward 이렇게 시작하는 영어 가사가 있지만, 외국 사이트에서 검색이 잘 되지 않을 것이다. 어쩐지 옛날 가사는 '일심'도 그렇고 약간 일본어스러운 표현이 있더라. 그래도 저 사람은 "지금까지 지내 온 것"의 작사자로 훨씬 더 많이 알려져 있는 듯하다.

다만, 이해가 되지 않는 것은 "나 위하여 십자가에 중한 고통 받으사.."이다.
"My life flows on in endless song; (...) How can I keep from singing?"이라고 Robert Lowry 작사의 가사가 분명히 전해지는데..
우리나라 찬송가에는 동일 멜로디에 "My life flows rich in love and grace (...) How can I keep from singing?"이라는 비슷하지만 약간 다른 가사와 함께 T. Sasao가 기재돼 있다. 작사자가 잘못 기재된 것 같은데 제2의 영어 가사는 정체가 뭔지 궁금해진다.

이런 식으로 오늘날 교회에서 불리는 찬송가들의 출처와 계보, 탄생 배경들을 연구해 보는 것도 무척 재미있다. 성경으로 치면 주석을 같이 보는 것과 같다. 계보가 의외로 복잡하고 배배 꼬인 것, 전혀 찬송가가 아닌 멜로디에다가 번역이 아닌 창작 수준의 가사가 붙은 게 많다. 옛날에는 지금처럼 곡들의 출처를 구글 검색 한 번으로 바로 알 수 있지 않고, 또 저작권에 대한 개념도 정립되지 않았으니 말이다.

참고로 우리나라 통일/새 찬송가에서 일본인 작사로 알려져 있는 가장 유명한 곡은 나카다 우고 작사의 "은혜가 풍성한 하나님은"이다. 내가 알기로 원어 가사까지 영어가 아닌 대놓고 일본어로 기재된(Megumi hukaki mikami yo ...) 거의 유일한 곡이다.
알고 보니 '메구미'가 은혜(惠)라는 뜻의 일본어인데.. 본인은 배틀로얄에서 미츠코에게 낫으로 목이 따여 죽는 여학생 이름으로만 오랫동안 알고 있었다. ㅠㅠㅠ ^^;;

Posted by 사무엘

2018/12/24 08:35 2018/12/24 08:35
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1568

리만-제타 함수와 리만 가설

18세기를 살았던 레온하르트 오일러가 인류 역사상 얼마나 충격과 공포 괴수 급의 천재 수학자였는지는 자연계· 이공계 맛을 조금이라도 본 사람이라면 모를 수가 없을 것이다. 본인 역시 이에 대해서 이 블로그에 글을 쓴 바 있다.

그의 여러 업적 중에서 자연수들의 거듭제곱의 역수의 무한합과 관련된 것들이 특히 주목할 만하다. 이걸 일반화해서 그냥 리만-제타 함수라고 하는데, 가령 2승에 해당하는 ζ(2) = 1/1 + 1/4 + 1/9 + 1/16 ...이런 식이다.
오일러는 천재적인 직관으로 ζ(2) = pi^2 / 6이 된다는 것을 최초로 발견했다. 그는 더 나아가 이런 무한합이 다음과 같이 모든 소수들을 후처리한 값들의 무한곱과 동치라는 것을 증명했으며...

사용자 삽입 이미지
(이런 식으로 3^s, 5^s, 7^s ... 순으로 몽땅 소거하는 것이 포인트)

사용자 삽입 이미지

2 같은 짝수 승일 때는 이 값이 언제나 원주율을 거듭제곱 및 유리수배 한 형태로 나온다는 것까지도 알아냈다.
자연수의 거듭제곱의 역수의 무한합에는 원주율도 들어있고 소수의 분포도 들어있고.. 가히 노다지가 가득했다. 괜히 난해한 문제가 아니었던 것이다.

한편으로 짝수가 아닌 홀수 승일 때는 저 함수값이 정확하게 무슨 의미가 있는 형태로 표현되는지 아직까지 아무도 모른다. 무리수인 것까지는 알려졌지만 초월수인지조차 아직 정확하게 증명되지 못했다. (심증상으로는 어차피 매우 높은 확률로 초월수일 것 같다만..) 지금까지 인류의 지성이 캐낸 것만 해도 노다지 급인데, 이 함수의 정체는 아직까지도 다 밝혀지지 못해 있다. 홀수 완전수도 그렇고 홀수에 뭔가 이상한 특성이 있기라도 한가 보다.

게다가 이것이 이야기의 끝이 아니다.
언뜻 보기에 ζ(x)는 x > 1일 때에만 유의미한 값을 가지며, x가 커질수록 함수값은 1에 한없이 가까워질 것이다. 그리고 x <= 1이면 얄짤없이 무한대로 발산이니 함수에 대해 논하는 것이 아무 의미가 없다.
가령, ζ(1) = 1 + 1/2 + 1/3+ 1/4 ...는 로그 스케일로나마 발산한다는 것이 잘 알려져 있고, ζ(0)이면 1+1+1+1+...이 될 것이다. ζ(-1)은 역수의 역수이니까 1+2+3+4+...가 되니 이 이상 더 따질 필요도 없다.

그럼에도 불구하고 이 함수는 사실 1을 제외한 다른 모든 수에 대해서 함수값이 정의된다. 아니, 실수를 넘어서 복소수에서까지 정의된다. 어찌 된 영문일까? '해석적 연속'(analytic continuation)이라는 개념을 통해서 정의역을 확장할 수 있기 때문이다.

수학이라는 학문은 이런 식으로 사고의 영역을 확장하면서 서로 다른 개념이 한데 연결되고, 추상화의 수준이 상승하고, 거기서 아름다움과 일치, 질서를 발견하는 식으로 발전해 왔다.
고등학교 수준에서 가장 먼저 발상의 전환을 경험하는 건 허수와 복소수이다. "제곱해서 -1이 되는 수라니, 세상에 그런 황당무계한 물건이 어디 있냐? 그걸 도대체 왜 정의하며 그게 무슨 의미가 있냐?"라고 처음엔 누구나 자연스럽게 생각할 수 있다. 아니, 그렇게 고집을 부리는 게 이전까지 수학 공부를 정상적으로 제대로 한 사람의 반응이다.

그런데 그 개념만 하나 도입하고 나니 이제는 뭐 4제곱해서 -1이 되는 수 이런 식으로 이상한 숫자를 또 만들 필요 없이, 복소수 범위에서 i만 동원함으로써 정수 계수 n차 방정식의 근 n개를 언제나 모두 기술할 수 있게 된다. (대수학의 기본 정리) 이게 대단하다는 것이다.
물론, i로도 모자라서 j, k 같은 괴상한 수를 추가한 삼원수 사원수 같은 확장 개념도 있긴 하지만, 그건 벡터· 행렬과 연계해서 다른 특수한 용도 때문에 쓰이는 것일 뿐, 대수 내지 해석학적인 필요 때문에 쓰이는 건 아니다.

다음으로 거듭제곱을 생각해 보자. 이걸 동일한 숫자를 n회 곱하는 식으로만 정의한다면 끽해야 정수 내지 유리수 승밖에 생각할 수 없다. 그러나 거듭제곱의 역함수 격인 로그가 미분 가능한 연속함수이며, 자연상수의 거듭제곱 e^x를 다항식 급수로 풀어 쓸 수도 있다. 더구나 e^(I*x) = cos(x) + I*sin(x)로 자연상수와 I가 복소평면에서 삼각함수와도 만나게 되었으니, 이제 거듭제곱을 정수와 유리수의 영역에만 한정해서 생각할 필요란 전혀 없을 것이다.

이런 식으로 a^x 정도가 아니라 x^x나 x!(팩토리얼)마저도 매끄러운 함수 형태로 그래프로 그릴 수 있다. 특히 팩토리얼의 경우 '감마 함수'라고 별도의 명칭까지 있고 말이다.
또한 x는 실수가 아닌 복소수로 확장해서 2^I, I^I 같은 것도 생각할 수 있다.
고등학교 수학에서는 음수 로그는 생각하지 않고 지냈지만, 복소수 범위에서는 로그 역시 정의역이 복소수로 확장 가능하다. base(밑)도 0이나 1만 아니면 다 된다. 오일러가 정립한 e^(Pi*I)+1=0 이 괜히 위대한 발상이 아닌 것이다.

그럼 리만-제타 함수의 정의역은 어떤 방식으로 확장할 수 있을까?
일단 무한합 함수를 다음과 같은 형태로 바꾸면.. >1에 대해서만 정의되던 기존 함수를 1을 제외한 >0에 대해서도 정의되게 범위를 조금 넓힐 수 있다.

사용자 삽입 이미지

앞에는 뭔가 등비수열의 무한합 같은 계수가 곱해졌고, 뒤에는 1+2+3+4... 덧셈 일색이던 것이 1-2+3-4+... 형태로 바뀌었다. (참고로, s=1일 때.. 1 -1/2 +1/3 - 1/4...는 ln(2)로 수렴하는 것으로 잘 알려져 있음.)
이렇게 식을 써 주면, s>1일 때는 아까와 결과가 동일하면서도 0<s<1일 때는 음의 무한대로 발산하는 형태로 함수값이 추가로 정의되게 된다.

사용자 삽입 이미지

즉, 이 함수는 1에 대해서 좌극한과 우극한의 값이 서로 다르게 된다.
뭔가 (1, 1)이 중심인 반비례 그래프처럼 생겼지만 실제로 그렇지는 않다. 가령, ζ(4/5)는 -4.4375...이지만 -ζ(6/5)-1은 -4.5915...로 값이 서로 미묘하게 다르다.

그럼 0과 음수에 대해서는 어떻게 정의하느냐 하면.. 더 복잡하고 난해한 개념을 동원해야 한다.
구체적인 유도 과정은 본인도 다 모르겠고 시간과 지면이 부족하니 생략하지만.. 리만-제타 함수는 이미 정의된 함수값으로부터 다른 구간의 함수값을 해석적으로 유추할 수 있는 '함수 방정식'이 이렇게 정의되어 있다.

사용자 삽입 이미지

얘를 0과 음수에 대해서도 적용하면 된다는 것이다.
여기서 감마 함수 Γ(x)는 바로 (x-1)!의 해석적 확장 버전이며, 다음과 같이 정의된다.

사용자 삽입 이미지

x^n / e^x를 0부터 무한대까지 적분한 값이 n!이라니, 신기하기 그지없다.
더 신기한 것은, 리만-제타 함수도 기존의 >1 구간에 대해서는 감마 함수와 매우 유사한 형태로 이렇게 정의할 수 있다는 점이다.

사용자 삽입 이미지

저 복잡한 수식들이 논리적으로 서로 다 맞아떨어진다는 사실을 리만이라는 사람이 발견했다. 자연수의 거듭제곱의 역수 무한합이 도대체 몇 가지나 서로 다른 방식으로 표현되나 모르겠다..!
사실, 리만-제타라는 함수 이름도 저 사람이 정의역을 해석적으로 완전하고 깔끔하게 확장된 뒤에 붙은 이름이다. 그 전에 직관적으로 생각하기 쉬운 1보다 큰 실수 버전은 그냥 '제타 함수'였다.

리만-제타 함수는 음의 짝수에 대해서는 모두 0이 나온다. 함수 방정식에서 sin(Pi*x/2) 부분이 -180도의 배수가 걸리고 0이 돼 버리기 때문이다.
그럼 양의 짝수는 괜찮은가 하면.. 괜찮다. 저 함수 방정식에 포함된 감마 함수라는 놈은 음의 정수가 걸리면 무한대로 발산하며(제타 함수에서 원래 양의 정수가 들어왔을 때), 이 경우 함수 방정식의 값은 극한 형태로 구해야 하기 때문이다. 0과 무한대의 곱 형태의 극한은 원래 제타 함수의 값 형태로 나올 수가 있다.

비슷한 맥락에서 ζ(0)의 값을 구할 때도 극한을 동원해야 한다. 함수 방정식에 따르면 ζ(1-0) = ζ(1)을 동원해야 하는데 리만-제타 함수는 원래 1에서 값이 정의되지 않기 때문이다. 상황이 약간 까다롭다.
이런 우여곡절을 거치고 나면 리만-제타 함수의 음수 구간은 값이 상하로 진동하는데, 그 진동의 폭이 0에서 멀어질수록 급격히 커진다. 그래프의 모양이 얼마나 제멋대로인지 -20부터 4까지의 그래프를 그려 보면 다음과 같다.

사용자 삽입 이미지

그럼 리만-제타 함수의 0 이하 음수 구간은 수학적으로 도대체 무슨 의미가 있는가?
이것은 일명 '라마누잔 합'과 직통으로 연결된다. 20세기 초 인도의 천재 수학자 라마누잔의 이름에서 딴 명칭이다.

1+2+3+4... 무한합이 무한대도 아니고 -1/12라는 웃기는 짬뽕 같은 소리를 들어 보신 적 있나 모르겠다. 비슷한 논리로 1+1+1+1...은 -1/2라고 한다.
이건 0으로 나눗셈을 슬쩍 해 놓고는 "모든 수는 0과 같다", "0은 2와 같다" 같은 paradox 궤변· 유체이탈 화법을 늘어놓은 게 아니라, 무한급수의 합에 대한 정의 자체를 달리함으로써 도출 가능한 결론일 뿐이다.
실제로 모든 수를 0승 해서 1로 만든 것과 같은 ζ(0)의 값은 -1/2이며, 모든 자연수를 그대로 무한히 더한 것과 같은 ζ(-1)의 값이 -1/12이다.

리만-제타 함수와 직접적인 관계가 있는 수열은 아니지만 1+2+4+8+...의 무한합은 이런 체계에서는 -1이다. 자기 자신 s에 대해서 s = 1+2s가 성립되므로, s=-1이 된다는 식이다.
무한히 더하기만 하는 것 말고 더했다 빼기를 반복하는 1-2+3-4+5 ... 교대 무한합은 라마누잔 합에 따르면 등비수열의 무한합을 예외적으로 적용하는 방식으로 구해서 1/4가 된다.
1-1+1-1+1-1...의 교대 무한합은 1/2이다. 이건 1과 -1의 평균 같으니 그나마 좀 직관적으로 들린다.;;;

이들의 구체적인 근거와 계산 내역, 배경 원리는 이 자리에서는 역시 언급을 생략하겠다.;;
이거 무슨 고전 역학만 파다가 갑자기 양자역학이고 상대성 이론이고 하는 분야로 넘어간 듯한 느낌이다. 오일러가 뉴턴이라면 리만은 아인슈타인 정도? 진짜 그런 관계인 것 같다.
혹은 데카르트 좌표계와 유클리드 기하학만 열심히 파다가 갑자기 구면 같은 다른 기하학으로 넘어간 것 같은 느낌이다. (삼각형 세 각의 합이 180도가 아닐 수도 있는..)

무한이라는 개념이 이래서 다루기가 까다롭다. 뭐 하나 까딱 뒤틀면 별 희한한 등식이 다 나오기 때문이다.
0.99999...를 1과 동급으로 만들어 주는 것이 무한이며 그 새 발의 피 같은 소수의 역수들의 합을 발산시켜 주는 것도 '무한'이다. 그런데 한편으로 무한도 다 같은 무한이 아니기 때문에 자연수 전체의 개수보다 0~1 사이의 실수가 훨씬 더 큰 무한이라고 여겨진다.

아무튼 리만-제타 함수를 완전히 확장하고 나니 양수 구간에서는 오일러가 발견했던 그 어마어마한 의미가 담겨 나오고, 음수에서는 또 저런 신세계가 펼쳐지면서 한편으로 1을 제외한 전구간에서 저런 정교한 수학적 질서가 다 충족되었다.
그런데 수학자들의 욕심은 여기서 그치지 않고 이 함수를 복소수 구간에서까지 써먹을 생각을 하게 되었다. 당연히 얘의 저변에 있는 감마 함수, 삼각함수 등등도 전부 복소수 범위에서 값이 정의되어 있어야 할 것이다.

자 그럼 여기서.. ζ(x) = 0을 만족하는 근은 얼마나 있을까?
일단 양의 실수 중에는 그 정의상 존재하지 않는다. 그리고 음수 중에는 아까 말했던 짝수들이 모두 함수값을 0으로 만든다. 이들은 그냥 자명한, 중요하지 않은 trivial한 근이다.

그런데 문제는 이 함수는 복소수 범위에서 다른 근도 갖는다는 것이다. 이것은 유의미한, non-trivial한 근이다.
구하기가 무진장 어렵긴 하겠지만 베른하르트 리만은 0에 가까이 있는 것부터 시작해 근을 4개 정도 찾아내 봤다. 그런데 여기서 신기한 공통점을 발견했으며, 그는 다음과 같은 주장을 하기에 이르렀다.

"ζ(x) = 0을 만족하는 자명하지 않은 복소수 근 x들은 실수부가 모두 1/2일 것이다."


그리고 우리는 이것을 리만 가설이라고 한다.
리만-제타 함수의 유의미한 근은 무수히 많이 존재하는데, 첫 몇 개가 다음 사이트에 올라와 있다. 실수부는 1/2이고 허수부가 저런 값인 복소수들 근이라는 얘기이다. 즉, 1/2 + 14.134725...I 부터 시작해서 1/2 + 21.02203963..I , 25.010857...I 등이다.
실제로 ζ( 1/2 + x*I )의 절대값을 그래프로 그려 보면 이렇다. 저 산들의 밑바닥이 근이라는 뜻 되겠다.

사용자 삽입 이미지

리만 제타 함수는 복잡한 함수들의 조합에다, 무한대 적분(정확한 부정적분 형태를 알 수 없는 놈을 대상으로 이상적분..)까지 동반하는 형태로 인해, 계산량이 실로 어마어마하다.
그렇기 때문에 평범한 다항함수, 삼각함수, 로그, 지수(일명 초등함수)로만 구성된 함수보다 그래프를 그리기가 훨씬 더 힘들다. 그러고도 저건 정확하게 그려진 게 아니다. (21 부근에 그래프가 정확하게 바닥까지 내려가지 않았음) 다른 건 다 해석적으로 확장한다 쳐도, 대소 비교가 존재하지 않는 복소수 구간에서 적분이란 게 어떻게 존재 가능하단 말인가?

그래프를 봐도 모양이 참 희한하다. 저기서 근들의(= 허수부 값) 분포에는 딱히 규칙성이 없는 것으로 여겨진다. 복소평면에서의 무슨 프랙탈 영역 그림 이래로 이 정도로 복잡기괴한 그래프를 보는 건 개인적으로 처음이다.;; 다만, 지금까지 셀 수 없이 많은 복소수 근들을 직접 구해 봤는데, 일단 리만 가설이 다 성립하긴 했다. 전부 1/2 + xx*I의 형태로 표현되었다. 자명하지 않은 근도 무한히 많이 존재하긴 하며, 이는 증명되어 있다.

아아.. 본인이 수학 분야에서 이렇게 길고 복잡한 글을 쓸 일이 이렇게 또 생길 줄은 정말 상상하지 못했다. 나도 머리가 뱅뱅 돌아 버리겠다.. ㅡ,.ㅡ;;
리만-제타 함수는 문제를 풀기는커녕 그 배경을 이해하는 것만으로도 복소해석학 등 최하 대학교 수학과 학부 이상의 고등 수학 지식을 요구한다.

공대 수준의 수학 지식이 아니다. 공대에서 배우는 통상적인 미적분의 개념을 아득히 초월하니 원.. 복소수는 그 정의상 실수부와 허수부의 관계가 아주 미묘하다 보니, 해석적으로 다루는 방법론도 평범한 다변수 기반 해석학과는 다르다.

이 함수의 자명하지 않은 근의 분포는 우리에게 도대체 무슨 의미가 있을까?
저게 다 규명되고 리만 가설이 증명 내지 반증된다고 해서 무슨 암호 알고리즘이 다 뚫리고 생활이 큰 혼란이 야기된다거나 하지는 않는다.
다만, 리만 가설은 현대 정수론의 금자탑이라 해도 과언이 아닌 소수 분포와 직접적인 관계가 있다.

자세한 내막은 모르겠지만, x보다 작은 소수의 개수를 나타내는 공식 x/log(x)은 제타 함수의 자명하지 않은 모든 근들의 실수부가 "1이 아니다" 내지 "1보다 항상 작다"와 동치 급으로 얽혀 있다고 한다. 즉, 소수 정리는 리만 가설이 참이라는 것을 얼추 전제로 하고 세워져 있다.

하지만 리만의 추측이 수학적으로 딱 엄밀하게 증명되거나 반증되지는 못한 상태이다. 마치 P와 NP의 관계 문제처럼 말이다.
전세계의 날고 기는 천재 수학자들, 심지어 필즈 상을 받은 사람도 내가 이 문제를 풀었다고 증명을 내놨지만, 어디엔가 오류와 불완전한 점(그게 왜 저렇게 연결되는데?)이 발견되어 종종 퇴짜를 맞곤 했다. 오죽했으면 20세기 초에 세계구급 수학자들이 이렇게 말을 했을 정도이다.

  • 나는 잠들었다가/죽었다가 한 500년쯤 뒤에 깨어날 수 있다면, 벌떡 일어나자마자 주위 사람에게 "리만 가설 문제가 이제 풀렸나요?"라고 물어 보고 싶다. -- 다비트 힐베르트(1862-1943)
  • 나는 배를 탈 일이 있으면 낚시로라도 "난 리만 가설을 증명했다. 하지만 증명을 다 적기에는 여백이 부족하다"라는 쪽지를 지니고 탄다. 그 상태로 사고가 나서 죽으면 세상은 낚시에 낚여서 나를 온통 안타까워하고 추모해 줄 것이다. 하지만 나는 무신론자이고, 신이 존재한다면 그런 내게 저런 영광을 허락해 주지 않을 것이기 때문이다." (즉, 저 쪽지가 나를 죽지 않게 하는 일종의 보험· 부적 역할을 할 것이란 말을 참 배배 틀어서 어렵게 표현했다. =_=) -- 고드프리 해럴드 하디(1877-1947)

사람에게는 오늘 당장 먹고 살기 위한 빵과, 내일을 준비하기 위한 꿈이 필요하다고들 그런다. 그것처럼 저명한 천재 수학자들은 다른 자기 전공 분야에서 논문 발표하고 연구 실적을 낸 뒤, 그걸 밑천으로 리스크가 큰(= 전혀 풀리지 않아서 시간과 노력만 낭비하게 될 수도 있는) 리만 가설에도 틈틈이 남 몰래 매달리는 식으로 시간을 분배하는 편이라고 한다.

이건 마치 침몰한 보물선을 인양하고 신대륙에서 금을 찾는 일에다가도 비유할 수 있을 것 같다. 금과 보물을 찾았다가는 인생한방 역전이지만.. 전혀 성과가 없으면 투자금만 날리고 사람을 완전 미치게 만들 수 있으며, 실제로 미쳐 버린 수학자도 몇몇 있다. (영화 뷰티풀 마인드 참고..)
그리고 미치지는 않았는데, 반대로 어줍잖은 실력으로 이 문제를 풀었다고 주장하면서 학계 사람들을 귀찮게 굴거나, 거짓 주작 사기를 치는 사람도 있다. 문화재를 거짓 조작한 사기꾼처럼 말이다.

그랬는데.. 지난 2018년 9월 말, 영국에서 '마이클 아티야'(1929-)라고 나이 90을 바라보는 어느 원로 수학자가 리만 가설을 수리물리학적인 방법론으로 접근하여 완전히 풀었다고 나섰다. 논문을 내고 방송 발표를 자청했다.

사용자 삽입 이미지

이 사람은 여느 듣보잡 관심종자가 아니었다. 무려 1966년(지금 본인과 비슷한 나이.ㅠㅠ)에 필즈 상을 받았으며 2004년에 아벨 상까지 받은 금세기 최고로 손꼽히는 천재요 수학계의 거장이었다. 소싯적에 리만 가설 만만찮은 연구 실적을 잔뜩 내기도 했고, 이딴 것 갖고 사기를 칠 아무 동기도, 이유도 없는 사람이었다.

그의 선언은 세계의 이목을 받았지만 정작 뚜껑을 열어 보니 학계의 반응은 허탈함과 아쉬움 일색이었다. "우리 대선배님이 갑자기 왜 이러시나.." 안 그래도 예전부터 그가 공개 석상에서 횡설수설하면서 오락가락.. 상태가 좀 안 좋다는 정황이 포착되어 왔는데, 이번 방송에서도 수학사가 어떻고 하면서 진짜 증명과 별 관계 없는 얘기만 늘어놓으면서 막무가내로 학계가 내 주장을 안 받아주는 거라고 우기는 식이었기 때문이다. 방송 말고 논문도 검증 과정이라고 하지만 예상 반응은 벌써부터 극히 회의적이다.

그래서 현직 수학자들은 이 사태에 대해서 언급을 극도로 꺼리면서 "비록 증명에 실패했다 하더라도 유의미한 연구의 밑거름이 될 것입니다" 덕담이나 하는 한편으로, "리만 가설이 위대한 수학자 한 분을 또 골로 보냈구나, 그것도 말년에.. 저분은 원래 늘그막에 저렇게 망신당할 군번이 절대 아닌데 아 슬프도다!" 이런 입장이었다고 한다...;;

사실, 본인은 이 뉴스 기사를 접하기 전에는 저 사람에 대해 알지도 못했다. 단지, 리만 가설 이상으로 악명 높고 역시나 여러 사람들을 골로 보낸 이력이 있던 "페르마의 대정리"를 풀어 낸 사람(앤드루 와일즈)이 영국 사람인 건 진작부터 알고 있었다. 저런 유럽 나라들은 어떻게 저렇게 수학· 과학이 발달할 수 있었는지 경이롭고 대단하게 느껴질 따름이다.

Posted by 사무엘

2018/11/25 08:36 2018/11/25 08:36
, , , , ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1558

태양계 행성들

* 오래 전에 썼던 글을 리메이크 했다.

1960~80년대 냉전 기간 동안 미국과 소련의 주도로 진행된 우주 개발은 인류의 세계관, 우주관을 송두리째 바꿔 놓은 과업이 아니었나 싶다. 그 전에는 아담스키 같은 사람이 내가 금성에서 온 우주인을 만나고 왔다고 구라-_-를 쳐도 반박할 근거가 없었지만, 지금은 그런 말을 믿을 사람은 아무도 없다. 그리고 화성에서 사는 외계인이 지구로 쳐들어온다는 스토리인 <우주 전쟁> 같은 소설도 20세기 중후반부터는 읽기에 김이 좀 빠지게 됐다.

태양계의 행성들은 제각기 태양으로부터의 거리가 다르고 궤도의 이심률, 방향 등이 다를지언정, 거의 다 같은 평면상에서 태양을 돌고 있다. 행성들이 마치 원자 주위를 도는 중성자, 전자들처럼 3차원 공간을 다 차지하면서 마구잡이로 도는 건 아니라는 것이다. 그래서 사실 우리은하 전체가 납작한 평면 원반 형태이다. 그 위아래로 쭉 가면 뭐가 나올까 궁금해진다. (참고로 성경은 하나님의 왕좌가 자리잡은 방향도 북극이 향하는 그 절대적인 북쪽이라고 말한다.)

태양계 시뮬레이터가 있으면 무척 재미있을 것 같다. 태양을 비롯해 각 행성과 위성들의 질량, 반지름, 초기의 운동 방향을 입력해 주면 실시간으로 행성들이 우주 공간을 원뿔곡선을 그리면서 빙글빙글 도는 것이다. 그리고 행성의 임의의 시점에서 하늘을 봤을 때 태양이나 인접 행성들이 어떤 크기로 보일지도 보여주는 그런 프로그램을 누가 물리 엔진 잘 짜서 만들면.. 내가 직접 우주를 창조하는 창조주 기분을 낼 수도 있을 것이다. ^^;; 아마 천체의 운동을 제대로 기술하려면 3체 문제 같은 것도 적당히 풀어내야 할 것이다.

지구와 달부터 시작해서 태양계의 행성들을 지구에서 가까운 순서대로 나열해 보았다.

0. 지구

생명이 존재한다는 것, 물이 액체 상태로 충분히 존재한다는 것, 자전축이 직각의 1/4에 가까운 적당한 각도로 기울어져 있는 것, 비정상적으로 큰 위성이 존재하는데 달과 태양의 겉보기 크기가 같다는 것.. 뭐 정말 온통 특이한 점밖에 없는 행성이다. (수성, 금성만 해도 자전축은 5도를 안 넘으며 곧게 빙글빙글 돌고 있다.).

사용자 삽입 이미지

지구는 자전 속도가 아주 서서히 느려지고 있으며, 달은 서서히 지구로부터 멀어지고 있다는 것이 알려져 있다.

1. 달

우주의 천체들 중 지구에서 제일 압도적으로 가까이 있는 덕분에 수십 년 전에 인간이 수 차례 직접 다녀오는 데도 성공했다.

사용자 삽입 이미지

지구에서 발사된 로켓은 우주선(달 탐사선, 사령선)을 지구의 대기 궤도(parking orbit)에까지 올려주고, 그 뒤 우주선이 추가적으로 가속하여 지구를 도는 궤도를 초점이 달에 근접할 정도로 길쭉한 타원에 이르도록 가속한다.

그렇게 달 쪽으로 가다가 달의 중력에 끌려갈 때쯤이면 감속하여 달의 궤도에 진입하는데, 감속을 안 하면 우주선은 달을 삥 돌면서 8자 모양만 그리고 도로 지구로 돌아오게 된다. 아폴로 13호가 불의의 사고가 났음에도 불구하고 이 원리를 이용하여 달 착륙만 포기하고 지구로 귀환할 수 있었다.

사령선은 달을 도는 동안 달 착륙선을 밑으로 내려보내고, 착륙선은 나중에 다시 사령선과 합체한다.
지구에서 달까지 편도로 가는 데는 3~4일 정도 걸린다. 이 모든 과정에서 로켓이 연료를 분사하여 뭔가 가감속을 하는 시간은 수~수십 분에 불과하다. 로켓은 비행기가 아니고 우주 여행은 지구 대기권 비행이 아니다. 나머지 모든 시간은 그냥 관성으로 천체 궤도를 돌고 끌려가며 이동하는 시간이다.

2. 금성

일찍이 샛별이라고 불리면서 인류의 선망이 되어 온 이 행성은 지구와 가장 가까이 있으며 크기와 중력도 지구보다 약간 작을 뿐 얼추 일치한다. 가는 것 자체는 2~3개월 남짓 걸리고 궤도 진입도 쉬운 편이어서 다 좋은데... 딱 하나. 금성 내부가 24시간 초고온 고압의 불지옥이라는 것이 치명적인 문제다.

사용자 삽입 이미지

이산화탄소로 꽉 찬 지표면 대기의 압력은 잠수함도 못 들어갈 정도인 해저 900m급과 대등하고, 온도는 1년 내내 극지방과 적도를 가리지 않고 섭씨 400도 이상이다. 두꺼운 구름을 뚫고 지표면을 들여다보려면 결국 탐사선을 착륙시켜야 하지만.. 이런 곳에 착륙한 탐사선은 수~수십 분밖에 못 버티고 고장 나고 파괴되고 말았다.
왜 하필 지구에서 제일 가까운 행성 하나만 유일하게 저 지경이 됐는지, 개인적으로 매우 아쉽다는 생각이 든다. 지구와 나란히 쌍둥이나 마찬가지인 행성인데 왜 운명은 서로 정반대로 바뀌게 되었을까?

금성은 태양계의 행성 중 공전 궤도의 이심률이 가장 작으며, 동그란 원에 일치한다고 한다. 크기도 별로 안 큰 행성이 대기압도 가장 짙고 자전 속도가 태양계 행성 중 살인적으로 가장 느리며, 심지어 공전 주기보다도 길어서 하루가 1년보다 더 길다. 또한 이놈과 천왕성만 공전 방향과 자전 방향이 상호 정반대인 것도 이색적이다. (다른 행성들은 그렇지 않음)
또한 금성은 지구와는 달리 자연 위성이 존재하지 않으며, 자전축이 기울어져 있지도 않다.

3. 화성

인류의 기술로는 가는 데 5개월~1년 정도 걸린다(당연히, 지구와 가장 가까워졌을 때 기준). 여기는 그나마 춥고 메마른 사막일 뿐인 덕분에 여러 탐사선들이 착륙 후에 수 개월~수 년간 활동했으며, 표면 사진도 제일 많이 전해져 있다(온통 시뻘건 산화철이 섞인 붉은 흙). 쉽게 말해 달 다음으로 2순위로 착륙해 볼 만한 곳이다.
그래도 거리의 압박이 있다 보니 여기에 가는 것도 마냥 쉬운 일만은 아니었다. 가는 도중에 통신이 끊기고 실패한 우주선 미션들도 굉장히 많다.

사용자 삽입 이미지

화성은 금성보다도 더 작지만 자전 주기와 자전축 기울기는 지구와 묘하게 비슷하다. 그리고 태양과 충분히 멀어서 그런지 위성도 두 개 있다. 하지만 그래 봤자 둘 다 지름 10km대의 못생긴(=딱 봤을 때 구 모양을 하고 있지도 못한) 돌덩어리에 불과하며, 지구의 달하고는 스케일이 비교가 안 된다.
포보스는 태양계 전 행성의 위성들 중 공전 고도가 가장 낮으며, 화성과 서서히 가까워지고 있는지라 먼 미래에 화성과 충돌할 가능성이 점쳐지고 있다. 그 반면, 데이모스는 서서히 멀어지고 있다고 한다.

4. 수성

태양계에서 태양과 가장 가까이 있으며, 한편으로 소행성 왜행성 따위를 제외한 행성들 중에서는 제일 작아서 달보다 약간 더 큰 정도이다. 응당 위성도 없고 대기도 거의 없으며 표면엔 크레이터가 많아서 더욱 달과 비슷한 심상이다.

수성에서는 태양이 얼마만한 크기로 보일까? 공전 주기는 짧은 편이지만, 자전은 지구로 치면 거의 2개월에 가깝게 걸릴 정도로 매우 느리다. 그래서 긴 시간 동안 낮에는 표면이 섭씨 2~300도에 달하는 프라이팬처럼 달궈지고, 밤인 뒷면은 영하 세자릿수대에 도달한다고 한다. 달만 해도 그렇게 되는데 달보다 태양에 훨씬 더 가까이 있는 수성은 그 정도가 더욱 심하다.

수성은 지구와의 최단거리도 만만찮지만, 태양을 가장 가까이서 가장 빠르게 공전하는(지구 공전 속도의 약 1.5배이고, 공전 궤도의 이심률도 꽤 큼) 작은 내행성이라는 점으로 인해 탐사선을 보내기가 기술적으로 대단히 어렵다. 그냥 수성으로 보냈다가는 우주선도 십중팔구 태양으로 끌려가 버리기 때문이다. 아까 달 궤도에 진입할 때처럼 감속을 잘해야 하는데 이 과정이 엄청나게 빡세다.

그래서 지난 반세기 우주 시대 동안 수성을 탐사한 우주선은 마리너 10호와 메신저 단 둘밖에 없으며, 전자는 사실 수성의 궤도로 진입도 못 했다. 태양을 돌다가 수성에 근접하게 됐을 때만 잠깐 잠깐씩 탐사했을 뿐이다. 나중에 발사된 후자가 수성을 수천 번 돌면서 전체 표면 지도를 완성한 뒤, 나중에 궤도 유지를 위한 연료가 고갈되자 수성 표면으로 추락했다.

외행성 탐사선들이 보통 행성 스윙바이를 이용해서 가속을 하지만, 수성으로 가는 우주선은 금성을 이용해서 ‘감속’을 한다. 이거 속도를 맞추느라 메신저의 경우, 수성까지 가는 데는 발사 후 무려 6~7년에 달하는 시간이 걸렸다.
아울러, 이런 수성 탐사선은 원자력 전지(외행성)도 아니고 태양광 전지(지구 인공위성)도 아니고 무슨 양산 같은 열 차폐막을 두르고 날아갔다. 뱅글뱅글 바비큐 기동만으로도 태양열의 제어가 안 되기 때문이다.

수성은 크기나 색상(칙칙힌 회색..)이 달과 얼추 비슷하니 이 글에서 별도의 사진은 생략하겠다. ㄲㄲㄲㄲ

5. 소행성대

화성에서 목성 사이의 우주 공간에는 마치 마곡 역 개통 전에 서울 지하철 5호선의 발산-송정처럼 중간에 뭐가 빠진 것 같은 긴 공백이 존재한다. 티티우스 보데의 법칙으로도 예측할 수 있는 이 지점에는 마치 우주 찌꺼기 같은 자그마한 소행성들이 태양을 돌면서 마곡 역의 역할을 하고 있으며, 그 중 대표적인 물건은 ‘세레스’라는 이름이 붙은 소행성이다. 예전엔 커다란 한 행성이었다가 뭔가 큰 사고가 나서 박살이 나고 저 지경이 된 잔해들은 아닐까 하는 궁금증이 든다.

세레스의 고해상도 표면 사진은 2015년이 돼서야 촬영될 수 있었다. 얘도 온통 크레이터가 가득한 곰보 같은 모습이더라.

6. 목성

화성 이후부터 행성 사이의 거리는 수성-화성 사이의 행성에 비해서 굉장히 벌어진다. 목성은 태양계에서 가장 큰 행성이며, 토성만치 폼나지는 않지만 나름 고리도 갖추고 있다.

사용자 삽입 이미지

표면의 무늬가 마치 나뭇결 같다는 생각도 든다만.. 저기는 잘 알다시피 착륙할 땅 자체가 없다. 표면에 내려가면 금성 뺨치는 고온 고압 유독가스 폭풍에 한 치 앞도 안 보이고 모든 것이 그냥 짜부러진다. 금성에는 없는 방사능도 왕창 튀어나온다.

목성은 그 큰 행성이 밀도가 작아서 그런지 자전 속도가 매우 빨라서 주기가 10시간대에 불과하다. 그리고 표면의 중력 가속도는 약 2.5G 정도라고 여겨지니 지구보다 더 무겁다.
덩치가 큰 덕분에 위성이 현재까지 무려 70개가 넘게 발견되어 있는데, 그 중 제일 큰 '가니메데'는 수성보다도 약간 더 크다. 그래도 질량은 수성의 절반 남짓이라고 한다.

7. 토성

제원을 살펴보면 여러 모로 목성의 축소판인 행성이다. 크기는 목성보다 약간 작지만 목성보다 훨씬 더 화려한 고리를 갖고 있으며, 자전 원심력으로 인해 적도 방향으로 목성보다도 더 찌그러진 타원처럼 보인다. 태양계에서 고리도 자신의 일부인 것처럼 여겨지는 유일한 행성이 바로 토성 되시겠다.

사용자 삽입 이미지

목성의 표면은 온갖 화려한 물결 무늬, 나뭇결 무늬, 대적반, 동그란 흉터 같은 형상들로 점철된 반면, 토성의 표면은 너무 반들반들하다. 대기가 짙어서 표면이 잘 안 보이는 건지, 아니면 관측이 충분히 가까이에서 못 된 건지는 잘 모르겠다.

토성의 가장 큰 위성은 타이탄이며, 2005년에 카시니-하위헌스 탐사선이 착륙도 했다. 주변 풍경은 화성과 비슷해 보였다.

8. 천왕성

천왕성은 정말 엄청나게 멀다. 태양-토성의 거리가 토성-천왕성의 거리와 비슷할 정도이다. (티티우스-보데의 법칙이 적중하는 마지노 선인 행성인데, 그 법칙은 지수함수 형태이다..)
얘부터는(해왕성도) 지구에서 밤 하늘 관측으로는 볼 수 없으며, 블랙홀 찾듯 중력 존재감을 추적한 계산만으로 발견된 것이다. 표면 사진은 보이저 2호가 촬영해서 보내 준 것만이 유일한데, 이마저도 색깔이 희뿌옇고 퀄리티가 그리 좋지 못하다.

천왕성은 자전축이 무려 98도로 사실상 누워서 자전하기 때문에, 자전과 낮과 밤의 관계는 사실상 무의미하다. 태양을 향하고 있는 한쪽 극지방은 40년이 넘는 세월 동안 낮이고, 반대편은 밤이 그만치 계속된다.

9. 해왕성

앞서 얘기했듯이 물리적 특성과 크기, 발견 경위 등이 천왕성과 비슷한 처지이다. 목-토, 그리고 천왕-해왕 이렇게 짝을 이루는 것 같다. 그래도 지구보다도 더 새파란 게 색깔 하나는 예뻐 보인다. ^_^

사용자 삽입 이미지

보이저 2호는 목성에서 토성까지 가는 데 2년, 거기서 천왕성까지 무려 4년 반, 거기서 해왕성까지 3년 반 정도가 걸렸다. 목성에서 해왕성까지 1979년부터 1989년까지 10년이 걸린 셈이다. 그나마 행성들이 얼추 일렬 최단거리로 늘어섰던 천우의 타이밍 때 날아간 게 이 정도이다.

위성 트리톤은 태양계 행성들의 위성 중에서는 거의 유일하게 해왕성의 자전 방향과는 반대인 역행 공전을 하고 있다.

10. 명왕성

너무 멀고 크기가 너무 작고, 보이저 탐사선의 조명조차 못 받았다 보니, 제대로 된 표면 사진조차 없이 오랫동안 상상도만 존재했던 물건이다. 최초 발견자가 미국인이기 때문에 미국에서 굉장한 애착을 갖고 있었지만, 알고 보니 자기 궤도에서 독보적인 행성도 아니었으며 왜행성· 소행성 등급으로 결론 지어졌다.

그런데 그 작은 명왕성에도 카론이라는 위성이 붙어 있다. 이 둘은 한쪽의 크기와 무게가 충분히 독보적인 관계가 아니기 때문에 무게중심이 두 행성의 바깥에 있다. 일종의 이중 행성계를 구성하면서 서로 상대방의 중력에 이끌려 빙글빙글 돌고 있다.

2006년에 발사된 뉴 호라이즌스 호가 9년 반 동안 보이저보다도 더 빠르게 날아간 끝에 드디어 명왕성의 표면 사진을 최초로 보내 줬다. 덕분에 명왕성의 표면은 자기보다 앞의 가스형 행성들보다 더 선명하게 잘 알려지게 됐다. 보아하니 색깔이 수성· 달이나 세레스 같은 회색이 아닌 붉은색 계열인가 본데, 화성처럼 철 성분이라도 있나 보다.

Posted by 사무엘

2018/11/14 08:31 2018/11/14 08:31
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1554

1. 물, 바다, 수소의 연료화

흔히 우리는 바다가 온통 소금물이니 소금은 다들 염전에서 바닷물을 증발시켜서 얻는 줄 안다. 하지만 대량의 물을 물리· 화학적으로 변형하는 것은 우리 생각보다 많은 에너지(= 비용)가 드는 일이며, 염전 또한 아무 바닷가에나 쉽게 크게 만들 수 있는 시설이 아니다. 정제 비용은 덤이고 말이다.

그렇기 때문에 전세계적으로 생산되는 소금의 출처는 바닷물보다는 의외로 암염의 비중이 더 크다고 한다. 망망대해 가운데에서 마실 물 걱정을 하는 것처럼, 주변이 온통 바닷물이지만 여전히 소금 걱정을 할 수밖에 없다는 것이다.

또한 이와 비슷한 맥락으로, "흔해 빠진 게 물인데 산소와 수소쯤은 물을 전기 분해하면 바로 얻을 수 있잖아?"도 그때 드는 전기의 양을 생각하면 그리 만만한 생각이 아니다. 수소는 생산한 뒤에도 너무 위험하고 안전하게 보관하는 게 어렵다 보니, 21세기의 기술로도 그 막강한 폭발력을 동력 기관으로 제대로 활용하지 못하고 있다. 친환경과 가성비라는 두 마리 토끼를 모두 잡기란 쉬운 일이 아니다.

뭐, 소금은 이렇게 바다가 아니라 육지에서도 많이 얻는다만, 우리가 바다에서 진짜 의외로 더 많이 얻는 것은.. 바로 산소라고 한다. 아마존 숲을 포함해 육상 식물이 만드는 산소보다 전세계 바다의 해조류와 미생물이 광합성을 해서 만드는 산소가 더 많다. 어떻게 그럴 수가 있나 모르겠지만, 일단 지표면에서 면적부터가 바다가 훨씬 더 크기도 하니..

게다가 거대한 양의 바닷물은 이산화탄소를 품고 있기도 하다. 나중에 태양이 적색거성으로 바뀌어서 화력이 강해지고, 태양열 때문에 바닷물이 증발하는 지경이 되면 바닷물이 품고 있던 이산화탄소가 몽땅 증발돼 나오면서 온실효과까지 가미되어.. 지구는 순식간에 금성 같은 불지옥으로 바뀔 거라는 전망이 있다.

이런 점을 생각하면 여러 모로 바다는 소금보다도 더 중요한 분야에서 인류에게 고마운 역할을 하는 듯하다. 아, 훌륭한 단백질 공급원 역할도 톡톡히 한다. 소금은 암염으로 더 많이 생산될지 모르지만 생선이 육상 동물 육류보다 더 저렴하고 영양 가성비가 뛰어난 것은 자명한 사실이다.

2. 음속 -- 진동이 전해지는 속도

공기 중에서 음속이라는 게 초속 330~350m, 시속으로 환산하면 1100~1200km 정도 된다.
음속이 광속보다는 훨씬 더 느리기 때문에, 번갯불이 먼저 번쩍인 뒤(눈에 도달) 수 초 뒤에 폭음이 귀에 도달하여 들리는 것 정도는 주지의 사실이다.

개인적으로는 등산 중에 하늘 위로 비교적 낮게 날아가는 비행기를 봤는데, 비행기는 엔진 소리가 들려 오는 곳보다 더 앞서 나가 있는 게 무척 신기했다. 고도가 낮은 것 같아도 못해도 3~4km 정도는 돼 보인다.

그런데 하물며 우주 관측은 광속으로도 감당 못 할 까마득히 먼 거리를 다룬다는 게 더 신기한 노릇이다. 몇백만 년 전의 별의 모습을 이제야 보는 것이니 말이다. 겨우 수 초 전에 비행기가 지구 대류권 상공에서 낸 엔진 소리를 뒤늦게 듣는 것과는 차원이 다르다.

공기 중의 음속은 인간의 비행기로도 낼 수 있을 정도로 비교적 느린 속도이다. 하지만 액체와 고체 속에서는 음속이 훨씬 더 빨라진다.
물 속에서는 극심한 저항 때문에 총알도 제대로 안 나아가고 모든 것이 둔해지고 느려지지만, 음속은 공기 중보다 대체로 4~5배 정도 더 빨라진다. (초속 1.4~1.5km)

게다가 금속 같은 고체 매질 속에서는 음속이 초속 5~6km대로 치솟는다.
지진파가 바로 고체 속에서 나아가는 음파와 본질적으로 비슷한 존재이다. P파 S파 종류별로 속도 차이는 있지만, 기본적으로 초속 수 km대의 스케일이다.

그렇기 때문에 진원지에서 수백 km 떨어진 곳에 진동이 겨우 몇십 초 만에 느껴졌네 하는 게 가능한 것이다. 우리나라도 얼마 전 경주와 포항의 지진 때문에 이쪽으로 사람들의 관심이 쏠린 바 있다.
하지만 전파 같은 초월적인 광속도 아니고 그렇다고 로켓이나 우주 발사체의 속도도 아니고, 일상적으로 저런 규모의 속도를 접할 일은 그다지 없을 것이다.

소리가 나아가는 건 총알이나 바람이 나아가는 것과는 완전히 다른 개념이다. 질량을 가진 물체가 직접 이동하는 게 아니라, 진동만 전해지는 것이기 때문이다.

그렇기 때문에 물과 고체 속에서 음속이 더 빨라진다. 그리고 결정적으로.. 공기 저항을 없앤답시고 진공을 만들어 버리면 음속이 증가하기는커녕, 소리가 아예 전해지지 못하게 된다. 열은 복사라는 방식으로 진공 속에서도 나아가서 전해질 수 있는 반면, 음파는 그냥 끝이다.

자연에는 물질의 운동뿐만 아니라 파동/진동도 존재한다는 것이 물리 과목을 더욱 어렵게 만드는 주범임이 틀림없다..;; 그냥 이차함수 포물선까지만 생각하면 되던 게 이제 삼각함수가 필요해지기 때문이다.
특히 빛이 입자와 파동의 성질을 모두 지니고 있는 건.. 신학으로 치면 인간이면서 하나님, 삼위일체 급의 난해한 개념이다.

3. 전열기

전기 에너지를 이용하면 잘 알다시피 바퀴를 굴리는 동력을 생성할 수 있고 강렬한 빛(LED)을 만들 수도 있고 컴퓨터를 돌리고 메모리 소자에다 정보를 기록할 수도 있다.
이런 무궁무진한 활용에 비해, 전기로 겨우 열이나 만드는 건 제일 수준 낮은 활용인 것 같다. 어차피 모든 에너지는 열, 그것도 더 재활용하기 곤란한 폐열로 귀착되니 말이다.
마치 싱싱한 참돔이나 우럭, 넙치 활어를 받아서는 회를 만들어 먹지 못하고 몽땅 탕으로 끓여 먹는 것과 비슷해 보인다.

하지만 국가의 정책 차원에서 기름값이 워낙 비싸다 보니 요리나 난방용 전열기가 의미가 전혀 없는 건 아니다. 전기 제품은 안 그래도 간편하고 화력 좋고 그 자체로서는 공해도 전무한데, 전자 공학 기술의 눈부신 발달 덕분에 전열기도 옛날의 전열기보다 에너지 효율이 당연히 훨씬 더 좋다. 같은 전력을 소모했을 때 빛이나 동력이 나와야 하는 곳에서는 열로 낭비되는 에너지 없이 빛이나 동력만 많이 나오고, 진짜 열이 나와야 하는 곳에서는 열만 아주 강렬하게 잘 뿜어져 나온다.

그러고 보니 똑같이 전기로 음식을 데우는데, 단순히 바닥만 뜨겁게 달궈 주는 전기 오븐이 있는 반면에 전자 레인지도 있는 게 신기하게 느껴진다. 후자가 전력 소모가 더 많고 더 고차원적이고 심오한 방법으로 음식을 데우는 것이 틀림없다.

그리고 한편으로, 전기가 아닌 통상적인 연료를 사용하는 가스 레인지나 석유 난로도 전기를 전혀 사용하지 않는 건 아니다. 처음 점화를 할 때는 전기 스파크를 사용하기 때문이며, 이건 휘발유 자동차 엔진도 마찬가지이다. 그렇기 때문에 가스 레인지의 경우 건전지를 집어넣는 부분이 있으며, 석유 난로는 최소한의 전자식 UI 제공을 위해 전기를 사용한다. 물론 순수 전기 난로보다 전력 소모가 훨~~씬 적음은 주지의 사실이다.

4. 20세기 중반의 리즈 시절

요즘 이공계에서 석· 박사까지 공부하는 종사자들은 추세를 다 알겠지만..
오늘날은 어느 분야건 무슨 20세기 초와 그 이전처럼 울트라 초천재 과학자 한 명이 그야말로 X선처럼 0에서 1을 만드는 급의 기상천외한 걸 창조하거나 발견해 내고 세상을 획기적으로 바꾸던 그런 시절은 지났다. 모든 연구는 엄청난 자금빨을 동원해 집단으로 행해지며 단독 저자 논문은 거의 없다.

그리고 앞서 말했듯이 여러 학문들이 손 잡고 힘을 합쳐서 궁극적으로는 (1) 모든 사람들의 취향을 파악하고 마음을 읽어 내는 스마트한 시스템, 그리고 (2) 사람을 닮은 기계를 만드는 것을 목표로 삼고 달려가고 있다.

옛날에, 20세기 이전에 생물학이라는 건 그냥 생물의 생태를 관찰하고 분류하고 해부하는 정도의 방법론밖에 존재하지 않았다. 파브르나 멘델처럼 말이다. 그랬는데 오늘날에 와서는 타 분야의 과학· 공학이 발달한 성과물을 접목하여 예전에 상상도 할 수 없던 미시적인 수준의 분석이 가능해졌다.
이른바 분자 생물학이라는 게 태동한 것이다. 그리고 막대한 양의 DNA 데이터를 분석하다 보니 컴퓨팅 기술과도 손을 잡게 됐다. 이게 물리학으로 치면 마치 뉴턴 고전 역학에서 전자기학, 양자역학으로 넘어가는 급의 패러다임 변화이다.

생물학이 그렇게 되는 동안 의학은? X선 덕분에 방사선 치료니 영상 의학이니 하는 분야가 새로 생겼다. 옛날의 의사들은 상상도 할 수 없었을 것이다.

언어 공학 쪽은? 언어라는 게 인간이 동물과 다르고 기계와 다른 매우 큰 차별화 요소이다 보니 해결되지 못한 문제와 연구할 것이 아주 많다.
언어학에도 말뭉치 언어학이라는 분야는 컴퓨터 기술의 발달 덕분에 생겨났고.. 이런 식으로 학문들이 타 분야의 도움을 받아서 새로운 유행이 생겨나는 것 같다.

이공계의 트렌드 내지 패러다임이 이렇게 바뀌기 전에.. 그 저변과 기술 기반을 제공한 시절이 내 생각에 20세기 중반 정도가 아니었나 싶다. 2차 세계 대전이 끝나고 냉전이 시작된 동안 과학 기술이 얼마나 눈부시게 발달했던가?
전자공학 쪽에서는 진공관 컴퓨터와 더불어 (1) 트랜지스터가 발명되었다. 항공우주 분야는 (2) 로켓, 인공위성, 대륙간 탄도 미사일을 만들어 냈다.
그리고 (3) 원자력 발전이 이때부터 시작됐다. 끝으로 생물학에서는 (4) DNA 구조가 규명되었다.

1950~60년대에 미국의 일류대 대학원에서 이공계 공부를 한 사람들은 그야말로 천지개벽 수준의 과학 기술 업적이 펑펑 터져나오는 걸 경험한 셈이다. 부럽다.

5. 공군 전투 조종 장교 : 이공계 대학원생

  • 비행 시간 : 논문 수, 짬, 연구 실적
  • 전방석 : 1저자, 주저자
  • 후방석 : 공동· 교신저자
  • 전역 후 민항사 : 졸업 후 유명 대기업· 연구소 취업
  • 테스트 파일럿 : 스타트업 창업
  • 장성 진급 : 대학 교수 부임

서로 아귀가 묘하게 잘 맞는 것 같다..;;

6. 기타 수학· 과학 분야 얘기

(1) 예전에 벡터의 내적과 외적에 대해서 글을 쓴 적이 있었는데.. 하필 3차원에서는 두 벡터가 주어졌을 때 이 둘과 일차독립이면서 크기도 일정한 의미를 갖는 다른 벡터를 구하는 외적(벡터곱)이라는 연산이 존재하는 게 정말 심오하고 보통일이 아니라는 게 거듭 느껴진다. 3차원 공간을 구성하는 세 축의 방향을 안내해 주는 나침반이나 마찬가지이다.
FBI이니 뭐니 오른손 왼손 손가락 뻗으면서 외웠던 자기장 방향도 이 외적의 개념을 나타낸 셈이다. 또한, 복소수의 개념을 확장한 사원수의 곱셈 연산은 영락없이 벡터 외적 연산을 떠올리게 한다.

(2) 사람이 갈색이나 노랑이 아니고 초록색이나 파란색 머리카락은 100% 염색이지, 자연적으로는 절대 나올 수 없는 색깔이다. 그와 마찬가지로 장미꽃은 원래 백색, 분홍, 홍색 계열 위주이지 청색..은 자연에 존재하지 않았다. 파란색 꽃 자체는 그렇게 드문 건 아니지만 장미에는 그런 게 없었으나.. 21세기에 와서야 유전 공학의 힘으로 만들어 내는 데 성공했다. 우와..;;
LED도 청색을 구현하기가 제일 어려웠는데 파란색에 뭔가 생물학적인 다른 사연이 있는 건지 모르겠다.

(3) 똑같은 선풍기 바람도 사람에게는 체온보다 낮은 시원한 바람이지만, 아이스크림은 선풍기 바람을 쐬어 주면 반대로 더 빨리 녹게 된다. 아이스크림의 녹는 속도를 늦추려면 오히려 패딩 점퍼로 싸는 게 낫다.
그리고 똑같은 바람도 촛불은 끄게 하지만 큰 불에는 말 그대로 '불난 집에 부채질' 꼴이 되는 것이 흥미롭다. 온도와 풍속이 해당 상황에서 서로 다른 방향으로 영향을 끼친다..;;

(4) 동위원소 물질은 생물로 치면 무슨 유전자 변형 같다..;; 동물이 염색체 하나가 더 붙어서 기형이 태어나는 것 같은 느낌.. 원자로의 냉각수로 쓰이는 중수는 산소+수소이긴 한데 수소가 그냥 수소가 아니라 중성자(中)가 하나 더 붙은 중수소(重)이다. 그래서 중수의 얼음은 일반 물에 집어넣으면 가라앉으며, 끓는점과 어는점도 일반 물보다 몇 도가량 더 높다. 그런데 사람 몸에는 썩 좋지 않다고 한다.

(5) 인체에 대해 다룬 책들의 삽화를 보면 동맥피만 빨갛고 정맥피는 완전 시퍼렇기라도 한 것처럼 그려져 있다. 게다가 피부에 비치는 정맥 혈관이 검푸르게 보이기까지 하니(특히 좀비의 혈관..) 더욱 그럴싸해 보인다.
하지만 아무리 정맥이라고 해서 멀쩡한 혈액이 실제로 푸른색인 건 아니다. 명도· 채도의 차이가 있을 뿐, 사람의 피는 언제나 붉다.

이건 마치 태양에 흑점이란 게 있다고 해서, 우주에서 맨눈으로 관측한 태양의 표면에 검은 구멍이 숭숭 보이는 건 절대 아닌 것과도 비슷한 이치이다. 흑점은 태양의 다른 부위에 비해 상대적으로 덜 뜨겁고 덜 밝을 뿐, 여전히 극도로 눈부시고 밝은 건 마찬가지이다.
대기의 산란 같은 게 없는 우주에서 태양을 보면 빨강이나 노랑, 주황 같은 색은 전혀 없으며, 그냥 맹렬한 흰 빛만을 볼 수 있다.

Posted by 사무엘

2018/11/08 08:31 2018/11/08 08:31
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1552

파이, 수학에서의 패턴

1998년에 개봉한 <파이>라는 영화가 있다. 제목은 음식 파이가 아니라 원주율 파이를 가리킨다. 구체적인 내용은 본인도 기억이 안 난다만 배경은 아마 20세기 중반 정도의 가까운 과거이고, 수학 덕후 주인공과 유대교 랍비가 나오고 '쿵쿵따다 쿵쿵따다 쿵쿵따다 쿵따~' 이런 인상적인 BGM이 나오고, 이례적으로 흑백으로 만들어진 좀 마이너 매니악한 취향의 영화이다.

벤허처럼 1950년대에도 컬러로 만들어진 영화가 있는 반면, 1990년대에 일부러 흑백으로 만들어진 영화도 소수나마 있다. 내가 아는 건 쉰들러 리스트와 저것밖에 없다.
뭐, 킬 빌은 녹엽정 격투 장면이 수위 조절(사지가 날아다니고 피가 철철 튀고..)을 위해서 일부 흑백으로 촬영됐다고는 하는데.. 그런 일부 장면 말고 작품 전체가 흑백인 것 말이다.

과거에 텔레비전의 화질이 디지털 HD로 한층 업그레이드 되자, 출연자들의 피부 표면이 예전보다 훨씬 더 선명하게 보이기 시작했다. 이 때문에 분장· 화장을 맡은 방송 스탭들의 수고가 더 커졌다고 한다.
그리고 텔레비전이 흑백으로 컬러로 바뀌었을 때에도 예전에 대충 하면 되던 각종 보정이나 특수효과들이 이제는 통하지 않게 되었다고 한동안 난리가 났다고 한다. 예를 들어, 없는 눈을 만들어서 눈 내리는 장면을 만들기가 흑백 시절보다 훨씬 더 어려워진 것이다.

하지만 그 반대도 그저 만만하지는 않다. 컬러 찍듯이 평범하게 세팅을 한 뒤에 영상에서 채색을 제거하고 명도만 남긴다고 해서, 보기 좋은 흑백 영화를 만들 수 있는 건 물론 아니라고 한다. 흑백으로 찍었을 때 배경과 인물 분간이 잘 되게 별도의 방법론을 동원해야 한다.
얘기가 좀 옆길로 새었다만 아무튼.. 저 pi 영화에서는 다음과 같이 주인공의 신념(가설)이 담긴 독백 대사가 나온다.

사용자 삽입 이미지

1. 수학은 자연의 언어이다.
2. 우리 주변의 만물들은 수를 통해 표현되고 이해될 수 있다.
3. 그 수들을 그래프로 표현해 보면 패턴이 나타난다.
그러므로 자연에는 패턴이 어디에나 존재한다.


1번을 반영하여 <컨택트>(1997)라는 영화에서는 외계인이 무슨 심장 박동 같은 신호를 2 3 5 7 11... 소수 간격으로 보내는 장면이 나온다. 수학은 지구인이나 외계인이나 다같이 공감할 자연의 언어이니까 말이다.
2번은.. 오늘날 디지털 컴퓨터에서 맨날 하는 짓이 바로 이것이다. 양자화, 전산화, DB화... 인간이 접하고 취급하는 사물의 모든 현상과 정보를 숫자로 표현했기 때문에 컴퓨터가 글과 그림, 소리를 출력할 수 있다.

그리고 3번과 그 이후는 정말 그러한지는 알 수 없다. 단지 그런 패턴을 발견해서 깔끔한 수식으로 아름답게 표현하는 것이 세상 모든 수학자들의 로망인 건 사실이며, 영화에서는 이를 더욱 드라마틱하게 표현했을 뿐이다.
그런데 패턴이라...;; 이 시점에서 본인은 <말죽거리 잔혹사>의 대사가 떠오르지 않을 수 없었다.

사용자 삽입 이미지

"2 로그 2에 4를 푼다. 우선 2로그에서 앞에 있는 2를 뒤로 쭉 빼. 그리고 4 위에 살짝 올려. 왜? 패턴이니까. 수학은 논리가 아니고 뭐다?"


로그값 계산을 저렇게 거창하게.. 무슨 집 맞은편 편의점까지 모험을 떠나고, 동네 뒷산으로 에베레스트 등반을 하듯이 하는 풀이는 처음 본다. ㅠㅠ

당연히, 두 말할 나위도 없이..
전자의 영화에서 말하는 그 심오한 패턴이랑, 후자의 영화에서 말하는 그냥 시험 문제 풀이 테크닉에 가까운 패턴은.. 격이 완전히, 달라도 너무 다른 용어이다.
(뭐, 안 내상 씨도 혹시 진짜 현업 수학 교사를 불러다가 연기 시킨 게 아니냐는 말을 들을 정도로 연기를 잘하긴 했다.;; ㄲㄲ)

말죽거리 잔혹사는 영어 명사의 종류 고추X집물뿐만 아니라 수학에서도 그 당시의 참 비효율적인 입시 위주 암기 위주 교육을 그럭저럭 풍자했다.
하지만 뭐든지 다 잘하는 천재 괴수들은 그런 교육 체제에서도 다 100점 받고 할 거 다 하긴 했다.

Posted by 사무엘

2018/11/03 08:36 2018/11/03 08:36
, ,
Response
No Trackback , No Comment
RSS :
http://moogi.new21.org/tc/rss/response/1550

« Previous : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : ... 38 : Next »

블로그 이미지

철도를 명절 때에나 떠오르는 4대 교통수단 중 하나로만 아는 것은, 예수님을 사대성인· 성인군자 중 하나로만 아는 것과 같다.

- 사무엘

Archives

Authors

  1. 사무엘

Calendar

«   2019/12   »
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Site Stats

Total hits:
1293371
Today:
22
Yesterday:
499